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Let X be a finite set, G a collection of subsets of X × X. For

g ∈ G, define σg ∈ MX(Z) by

(σg)xy =







1, if (x, y) ∈ g,

0, otherwise.

(X, G) is called an association scheme (or briefly a scheme) if

(1)
⋃

g∈G g = X × X (disjoint),

(2) G 3 1 = {(x, x) | x ∈ X},
(3) if g ∈ G, then G 3 g∗ = {(y, x) | (x, y) ∈ g},
(4) and σfσg =

∑

h∈G ph
fgσh for some ph

fg ∈ Z≥0.

This is also called a homogenious coherent configulation.

An association scheme (X, G) is said to be commutative if

ph
fg = ph

gf

for all f, g, h ∈ G.
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We can define a Z-algebra ZG =
⊕

g∈G Zσg. For any commutative

ring R with identity, we can define

RG = R ⊗Z ZG

and call this the adjacency algebra of G over R. It is clear that

(X, G) is commutative if and only if the algebra ZG is commu-

tative.

It is well known that CG is a semisimple algebra. We denote

the set of irreducible characters of CG by Irr(G). The character

table of G means the table of entries χ(σg) (χ ∈ Irr(G), g ∈ G).

It is easy to see that χ(σg) is an algebraic integer.
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Motivation.

For f, g ∈ G, put fg = {h ∈ G | ph
fg > 0}. For H, K ⊂ G, put

HK =
⋃

h∈H
⋃

k∈K hk. These are called the complex products. A

non-empty subset H of G is called closed if

HH ⊂ H.

A scheme (X, G) is said to be primitive if it has no non-trivial

closed subset.

If H is a closed subset of G, then we can define subschemes

and the quotient scheme, and G can be regarded as a extension

of them. So primitive schemes are important in the theory of

schemes, like as simple groups in group theory.
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Especially, if |X| is a prime number, then (X, G) is primitive. But

the classification of such schemes is unknown.

p ] p ] p ](Schurian)

2 1 11 4 23 22(4)
3 2 13 6 29 26(6)
5 3 17 5 31 ≥ 1,000(8)
7 4 19 7(6)

Schurian schemes (association schemes defined by transitive per-

mutation groups) of prime order must be cyclotomic and easily

we can classify them. For order up to 17, there are only Schurian

schemes. There are many non-Schurian schemes of order greater

than 17. But their adjacency algebras are algebraically isomor-

phic to Schurian schemes for known schemes. So we want to

classify the structure of adjacency algebras and the character

tables.
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Main Result.

Theorem. Let (X, G) be an association scheme with |X| = p a

prime and |G| = d + 1. Then (X, G) is commutative. Moreover,

if we suppose that the minimal splitting field of it is abelian,

then the character table of it is same as that of the cyclotomic

scheme Cyc(p, d).

Remark. In the famous book by Bannai-Ito, they asked whether

the minimal splitting field of a commutative scheme is abelian.

If this is true, then the character table of an association scheme

of prime order is completely determined.
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Commutativity.

We denote the valency of g ∈ G by ng, namely ng = p1
gg∗. For

S ⊂ G, we write nS =
∑

g∈S ng. Especially nG = |X|. The map

σg 7→ ng is a character of G. It is called the trivial charcter of G

and denoted by 1G.

Fix a prime number p.

Lemma [Ha 2002]. Suppose that nG is a p-power. Let K be a

field of characteristic zero containing all character values χ(σg),

and let P be a prime ideal of K lying above pZ. Then

χ(σg) ≡ χ(1)ng (mod P)

for all g ∈ G and χ ∈ Irr(G).
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Lemma. Suppose that nG = p. Then all nontrivial irreducible

characters of G are algebraically conjugate.

Proof. Let χ be a nontrivial irreducible character of G. Note

that an algebraic conjugate of an irreducible character is again an

irreducible character. Put Φ the sum of all algebraic conjugates

of χ, and Ψ the sum of all nontrivial irreducible characters which

are not algebraically conjugate to χ. Then the values of Φ and

Ψ are rational integers. If Ψ is zero, then the assertion holds,

so we assume that Ψ 6= 0.

By the previous lemma, there exist rational integers ug (g ∈ G)

such that Φ(σg) = Φ(1)ng − ugp. Similarly there exist rational

integers vg (g ∈ G) such that Ψ(σg) = Ψ(1)ng − vgp.
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By the orthogonality relation, we have

0 =
∑

g∈G

1

ng
1G(σg∗)Φ(σg) =

∑

g∈G

Φ(σg)

=
∑

g∈G

(Φ(1)ng − ugp) = p



Φ(1) −
∑

g∈G

ug



 .

We have
∑

g∈G

ug = Φ(1)

and similarly
∑

g∈G

vg = Ψ(1).

Again by the orthogonality relation,



0 =
∑

g∈G

1

ng
Φ(σg∗)Ψ(σg) =

∑

g∈G

1

ng
(Φ(1)ng∗ − ug∗p)(Ψ(1)ng − vgp)

=
∑

g∈G

Φ(1)Ψ(1)ng −
∑

g∈G

Φ(1)vgp −
∑

g∈G

Ψ(1)ug∗p +
∑

g∈G

1

ng
ug∗vgp

2

= pΦ(1)Ψ(1) − pΦ(1)Ψ(1) − pΦ(1)Ψ(1) +
∑

g∈G

1

ng
ug∗vgp

2

= −pΦ(1)Ψ(1) +
∑

g∈G

1

ng
ug∗vgp

2,

so we have

Φ(1)Ψ(1) = p
∑

g∈G

1

ng
ug∗vg.

But Φ(1)Ψ(1) is relatively prime to p and
∑

g∈G
1
ng

ug∗vg is a p-

integer, namely every ng is relatively prime to p. So this is a

contradiction. �



Since the Frame number

F(G) = |X||G|
∏

g∈G ng
∏

χ∈Irr(G) mχ(χ(1)2)

is a rational integer, we have the following.

Lemma [Bannai-Ito’s book]. If the multiplicities of all non-

trivial irreducible characters of G are constant, then so are the

valencies of all nontrivial relations.

Lemma [Arad-Fisman-Muzychuk 1999].

Suppose nG = p is a prime number. If the valencies of all non-

trivial relations are constant, then (X, G) is commutative.

Theorem. Suppose nG = p is a prime number. Then (X, G) is

commutative, and the Frame number is a p-power.
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Discriminants and Frame numbers

For a Z-free Z-algebra A, we define the discriminant as follows.
Let {a1, a2, · · · , ar} be a Z-basis of A. Then we put

d(A) = det(Tr(aiaj))

and call this the discriminant of A. Here Tr is the trace of the
regular representation of A. If B is a subalgebra of A with the
same rank, then |d(A)| is a divisor of |d(B)|.

For an algebraic number field K, the ring of integers OK is a Z-
free Z-algebra and we have d(OK) is the same as the discriminant

d(K) of K in algebraic number theory.

For a commutative scheme (X, G), it is known that

F(G) = |d(ZG)|.
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Let K be the minimal splitting field of (X, G). Fix χ ∈ Irr(G) \

{1G} and put K ′ = χ(QG). Then QG ∼= Q ⊕ K ′ and K ′ is a

subfield of K. Also we can say that K is generated by K ′ and

its conjugates.

We can see that ZG is a Z-subalgebra of Z ⊕ OK ′. So |d(K ′)|

divides the Frame quotient F(G). Since F(G) is a p-power,

|d(K ′)| and |d(K)| are also p-powers.

We assume that

Assumption A. The minimal splitting field K is an abelian ex-

tension of Q.

By Kronecker-Weber’s theorem, K is a subfield of some cyclo-

tomic field. Let N be the conductor of K, namely N is the
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smallest positive integer such that K is a subfield of Q(ζN),

where ζN is a primitive N-th root of unity. It is known that a

prime number ` ramifies in K/Q if and only if ` is a divisor of

N . Also ` ramifies in K/Q if and only if ` is a divisor of |d(K)|.

So we can say that N = pa for some non-negative integer a.

Then, since Gal(Q(ζpa)/Q) ∼= (Z/paZ)× has the unique subgroup

of index d, we can say that N = p and we have the following.

Lemma. Suppose Assumption A. Then K is the unique subfield

of Q(ζp) with dimQ K = d and Gal(K/Q) is a cyclic group of

order d.

Remark. Assumption A is equivalent to that K = K ′.

Question. Suppose d is a divisor of p−1. Is there a non-normal

extension K ′ of Q such that dimQ K ′ = d and |d(K ′)| = pd−1 ?



Put k = (p − 1)/d. Then ng = k for all 1 6= g ∈ G, and mχ = k

for all 1G 6= χ ∈ Irr(G).

Put α = TrQ(ζp)/K(ζp).

Let τ is a generator of the cyclic group Gal(K/Q).

The character table of Cyc(p, d) is as follows.

1 1 k k · · · k 1

ϕ 1 α ατ · · · ατd−1
k

ϕτ 1 ατ ατ2
· · · α k

· · · · · · · · ·

ϕτd−1
1 ατd−1

α · · · ατd−2
k
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Lemma. Use the above notations, then we have
∑d−1

i=0 ατ i
= −1

and

d−1
∑

i=0

ατ i
ατ i+j

=







p − k if j ≡ 0 (mod d),

0 otherwise.

Now we consider the character table of (X, G). It looks like the
following.

1 g1 g2 gd
1G 1 k k · · · k 1
χ 1 β1 β2 · · · βd k
χτ 1 βτ

1 βτ
2 · · · βτ

d k
· · · · · · · · ·

χτd−1
1 βτd−1

1 βτd−1

2 · · · βτd−1

d k

We fix gj ∈ G for a while. Since {ατ i
| i = 0,1, · · · , d − 1} is an



integral basis of OK and βj ∈ OK, there exist bs ∈ Z such that

βj =
d−1
∑

s=0

bsα
τs

.

By the second orthogonality relation with respect to gj and 1,

we have

0 = k



1 +
d−1
∑

i=0

βτ i

j



 = k



1 −
d−1
∑

s=0

bs



 .

So we have
∑d−1

s=0 bs = 1.



Again by the second orthogonality relation with respect to gj and

itself, we have

pk = k



k +
d−1
∑

i=0

βτ i

j βj
τ i



 = k



k + (p − k)
d−1
∑

s=0

bs
2



 .

This means
∑d−1

s=0 bs
2 = 1, and consequently we have that the

only one bs = 1 and the others are zero. Namely, βj = ατs
for

some 0 ≤ s < d.

The character table does not contain the identical columns. This

shows that the character table of (X, G) is the same as that of

Cyc(p, d) by a suitable reordering of G.

Theorem. Let (X, G) be an association scheme of prime order

p with |G| = d + 1. Under Assumption A, the character table of

(X, G) is the same as that of the cyclotomic scheme Cyc(p, d).
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The idea of our consideration is based on the theory of p-blocks

with cyclic defect groups. We generalize it.

Let (X, G) be a commutative scheme, K a Galois field of finite

degree, and P a prime ideal of K lying above pZ. We suppose

K is large enough. The inertia group of P is defined by

T := {τ ∈ Gal(K/Q) | Pτ = P, and ατ − α ∈ P ∀α ∈ OK}.

The inertia field of P is the Galois correspondence of T , and it

will be denoted by L. It is known that p is unramified in L/Q.

Namely p 6∈ p2 for a prime ideal p of L lying above pZ.

The discrete valuation ring defined by K and P will be denoted

by OP, and the quotient field will be denoted by KP.
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For χ, ϕ ∈ Irr(G), we say that they belong to the same P-block

if

χ(σg) ≡ ϕ(σg) (mod P).

Of cource, this is an equivalent relation, and an equivalent class

will be denoted by IrrP(B) or briefly by Irr(B).

Proposition. The set Irr(B) is a minimal subset of Irr(G) such

that eB =
∑

χ∈Irr(B) eχ ∈ OPG.

Let νp denote the valuation on KP with νp(p) = 1.

Proposition. νp(nG) ≤ νp(
∑

χ∈Irr(B) mχ).
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For χ, ϕ ∈ Irr(G), we say that χ and ϕ are P-conjugate if there

exists τ ∈ Gal(K/L) such that χτ = ϕ, where L is the inertia field

of P. Though Irr(B) is not closed by algebraically conjugate, we

have the following.

Proposition. For χ ∈ Irr(G) and τ ∈ Gal(K/L), χ and χτ belong

to the same block. Namely, Irr(B) is closed by P-conjugate.

We say that (X, G) is p′-valenced if p - ng for all g ∈ G. If (X, G)

is p′-valenced, then the adjacency algebra FPG is a symmetric

algebra, where FP = OP/POP.

Now we are interested in the number of Gal(K/L)-orbits of

Irr(B). For χ ∈ Irr(G), we denote rχ for the length of the

Gal(K/L)-orbit of Irr(G) containing χ. We fix χ ∈ Irr(B).
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Proposition. Suppose (X, G) is a commutative p′-valenced scheme.

If νp(mχ) ≥ νp(nG), then Irr(B) = {χ}. Moreover, νp(mχ) =

νp(nG) in this case.

Proposition. Let (X, G) be a commutative scheme. If νp(mχ) <

νp(nG), then |Irr(B)| ≥ 2.

Proposition. Suppose (X, G) is a commutative p′-valenced scheme.

If νp(mχ) + 1 = νp(nG) and νp(rχ) ≥ 1, then Irr(B) = {χτ | τ ∈

Gal(K/L)}.

Proposition. Let (X, G) be a commutative p′-valenced scheme.

Suppose χ ∈ Irr(B) satisfies νp(mχ) + 1 = νp(nG). Then the

number of Gal(K/L)-orbits of Irr(B) is at most two, and νp(mϕ)+

1 = νp(nG) for every ϕ ∈ Irr(B).



Example (Shimabukuro). Let (X, G) be the Johnson scheme

J(2(p − 1), p − 1). Then it is p′-valenced and νp(nG) = 1. More-

over all character values are rational. So we can conclude that

|Irr(B)| ≤ 2 for any B ∈ Bl(G).

The block containing the trivial character 1G : σg 7→ ng is called

the principal block of G and denoted by B0(G) or B0.

Corollary. Suppose (X, G) is a commutative p′-valenced scheme

with νp(nG) = 1. Then Irr(B0) has exactly two Gal(K/L)-

orbits. Moreover, these Gal(K/L)-orbits are Gal(K/Q)-orbits.

(Of course, one of them is {1G}.) Namely, all nontrivial charac-

ters in Irr(B0) are algebraically conjugate.

Our key lemma is a special case of this fact.

END.


