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(Clifford Theorem for Finite Groups)
Let G be a finite group and H 1 G. For ¢ €
Irr(H), put

T=Ty:={9€G|¢? =09},
where ©9(z) = p(gxg~1). Then

(1) For x € Irr(G | o),

(2) The correspondence Irr(T | p) — Irr(G | )
defined by n — n% is a bijection.

(3) If there exists x € Irr(G | ) such that xg =
@, then

Irr(G | ) ={x¢ | £ € Irr(G/H)}.



(X,G) : an association scheme
(not necessary commutative)

H : a normal closed subset of G
(gH = Hg for any g € G3)

Example (as12-40)

go 91 92| 93 94 g5 96| my
X1 1 1 2 2 2 2 2 1
ol 11 2/-1 -1 -1 -1 2
xall 1 -1 0/-1 -1 1 1| 3
xal 2 0 =2/ 1 1 -1 -1 3

H :={90,91,92} <G

go 91 92| my

1 1 2] 1

ool 11 —2| 1

o3 1 -1 of 2

(x1)a = »1, X2)g = ¢1,
(x3)g = ¢3, (xa)g = 2+ ¢3.

Clifford theory dose not hold.

We will assume that H is strongly normal.



Group-Graded Algebras

Let F' be a field. Suppose all algebras and
modules over F' are finite dimensional, and mod-
ules will be right modules.

Definition. Let S be a finite group, and let A
be an F-algebra. Suppose A is a direct sum of
F-subspaces Ag, s € S. The algebra A is called
S-graded (group-graded) if

(1) AsA; C Ay for s,t € S.

For an S-graded algebra A, A; is a subalgebra
of A. Furthermore, if

(2) AsAy = Ag for s, t € S,

we say that A is strongly S-graded.



If an S-graded algebra A satisfies
(3) for every s € S, Ag contains a unit as in A,

then the condition (2) holds, and in this case,
it is known that A is a crossed product of S
over A1, and that Clifford theory holds.

(We do not define crossed products. You may
consider the condition (3) is the definition of
them.)

M : a right A-module

restriction @ My,

L : aright A{-module

induced module : LA 1= L®y, A

=P Lo A1as= P LS as
ses s€sS

For s € S, L®as is an Aj-submodule of (L) 4,
(conjugate of L).



If as and a’, are units in Ag, then
L®as = L®a, (as Aj-modules).
T ={teS|L®a =ZL1}

IS a subgroup of S.
Theorem (Clifford Theorem).

Let A be an S-graded F-algebra with the prop-
erty (3) above, M a simple A-module, and L a
simple Aj-submodule of M4,. Put

T ={teS|Lar=L®1}
Then the followings hold.

(1) My, is semisimple and

(2) Put B =37 At. Then
Irr(B| L) > Irr(A| L) (N +— N9

IS a bijection.



(X,G) : an association scheme
(not necessary commutative)

H . a strongly normal closed subset of G
(gHg* = H for any g € G)

The factor scheme G//H is thin, so we can
consider G//H is a finite group.

CG = @ C(HgH).
gHeG//H

CG is G//H-graded. Let L be a simple CH-
module. Then

I=LecyCG= @ LoC(HgH),
geG//H
and L ® C(HgH) is a CH-submodule of (L%)y

(this can be a zero module). We write LY for
L® C(HgH).



Conjecture (Clifford Theorem for
Association Schemes).

Let (X, G) be an association scheme, H a strongly
normal closed subset of (G, and let L be a sim-
ple CH-module. Put

T//H :={¢" e G//H | LI = L}.
Then

(1) For M € Irr(G | L),

(2) The correspondence Irr(T | L) — Irr(G | L)
defined by N — NG is a bijection.

If CG is a crossed product of G//H over CH,
then Conjecture is true.



Example.

(1) Let (X,GE) be an association scheme, and

let © be a finite group acting on (X,G).
The semidirect product (X,G)© (defined

in Zieschang's Lecture Note) is a crossed

product.

(2)
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(defined by the symmetric (7,3, 1)-design,

PG(2,2)).



Clifford Theory for Commutative Schemes

Example (Wreath product)
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(0 1|2 2|3 3)

1 0|2 2,3 3
3 3/0 1|2 2

3 3|1 0|2 2
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Example (as06-5 C as12-39 C as24-360)
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Let (X,G) be a commutative scheme, and H a
strongly normal closed subset. For ¢ € Irr(H),
ey IS a central idempotent of CG. We consider
the decompositions

CH= & e,CH,
oelrr(H)

pelrr(H)
Now e,CH and e,CG are C-algebras with the
identity e,. We will consider Clifford theory for

eo,CH and e,CG. Note that Irr(e,CH) = {p}
and Irr(e,CG) =TIrr(G | ).

Consider the decomposition

eo,CG = @ e,C(HgH ),
gHeG//H

then e,CG is G//H-graded.

Put

Z//H = {g" € G//H | e,C(HgH) # 0}.



Lemma. For g e G, e,C(HgH) # 0 if and only
if eoC(HgH) contains a unit in e,CG.

Proposition. Let (X,G) be a (not necessary
commutative) association scheme, and let H
be a strongly normal closed subset of G. For
a character x of G and a character 7 of G//H,
define x7(og) = X(O‘g)T(O'gH). Then x7 is a
character of G. Moreover, if x € Irr(G) and
7(1) =1, then x7 € Irr(G) and my; = my.

If G//H is an abelian group, thensoisIrr(G//H),
and Irr(G//H) acts on Irr(G).

Proof of Lemma. By Frobenius reciprocity,
we have

e= > X

XEIrr(Gly)
So, for g € G,

epog 7= 0 <= x(og) # 0 for some x € Irr (G | ¢),

epog IS @ unit <= x(og) # 0 for all x € Irr(G | ¢).

We will show that eyoq 7= 0 implies that epoy
IS a unit.



Suppose x(og) # 0. Note that Irr(G//H) has
a structure of abelian group. Now Irr(G//H)
acts on Irr(G | ¢) preserving the multiplicities.
Put

U = {XT | T €& IFI’(G//H)},

Staby :={r€lrr(G//H) | x7 = x}-

el — Z 67”
nelU
1 m 1 -
= > > —xr(opoy
|Staby| relrr(G//H) "G fea™f

— 1 > Mx > iX(Jf)T(JJ,:H)(IJE

|Staby| relrr(G//H) "G feg S

— my 3 im ( > T(O'f]—])) o f

ng|Staby| feG ™ f relrr(Z//H)

If f¢ H (< fH £ 1H), then the coefficient of
oris 0. So ey € CH. But e, is primitive in
CH, so U =1Irr(G | ¢). Now

x7(0g) = x(0g)7(0 1) # O

forany 7 € Irr(G//H), and pogq is a unit in pCG.
(g.e.d.)



Proposition. Z//H is a subgroup of G//H (Z
is a closed subset of G), and eoCG is a crossed
product.

Theorem. Let (X,G) be a commutative as-
sociation scheme, H a strongly normal closed
closed subset of G, and ¢ € Irr(H). Put

Z//H = {g" € G//H | e,C(HgH) # 0}.

Then we have the followings.

(1) Take € € Irr(Z | ¢) and fix it. Then

Irr(Z | ) ={&7 | Telrr(Z//H)}.

(2) The map

Irr(Z | ) — Ire(G ), (n—n%)

is a bijection. Here n%(o4) = n(oy) for g €
Z, and O otherwise.

(3) For x e Irr(G | ),



For commutative schemes, my conjecture
Is true.

Corollary. Let (X,G) be a commutative asso-
Ciation scheme, and H a strongly normal closed
closed subset of G. Then

|H|+ |G//H| -1 < |G| < |H|-|G//H]|.
Moreover

wreath product «<— |G| = |H|+ |G//H| — 1,

crossed product <— |G| = |H| - |G//H]|.

END.



