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Blocks of group algebras of defect 1
(a cyclic defect group) [R. Brauer, E. C. Dade]

Brauer tree
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ordinary characters
edge «—— irreducible modular character
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At most one p-conjugate class has the size greater
than one (the exceptional vertex).
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Remark. (1) If G is solvable, then the shape of
the graph is a “star’ by Fong-Swan's Theorem.

(2) If the block is local, then the graph has the
only one edge.
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Questions. Let (X,G) be a p’-valenced scheme,
B a block of (X, G) with “defect” 1.

(1) Is it true that dyp, =0 o0r 1 7

(2) For an irreducible modular character ¢, is it
true that

t{x € Irr(B) | dy, > 1}/(B-conjugate) =2 7

(3) If (2) is true, then we can define a graph by

decomposition numbers. Is the graph a tree
?

(4) Is it true that there exists at most one excep-
tional vertex 7

(5) Does B* have finite representation type 7 Is
it a Brauer tree algebra ?

Note that we have not defined the “defect” for
a block of an association scheme. So the state-
ments above is incomplete.



Definitions.

Let X be a finite set, G a collection of non-empty
subsets of X x X. For g € G, we define the ad-
Jacency matrix o4 € Matx(Z) by (og)zy = 1 if
(z,y) € g, and 0 otherwise.

(X, Q) is called an association scheme if

(1) X x X = Ugeqgg (disjoint),

(2) 1 :={(z,z) |z € X} €G,

(3) if g€ G, then g* = {(y,z) | (z,y) € g} € G,
(4) and ofog = Ypeq Pt on for some ph € Z.

Then every row (column) of g4 contains exactly
ng = p« Ones. We call ng the valency of g € G.

(X,@G) is said to be p’-valenced if every valency
is a p’-number.



Define
7G = @ Liog C Matx (Z),
geG

then ZG is a Z-algebra. For a commutative ring
R with unity, we define

RG = R®y ZG

and call this the adjacency algebra of (X,G)
over R.

We say that (X,G) is commutative if ZG is a
commutative ring.

T he followings are known.

(1) If K is a field of characteristic zero, then KG
is separable (semisimple).

(2) If F'is a field of characteristicp > 0 and (X, G)
is p/-valenced, then FG is a symmetric alge-
bra. (Note that Brauer tree algebras are sym-
metric algebras.)



We say that a field K is a splitting field of (X, G)
if K is a splitting field of QG, namely charK =
0O and K@ is isomorphic to a direct sum of full
matrix algebras over K.

For an association scheme (X, ), there exists a
finite Galois extension K of Q which is a splitting
field of (X,G). We fix such K and denote the
ring of integers in K by O. Let p be a (rational)
prime number, ‘B a prime ideal of O lying above
pZ. The inertia group T of P is defined by

T={rcGa(K/Q)|a—ad €P Vae O}

We call the corresponding subfield of K the iner-
tia field of ‘¥ and denote it by L. We denote Oy,
for the ring of integers in L, and p for the unique
prime ideal of Oy, lying below ‘. It is known that
p is unramified in L/Q, namely p & p=.



Let Oy be the localization of O by *B. Put F =
Og /POy = O/P, a field of characteristic p. We
also suppose F' is large enough. For o € 0‘13'
we denote a* € F for the image of the natural
epimorphism O‘?B — F.

We denote the set of all irreducible characters of
KG and FG by Irr(G) and IBr(G), respectively.

Let v be the standard character, namely the char-
acter of the representation o4 — o4. FOr x €
Irr(G), we denote m, for the multiplicity of x in
~ and call it the multiplicity of y.

An indecomposable direct summand B of O;I;G
as a two-sided ideal is called a B-block of (X, ).
Then there exists a central primitive idempotent
ep Of OpG such that egOpG = B.

We say x € Irr(G) belongs to a P-block B if
x(eg) # 0, and denote Irr(B) for the set of ir-
reducible ordinary characters belonging to B.

7



It is known that

€ER — Z €xs

x€lrr(B)

where e, = gzgeg X(ag «)og. Also Irr(B) is a
minimal subset S of Irr(G) such that > cgoey €
OgpG.

Let W be a matrix representation affording x €
Irr(G). We can suppose W(og) € Mat, 1y(Og) for
every g € (G. Then we obtain a representation W*
of F'G. Consider the irreducible constituents of
W* and denote the multiplicity of an irreducible
modular character ¢ in W* by dy,. We call dyy
the decomposition number and the matrix D =
(dy,) the decomposition matrix.

We say that ¢ € IBr(G) belongs to a block B if
there exists x € Irr(B) such that dyy, # 0. Then ¢
belongs to the only one block. We denote IBr(B)
for the set of modular irreducible characters be-
longing to B.

If x € Irr(B), ¢ € IBr(B’), and B # B/, then
dye = 0. SO we can consider the decomposition
matrix Dp of a block B.



Let W be a matrix representation affording x €
Irr(G) such that W(oy) € Matx(l)(Os;B) for every
g € G as before. For 7 € Gal(K/Q), we can define
a representation W7 by W7 (o4) = W(og)” (entry-
wise action), and denote its character by 7.

In general, x and x™ may belong to different blocks.
But if 7 € Gal(K/L), L is the inertia field of ‘L,
then they belong to the same block.

We say that two irreducible ordinary characters
are ‘3-conjugate if they are conjugate by the ac-
tion of the inertia group Gal(K/L).

Now Irr(B) is a disjoint union of some -conjugate
classes. We denote the size of the ‘I3-conjugate
class containing x by ry.

We denote vy for the PB-valuation on K such that
vp(p) = 1. Namely, if pOgp = POy and aOp =
B/ Oy, then vp(a) = f/e.



Block of ‘“defect 0"

In group representation theory, “defect 0" means
the block over a field of characteristic p is a simple
algebra.

In the following, we suppose B is a block of an
association scheme (X, G) and x € Irr(B).

Proposition. Let (X, G) be a p’-valenced scheme.
If vp(my ) > vp(| X)), then vp(my) = vp(|X]), Irr(B) =
{x}, x* is irreducible, and IBr(B) = {x*}.

Proposition. Let (X, G) be a p’-valenced scheme.
Suppose vp(x(1)) = 0. Then the following con-
ditions are equivalent.

(1) vp(my) > vp(|X]).

(2) vp(my) = vp(IX]).

(3) Irr(B) = {x}.

Remark. If (X, Q) is not p’-valenced, then this is
not true.

Proposition. Let (X, G) be a commutative scheme.
If vp(my) < p(|X]|), then |Irr(B)| > 2.
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Block of “defect 1”

In group representation theory, the structure of
a block of defect 1 is almost determined by the
Brauer tree.

For a p/-valenced scheme, we consider a block B
with a character x such that vp(m,)+1 = vp(|X]).

Proposition. Let (X, G) be a p’-valenced scheme.
If vp(my) +1 = vp(X]|) and vp(ry) > 0, then
Irr(B) ={x" | 7 € Gal(K/L)}.

For a block satisfying the property in the above
Proposition, we cannot define the Brauer tree,
since it has only one vertex. But I do not know
such an example.
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We denote K& for the set of K-valued functions
on {04 | g € G}. For a,3 € K¢, we define

0,0l = 3 S alo,)8(0g).

gel Ng

Let & be a matrix representatation of KG. We
denote ®;; € K for the (4, j)-entries of ®, namely

P;i(og) = P(0g)ij-

Proposition (Schur relation).

(1) If & is an irreducible representation affording
x, then [Cbz'j,cbkg] = 51553k|X|/mX (5 is the
Kronecker's delta.)

(2) If & and W have no common irreducible con-

stituent, then [(Dz'j,\lfkg] = 0.
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Let W,, : = 1,2,3, be irreducible representations
of KG affording v;, respectively. We may assume
that all W;(og), g € G are matrices over Og, and
then, we can consider representations W,;* of F@G.
Suppose W,;*, i« = 1,2,3, have a common irre-
ducible constituent S. We may assume

S, *
Wi:(*z *)’

We define u,v € KC by u = (Wl)ll — (W2)11 and

v = (W1)11 — (W3)11. Then u(oy),v(og) € POy
for every g € G.

where S;* = S.

By Schur relation, we have

[(W1)11, (W1)11] = %

T hen

o
|

[(W1)11,(W2)11]
[(W1)11, (W1)11] — [(W1)11,4].
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SO we have

[(W1)11,u] = [(W1)11, (W1)11]-

Similarly

[(W1)11,v] = [(W1)11, (W1)11].

Now

o
|

= [(W2)11,(W3)11]

[(W1)11, (W1)11]

—[u, (W1)11] = [(W1)11,v] + [u, V]
= —[(W1)11, (W1)11] + [, v].

This means

| X

My
Consider the traces over K/L of u and v, then we
have

| X| K LJ?

= [u, v].

= 3 T (o)) Trie s (0(og)).
My geG g
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Suppose (X, G) is p’-valenced, vp(my, )+1 = vp(|X]),
and vy;, 1« = 1,2,3, are not ‘B-conjugate to each
other. Then we have vp(ry ) =0, i =1,2,3.

Case 1. K is cyclotomic (abelian).

In this case, we can prove that

I/p(TI’K/L(u(O‘g*))) >uvp(|K L))+ 1

and

z/p(TrK/L(v(ag))) > vp(|K @ L|) + 1.

This is a contradiction.

Case 2. v»p(|K : L|) =0.

In this case, we can prove that

vp(Tr g p(u(og))) > 1

and this is a contradiction.

(This condition is equivalent to that p is tamely
ramified in K/Q.)
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Proposition. Let (X, G) be a p’-valenced scheme,
B a block of GG, and ¢ € IBr(B). Assume there
exists x € Irr(B) with vp(my) +1 = 1p(|X]|). Sup-
pose that the minimal splitting field K of G is
abelian or vp(|K : L|) = 0 (p is tamely ramified in
K/Q). Then the number of -conjugate classes
of Irr(B) such that their modular characters con-
tain ¢ is at most two.

For ¢ € Irr(B) such that d,, > 0, we suppose
vp(ry (1)) = 0. Then the number is exactly two.

Remark. If vp(ryy(1)) = 0 for all ¢ € Irr(B),
then we may assume v,(|K : L|) = 0.

If all the numbers above are two, then we can
draw a graph. Its vartex is a ‘B-conjugate class,
and its edge is an irreducible modular character.
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By a similar argument, we can show that the fol-
lowing.

Proposition. Let (X,G) be a commutative p'-
valenced scheme, B a block of GG, and x € Irr(B).
Suppose vp(my) +1 = vp(|X|) and vp(ry) = 0.
Then vp(my) + 1 = vp(|X]) for all v € Irr(B) and
the number of B-conjugate classes of Irr(B) is
exactly two.

Corollary. Let (X,G) be a commutative p’-valenced
scheme with vp(|X|) = 1. Then all non-trivial ir-
reducible ordinary characters in the principal block
are ‘B-conjugate.

Proposition. If | X| = p, then all non-trivial irre-
ducible ordinary characters are ‘3-conjugate.

Using this fact, we can prove that (X,G) is com-
mutative, if | X| = p.
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Proposition. Let (X, G) be a p’-valenced scheme,
Y € Irr(G). Suppose vp(my) + 1 = vp(|X]). If the
Schur index mp(x) = 1, v»p(ry) = 0, and p # 2,
then d,, < 1 for every ¢ € IBr(G).

(The assumption on Schur indices holds if there
exists an L-representation of G affording x.)

Remark. (1) If p #= 2, then the Schur index
my(x) equals to one for a group character .
(Note that the base field is not Q.) The as-
sumption vp(ry) = 0 can be replaced by that
L(x(og) | g € G) is a Galois extension of L.

(2) If we can define a graph, dy, < 1 holds for
x € Irr(B) and ¢ € IBr(B), and p # 2, then the
graph is bipartite. (Of cource, a tree is bipartite.)

(3) Almost all results in this talk are not true for
non p’-valenced schemes.

(4) For commutative p’-valenced scheme, it is
reasonable to define the “defect” of a block by
max{vp(|X|) — vp(my) | x € Irr(B)}. But, in gen-
eral, it is still difficult.
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Let (X,G) be a p’-valenced scheme. Suppose
vp(my)+1 = vp(|X|), dyp < 1 forall x € Irr(B) and
all p € IBr(B), and a graph is defined. Then the
graph is a tree if and only if rankDg = |IBr(B)|.
Especially, if the Cartan matrix Cg is invertible,
then the graph is a tree.

Question. For a p/-valenced scheme, is the Car-
tan matrix invertible 7

END.
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