Frobenius-Schur Theorem for Association Schemes Akihide Hanaki (joint work with Junya Terada)

Let G be a finite group. For $\chi \in \text{Irr}(G)$, put

$$
\nu_2(\chi) = \frac{1}{|G|} \sum_{g \in G} \chi(g^2)
$$

and call this the Frobenius-Schur indicator of χ . Put

$$
\theta(g) = \sharp\{h \in G \mid h^2 = g\}.
$$

Frobenius-Schur Theorem.

(1) $\nu_2(\chi) \in \{-1,0,1\}.$

(2)
$$
\nu_2(\chi) = 0
$$
 if and only if $\overline{\chi} \neq \chi$.

(3) $\nu_2(\chi) = 1$ if and only if χ is afforded by a real representation.

(4)
$$
\sum_{\chi \in \text{Irr}(G)} \nu_2(\chi) \chi = \theta.
$$

Especially
$$
\sum_{\chi \in \text{Irr}(G)} \nu_2(\chi) \chi(1) = \sharp \{ h \in G \mid h^2 = 1 \}.
$$

Let (X, G) be an association scheme. For $\chi \in \text{Irr}(G)$, put

$$
\nu_2(\chi) = \frac{m_\chi}{n_G \chi(1)} \sum_{g \in G} \frac{1}{n_g} \chi(\sigma_g^2)
$$

and call this the Frobenius-Schur indicator of χ .

Frobenius-Schur Theorem for Association Schemes.

- (1) $\nu_2(\chi) \in \{-1, 0, 1\}.$
- (2) $\nu_2(\chi) = 0$ if and only if $\overline{\chi} \neq \chi$.
- (3) If χ is afforded by a real representation, then $\nu_2(\chi) = 1$.
- (4) $\sum_{\chi \in \text{Irr}(G)} \nu_2(\chi) \chi(1) = \sharp \{ h \in G \mid h^* = h \}.$

These are easy by ^a result on Hopf algebras in [Linchenko-Montgomery 2000].

Question. Can we say that $\nu_2(\chi) = 1$ implies that χ is afforded by ^a real representation ?

Put

$$
\theta(\sigma_g) = \sum_{h \in G} \frac{n_g}{n_h} p_{hh}^g.
$$

We do not know whether θ is a linear combination of Irr(G). The following is an easy fact by orthogonality relations.

Proposition. If θ is a linear combination of Irr(G), then $\theta =$ $\sum_{\chi \in \text{Irr}(G)} \nu_2(\chi) \chi.$

An Application.

Put

$$
I(G) = \{ g \in G \mid g^* = g \neq 1 \}.
$$

Proposition. Suppose $|G| > 1$. Then

$$
|\text{Irr}(G)| = \dim_{\mathbb{C}} Z(\mathbb{C}G) \ge \frac{|I(G)|^2}{|G| - 1} + 1.
$$

Roughly speaking, we can say that

If G has many symmetric relations, then G is near commutative.