Clifford Theory for Commutative Association Schemes

Akihide Hanaki Shinshu University

(Clifford Theorem for Finite Groups)

Let G be a finite group and $H \triangleleft G$. For $\varphi \in Irr(H)$, put

$$T=T_{\varphi}:=\{g\in G\mid \varphi^g=\varphi\},$$
 where $\varphi^g(x)=\varphi(gxg^{-1}).$ Then

(1) For $\chi \in Irr(G \mid \varphi)$,

$$\chi_H = e \sum_{t \in T \setminus G} \varphi^t.$$

- (2) The correspondence $Irr(T \mid \varphi) \to Irr(G \mid \varphi)$ defined by $\eta \mapsto \eta^G$ is a bijection.
- (3) If there exists $\chi \in Irr(G \mid \varphi)$ such that $\chi_H = \varphi$, then

$$Irr(G \mid \varphi) = \{ \chi \xi \mid \xi \in Irr(G/H) \}.$$

(X,G): an association scheme (not necessary commutative)

H: a normal closed subset of G $(gH = Hg \text{ for any } g \in G)$

Example (as12-40)

	g_0	g_1	g_2	g_3	g_{4}	g_5	g_6	$\mid m_i \mid$
χ_1	1	1	2	2	2	2	2	1
χ_2	1	1	2	-1	-1	-1	-1	2
χ_{3}	1	-1	0	-1	-1	1	1	3
χ_4	2	0	-2	1	1	-1	2 -1 1 -1	3

$$H := \{g_0, g_1, g_2\} \triangleleft G$$

$$(\chi_1)_H = \varphi_1, (\chi_2)_H = \varphi_1, (\chi_3)_H = \varphi_3, (\chi_4)_H = \varphi_2 + \varphi_3.$$

Clifford theory dose not hold.

We will assume that H is strongly normal.

Group-Graded Algebras

Let F be a field. Suppose all algebras and modules over F are finite dimensional, and modules will be right modules.

Definition. Let S be a finite group, and let A be an F-algebra. Suppose A is a direct sum of F-subspaces A_s , $s \in S$. The algebra A is called S-graded (group-graded) if

(1)
$$A_s A_t \subseteq A_{st}$$
 for $s, t \in S$.

For an S-graded algebra A, A_1 is a subalgebra of A. Furthermore, if

(2)
$$A_s A_t = A_{st}$$
 for $s, t \in S$,

we say that A is **strongly** S-**graded**.

If an S-graded algebra A satisfies

(3) for every $s \in S$, A_s contains a unit a_s in A,

then the condition (2) holds, and in this case, it is known that A is a **crossed product** of S over A_1 , and that Clifford theory holds.

(We do not define crossed products. You may consider the condition (3) is the definition of them.)

M: a right A-module

restriction : M_{A_1}

L: a right A_1 -module

induced module : $L^A := L \otimes_{A_1} A$

$$L^A = \bigoplus_{s \in S} L \otimes A_1 a_s = \bigoplus_{s \in S} L \otimes a_s$$

For $s \in S$, $L \otimes a_s$ is an A_1 -submodule of $(L^A)_{A_1}$ (conjugate of L).

If a_s and a'_s are units in A_s , then

$$L \otimes a_s \cong L \otimes a'_s$$
 (as A_1 -modules).

$$T := \{ t \in S \mid L \otimes a_t \cong L \otimes 1 \}$$

is a subgroup of S.

Theorem (Clifford Theorem).

Let A be an S-graded F-algebra with the property (3) above, M a simple A-module, and L a simple A_1 -submodule of M_{A_1} . Put

$$T := \{ t \in S \mid L \otimes a_t \cong L \otimes \mathbf{1} \}$$

Then the followings hold.

(1) M_{A_1} is semisimple and

$$M_{A_1} = e \left(\bigoplus_{t \in T \setminus G} L \otimes a_t \right).$$

(2) Put $B:=\sum_{t\in T}A_t$. Then $\operatorname{Irr}(B\mid L)\to\operatorname{Irr}(A\mid L)\quad (N\mapsto N^A)$ is a bijection.

(X,G): an association scheme (not necessary commutative)

H: a strongly normal closed subset of G $(gHg^*=H \text{ for any } g\in G)$

The factor scheme G//H is thin, so we can consider G//H is a finite group.

$$\mathbb{C}G = \bigoplus_{g^H \in G//H} \mathbb{C}(HgH).$$

 $\mathbb{C}G$ is G//H-graded. Let L be a simple $\mathbb{C}H$ -module. Then

$$L^{G} = L \otimes_{\mathbb{C}H} \mathbb{C}G = \bigoplus_{g^{H} \in G//H} L \otimes \mathbb{C}(HgH),$$

and $L \otimes \mathbb{C}(HgH)$ is a $\mathbb{C}H$ -submodule of $(L^G)_H$ (this can be a zero module). We write L^g for $L \otimes \mathbb{C}(HgH)$.

Conjecture (Clifford Theorem for Association Schemes).

Let (X,G) be an association scheme, H a strongly normal closed subset of G, and let L be a simple $\mathbb{C}H$ -module. Put

$$T//H := \{g^H \in G//H \mid L^g \cong L\}.$$

Then

(1) For $M \in Irr(G \mid L)$,

$$M_H = e \bigoplus_{t \in T \setminus G} L^t.$$

(2) The correspondence $Irr(T \mid L) \to Irr(G \mid L)$ defined by $N \mapsto N^G$ is a bijection.

If $\mathbb{C}G$ is a crossed product of G//H over $\mathbb{C}H$, then Conjecture is true.

Example.

(1) Let (X,G) be an association scheme, and let Θ be a finite group acting on (X,G). The semidirect product $(X,G)\Theta$ (defined in Zieschang's Lecture Note) is a crossed product.

(2)

(defined by the symmetric (7,3,1)-design, PG(2,2)).

Clifford Theory for Commutative Schemes

Example (Wreath product)

$$\begin{pmatrix}
0 & 1 & 2 & 2 & 3 & 3 \\
1 & 0 & 2 & 2 & 3 & 3 \\
\hline
3 & 3 & 0 & 1 & 2 & 2 \\
3 & 3 & 1 & 0 & 2 & 2 \\
\hline
2 & 2 & 3 & 3 & 0 & 1 \\
2 & 2 & 3 & 3 & 1 & 0
\end{pmatrix}$$

$$\omega^{3} = 1$$

Example (as06-5 \subset as12-39 \subset as24-360)

										m_i
χ_1	1	1	2	2	2	2	2	6	6	1
χ_2	1	1	2	2	-2	-2	-2	-6	6	1
χ з	1	1	2	2	-2	-2	-2	6	-6	1
χ_4	1	1	2	2	2	2	2	-6	-6	1
χ 5	1	1	-1	-1	-2	1	1	0	0	4
χ 6	1	1	-1	-1	2	-1	-1	0	0	4
χ7	1	-1	-1	1	0	$\omega - \omega^2$	$-\omega + \omega^2$	0	0	4
χ 8	1	-1	-1	1	0	$-\omega + \omega^2$	$\omega-\omega^2$	0	0	4
χ9	1	-1	2	-2	0	0	0	0	0	4

$$\omega^3 = 1$$

Let (X,G) be a commutative scheme, and H a strongly normal closed subset. For $\varphi \in Irr(H)$, e_{φ} is a central idempotent of $\mathbb{C}G$. We consider the decompositions

$$\mathbb{C}H = \bigoplus_{\varphi \in Irr(H)} e_{\varphi} \mathbb{C}H,$$

$$\mathbb{C}G = \bigoplus_{\varphi \in Irr(H)} e_{\varphi} \mathbb{C}G.$$

Now $e_{\varphi}\mathbb{C}H$ and $e_{\varphi}\mathbb{C}G$ are \mathbb{C} -algebras with the identity e_{φ} . We will consider Clifford theory for $e_{\varphi}\mathbb{C}H$ and $e_{\varphi}\mathbb{C}G$. Note that $\mathrm{Irr}(e_{\varphi}\mathbb{C}H)=\{\varphi\}$ and $\mathrm{Irr}(e_{\varphi}\mathbb{C}G)=\mathrm{Irr}(G\mid\varphi)$.

Consider the decomposition

$$e_{\varphi}\mathbb{C}G = \bigoplus_{g^H \in G//H} e_{\varphi}\mathbb{C}(HgH),$$

then $e_{\varphi}\mathbb{C}G$ is G//H-graded.

Put

$$Z//H := \{ g^H \in G//H \mid e_{\varphi}\mathbb{C}(HgH) \neq 0 \}.$$

Lemma. For $g \in G$, $e_{\varphi}\mathbb{C}(HgH) \neq 0$ if and only if $e_{\varphi}\mathbb{C}(HgH)$ contains a unit in $e_{\varphi}\mathbb{C}G$.

Proposition. Let (X,G) be a (not necessary commutative) association scheme, and let H be a strongly normal closed subset of G. For a character χ of G and a character τ of G/H, define $\chi \tau(\sigma_g) = \chi(\sigma_g)\tau(\sigma_{g^H})$. Then $\chi \tau$ is a character of G. Moreover, if $\chi \in \operatorname{Irr}(G)$ and $\tau(1) = 1$, then $\chi \tau \in \operatorname{Irr}(G)$ and $m_{\chi \tau} = m_{\chi}$.

If G//H is an abelian group, then so is Irr(G//H), and Irr(G//H) acts on Irr(G).

Proof of Lemma. By Frobenius reciprocity, we have

$$\varphi = \sum_{\chi \in \mathrm{Irr}(G|\varphi)} \chi.$$

So, for $g \in G$,

 $e_{\varphi}\sigma_g \neq 0 \iff \chi(\sigma_g) \neq 0 \text{ for some } \chi \in \operatorname{Irr}(G \mid \varphi),$

 $e_{\varphi}\sigma_g$ is a unit $\iff \chi(\sigma_g) \neq 0$ for all $\chi \in Irr(G \mid \varphi)$.

We will show that $e_{\varphi}\sigma_g \neq 0$ implies that $e_{\varphi}\sigma_g$ is a unit.

Suppose $\chi(\sigma_g) \neq 0$. Note that Irr(G//H) has a structure of abelian group. Now Irr(G//H) acts on $Irr(G \mid \varphi)$ preserving the multiplicities. Put

$$\begin{split} U &:= \{\chi\tau \mid \tau \in \mathrm{Irr}(G//H)\}, \\ \mathrm{Stab}_{\chi} &:= \{\tau \in \mathrm{Irr}(G//H) \mid \chi\tau = \chi\}. \\ e_U &:= \sum_{\eta \in U} e_{\eta} \\ &= \frac{1}{|\mathrm{Stab}_{\chi}|} \sum_{\tau \in \mathrm{Irr}(G//H)} \frac{m_{\chi}}{n_G} \sum_{f \in G} \frac{1}{n_f} \overline{\chi\tau(\sigma_f)} \sigma_f \\ &= \frac{1}{|\mathrm{Stab}_{\chi}|} \sum_{\tau \in \mathrm{Irr}(G//H)} \frac{m_{\chi}}{n_G} \sum_{f \in G} \frac{1}{n_f} \overline{\chi(\sigma_f)\tau(\sigma_{f^H})} \sigma_f \\ &= \frac{m_{\chi}}{n_G |\mathrm{Stab}_{\chi}|} \sum_{f \in G} \frac{1}{n_f} \overline{\chi(\sigma_f)} \left(\sum_{\tau \in \mathrm{Irr}(Z//H)} \overline{\tau(\sigma_{f^H})} \right) \sigma_f \end{split}$$

If $f \notin H$ ($\Leftrightarrow f^H \neq 1^H$), then the coefficient of σ_f is 0. So $e_U \in \mathbb{C}H$. But e_{φ} is primitive in $\mathbb{C}H$, so $U = \operatorname{Irr}(G \mid \varphi)$. Now

$$\chi \tau(\sigma_g) = \chi(\sigma_g) \tau(\sigma_{gH}) \neq 0$$

for any $\tau \in Irr(G//H)$, and $\varphi \sigma_g$ is a unit in $\varphi \mathbb{C}G$. (q.e.d.)

Proposition. Z//H is a subgroup of G//H (Z is a closed subset of G), and $e_{\varphi}\mathbb{C}G$ is a crossed product.

Theorem. Let (X,G) be a commutative association scheme, H a strongly normal closed closed subset of G, and $\varphi \in Irr(H)$. Put

$$Z//H := \{ g^H \in G//H \mid e_{\varphi}\mathbb{C}(HgH) \neq 0 \}.$$

Then we have the followings.

- (1) Take $\xi \in \operatorname{Irr}(Z \mid \varphi)$ and fix it. Then $\operatorname{Irr}(Z \mid \varphi) = \{\xi \tau \mid \tau \in \operatorname{Irr}(Z//H)\}.$
- (2) The map

$$\operatorname{Irr}(Z \mid \varphi) \to \operatorname{Irr}(G \mid \varphi), \quad (\eta \mapsto \eta^G)$$

is a bijection. Here $\eta^G(\sigma_g) = \eta(\sigma_g)$ for $g \in Z$, and 0 otherwise.

(3) For $\chi \in Irr(G \mid \varphi)$,

$$m_{\chi} = \frac{n_G}{n_Z} m_{\varphi}.$$

For commutative schemes, my conjecture is true.

Corollary. Let (X,G) be a commutative association scheme, and H a strongly normal closed closed subset of G. Then

$$|H| + |G//H| - 1 \le |G| \le |H| \cdot |G//H|$$
.

Moreover

wreath product
$$\iff$$
 $|G| = |H| + |G//H| - 1$, crossed product \iff $|G| = |H| \cdot |G//H|$.

END.