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Abstract

The concept of adjacency algebras of association schemes is a generalization of
group algebras of finite groups. But adjacency algebras over a positive characteris-
tic field need not be Frobenius algebras. In this article, we characterize association
schemes whose adjacency algebras are Frobenius or symmetric algebras. But our
characterization is very elementary and it is difficult to use it. So we consider
a special case. If an adjacency algebra is a local algebra, then it is a Frobenius
algebra if and only if the scheme is p′-valenced. We also give some examples.

Keywords : association scheme, adjacency algebra, Frobenius algebra, symmetric alge-
bra

1 Introduction

In [3, p.303], Bannai and Ito stated the following problem.

Problem. Determine, hopefully by the parameters, association schemes and fields
for which the adjacency algebras are semi-simple, symmetric, Frobenius and quasi-
Frobenius.

An answer to the problem for the case “semi-simple” was obtained in [7]. In this
article, we give an answer to the problem for the cases “symmetric” and “Frobenius”.
But the answer is easy corollary to well-known facts in the theory of finite dimensional
algebras. So we also consider a special case. Suppose that an adjacency algebra over
a field of characteristic p > 0 is a local algebra, then it is a Frobenius algebra if and
only if the scheme is p′-valenced. Also the algebra is a symmetric algebra in this case.
Especially, the order of the scheme is a p-power, then the adjacency algebra is local and
we can apply this result. Using this criteria, we will give some examples.
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2 Preliminaries

Let K be a field, A a finite dimensional K-algebra. For a finite dimensional K-space V ,
the dual module of V is V̂ = HomK(V,K). If V is a right A-module, then V̂ is a left
A-module by

(aϕ)(v) = ϕ(va), a ∈ A, v ∈ V, ϕ ∈ V̂ .

Similarly, if V is a left A-module, then V̂ is a right A-module.
Suppose A has a K-antiautomorphism a �→ a∗. Then the contragredient module Ṽ

of a right A-module V is a right A-module defined by the following way. Put Ṽ = V̂ as
a K-space. Define the right action of A by

(ϕa)(v) = ϕ(va∗), a ∈ A, v ∈ V, ϕ ∈ Ṽ .

Similarly the contragredient module of a left module is a left module.
A K-algebra A is called a Frobenius algebra if the dual of the left regular module

AA is isomorphic to the right regular module AA : ÂA ∼= AA. A K-algebra A is called a
symmetric algebra if the dual of the regular (A,A)-bimodule AAA is isomorphic to the

regular (A,A)-bimodule AAA : ÂAA
∼= AAA.

A K-form ϕ : A → K is called symmetric if ϕ(ab) = ϕ(ba) for a, b ∈ A, non-
degenerate if ϕ(aA) = 0 implies a = 0. It is well known that A is a Frobenius algebra if
and only if it has a non-degenerate K-form, and A is a symmetric algebra if and only if
it has a non-degenerate symmetric K-form.

A K-bilinear form µ : A×A → K is called associative if µ(ab, c) = µ(a, bc) for a, b, c ∈
A. For a K-form ϕ : A → K, we can define an associative K-bilinear form µ by µ(a, b) =
ϕ(ab). Conversely an associative K-bilinear form induces a K-form. A K-bilinear form
µ is called symmetric if µ(a, b) = µ(b, a) for a, b ∈ A. A symmetric associative K-bilinear
corresponds to a symmetric K-form, and a non-degenerate associative K-bilinear form
corresponds to a non-degenerate K-form.

For association schemes, we use Zieschang’s notations in [11]. An association scheme
will be denoted by (X,S). The order of (X,S) means the cardinality of X. We denote σg

for the adjacency matrix of g ∈ S. We consider σg as a matrix over a suitable coefficient
ring. We denote ph

fg for the structure constant (intersection number), namely σfσg =∑
h∈S ph

fgσh. The structure constants are considered as rational integers. The valency
of g ∈ S will be denoted by ng, that is ng = p1

gg∗ . The adjacency algebra
⊕

s∈G Kσg

over a field K will be denoted by KS. The map σg �→ σg∗ is an antiautomorphism of
KS. So we can consider contragredient modules of KS-modules.

3 A condition for an adjacency algebra to be a Frobe-

nius algebra

Let K be a field. The adjacency algebra KS has a natural basis {σg | g ∈ S}. Also the

dual K̂S has a basis {τg | g ∈ S}, where τg(σh) = δgh.
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Let
∑

g∈S agτg (ag ∈ K) be a K-form, and let µ be the corresponding K-bilinear
form. We have

µ(σf , σh) =
∑
g∈S

agτg

(∑
�∈S

p�
fhσ�

)
=
∑
g∈S

agp
g
fh.

This means that the matrix of µ with respect to the basis {σg} is given by
(∑

g∈S agp
g
fh

)
fh

.

Now the following holds.

Theorem 3.1. (1) The adjacency algebra KS is a Frobenius algebra if and only if

there exist ag ∈ K (g ∈ S) such that the matrix
(∑

g∈S agp
g
fh

)
fh

is non-singular.

(2) The adjacency algebra KS is a symmetric algebra if and only if there exist ag ∈ K

(g ∈ S) such that the matrix
(∑

g∈S agp
g
fh

)
fh

is non-singular and symmetric.

For a prime number p, an association scheme (X,S) is called p′-valenced if p � ng for
every g ∈ S. The following result is easy and has already shown in [8].

Corollary 3.2. If (X,S) is p′-valenced, then KS is a symmetric algebra.

Proof. Put ag = δ1g, namely c = τ1, and apply Theorem 3.1.

Put Pg =
(
pg

fh

)
fh

for g ∈ S. Let Xg (g ∈ S) be indeterminates. We consider the

polynomial FS(X) := det
(∑

g∈S XgPg

)
∈ Z[X]. If K is an infinite field, then a non-zero

polynomial defines a non-zero function. So we have the following.

Theorem 3.3. Let FS(X) be as above, and let K be an infinite field of characteristic
p. Then KS is a Frobenius algebra if and only if FS(X) �∈ p Z[X].

Example 3.4. Let (X,S) be a scheme of class 1. Put S = {1, g} and let k be the
valency of g. Then

P1 =

(
1 0
0 k

)
, Pg =

(
0 1
1 k − 1

)
.

So

FS(X) =

∣∣∣∣ X1 Xg

Xg kX1 + (k − 1)Xg

∣∣∣∣ = kX2
1 + (k − 1)X1Xg − X2

g .

So the algebra KS is a Frobenius (symmetric) algebra for an arbitrary field K.

Example 3.5. Let (X,S) be the group association scheme [2, Example II.2.1 (2)] of
the symmetric group of degree 3. Put S = {1, f, g}. Then

P1 =

⎛⎝ 1 0 0
0 2 0
0 0 3

⎞⎠ , Pf =

⎛⎝ 0 1 0
1 1 0
0 0 3

⎞⎠ , Pg =

⎛⎝ 0 0 1
0 0 2
1 2 0

⎞⎠ .
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Now
FS(X) = 3(2X3

1 − X3
f + 3X2

1Xf − 2X1X
2
g + XfX

2
g ).

So KS is not Frobenius if charK = 3. If charK �= 3, then KS is a Frobenius algebra.
Note that this scheme is not 2′-valenced.

In general, it is difficult to compute FS(X). But, if a prime number p does not divide
det(Pg) for some g ∈ S, then KS is a Frobenius algebra for a suitable large field K of
characteristic p.

Example 3.6. Let (X,S) be the Schurian scheme [2, Example II.2.1 (1)] defined by the
alternating group of degree 5 and its Sylow 2-subgroup. Then

P1 =

⎛⎜⎜⎜⎜⎜⎜⎝
1 0 0 0 0 0
0 0 1 0 0 0
0 1 0 0 0 0
0 0 0 4 0 0
0 0 0 0 4 0
0 0 0 0 0 4

⎞⎟⎟⎟⎟⎟⎟⎠ , Pf =

⎛⎜⎜⎜⎜⎜⎜⎝
0 1 0 0 0 0
1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 4 0
0 0 0 0 0 4
0 0 0 4 0 0

⎞⎟⎟⎟⎟⎟⎟⎠ ,

Pg =

⎛⎜⎜⎜⎜⎜⎜⎝
0 0 1 0 0 0
0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 4
0 0 0 4 0 0
0 0 0 0 4 0

⎞⎟⎟⎟⎟⎟⎟⎠ , Ph =

⎛⎜⎜⎜⎜⎜⎜⎝
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
1 0 0 1 1 1
0 0 1 1 1 1
0 1 0 1 1 1

⎞⎟⎟⎟⎟⎟⎟⎠ ,

Pi =

⎛⎜⎜⎜⎜⎜⎜⎝
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 1 0 0
0 1 0 1 1 1
1 0 0 1 1 1
0 0 1 1 1 1

⎞⎟⎟⎟⎟⎟⎟⎠ , Pj =

⎛⎜⎜⎜⎜⎜⎜⎝
0 0 0 0 0 1
0 0 0 1 0 0
0 0 0 0 1 0
0 0 1 1 1 1
0 1 0 1 1 1
1 0 0 1 1 1

⎞⎟⎟⎟⎟⎟⎟⎠ ,

and det(Ph) = 1. So KS is a Frobenius algebra for an arbitrary field K. Also KS is
symmetric if charK = p �= 2 since S is p′-valenced. But we can check that KS is not a
symmetric algebra if charK = 2.

If an adjacency algebra is a Frobenius algebra, then we can obtain orthogonality
relations [6] for its characters.

4 A filtration of adjacency algebras

Let (X,S) be an association scheme, p a prime number, and K a field of characteristic
p > 0. For a non-negative integer �, put

I� =
⊕
p�|ng

Kσg.
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Lemma 4.1. For a non-negative integer �, I� is an ideal of KS.

Proof. We have nhp
h∗
fg = nfp

f∗
gh [11, Lemma 1.1.3 (iii)]. So if p� | nf and p� � nh, then

ph∗
fg ≡ 0 (mod p).

Lemma 4.2. As (KS,KS)-bimodules, I�/I�+1
∼= Î�/I�+1

∼= Ĩ�/I�+1. Namely I�/I�+1 is
a self-dual and self-contragredient (KS,KS)-bimodule.

Proof. Put S� = {g ∈ S | p� | ng, p
�+1 � ng}. For g ∈ S�, we write σg for σg +I� ∈ I�/I�+1.

Then {σg | g ∈ S�} is a K-basis of I�/I�+1. Also we define τg ∈ Î�/I�+1 for g ∈ S� by

τg(σf ) = δfg. Then {τg | g ∈ S�} is a K-basis of Î�/I�+1.
For g ∈ S�, we put n′

g = ng/p
�. We will show that the map σg �→ n′

gτg∗ gives an
isomorphism as (KS,KS)-bimodules. It is clear that this is an isomorphism as K-vector
spaces, since n′

g �= 0 in K.
For g ∈ S� and f ∈ S, we have

σgσf =
∑
h∈S�

ph
gfσh.

Also suppose that (n′
gτg∗)σf =

∑
h∈S�

ah(n
′
hτh∗), then

ah =
1

n′
h

((n′
gτg∗)σf)(σh∗) =

n′
g

n′
h

τg∗(σfσh∗)

=
∑
t∈S�

n′
g

n′
h

pt
fh∗τg∗(σt) =

n′
g

n′
h

pg∗
fh∗ = ph

gf

Similar equation holds for the left action. So this gives an isomorphism.

Similarly the map σg �→ n′
gτg gives an isomorphism I�/I�+1

∼= Ĩ�/I�+1

Now the following theorem is clear.

Theorem 4.3. Suppose Ir+1 = 0. If KS ∼= I0/I1 ⊕ · · · ⊕ Ir−1/Ir ⊕ Ir as an (KS,KS)-
bimodule, then KS is a symmetric algebra.

Corollary 4.4. If there exists a positive integer � such that p� | ng and p�+1 � ng for any
1 �= g ∈ S, then KS is a symmetric algebra.

Proof. Put J =
∑

g∈S σg. Then, by our assumption, we have KS = KJ ⊕ I�
∼= I0/I1 ⊕

I�/I�+1.

In [1], it is shown that, if the condition in Corollary 4.4 holds for p = 2, then KS is
semisimple.
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5 Local Frobenius adjacency algebras

Let (X,S) be an association scheme, p a prime number, and K a field of characteristic
p > 0. Put J =

∑
g∈S σg ∈ KS. Then KJ is a one-dimensional two-sided ideal of KS.

Let B0(KS) be the principal block of KS. Namely B0(KS) is an indecomposable direct
summand of KS as a two-sided ideal and B0(KS)J �= 0.

Suppose the principal block B0(KS) is a local Frobenius algebra. Then B0(KS) has
the unique maximal submodule, and so its dual has the unique minimal submodule.
Since B0(KS) is a Frobenius algebra, it has the unique minimal submodule and it must
be KJ . Put I1 =

∑
p|ng

Kσg as in the previous section. Clearly KJ ∩ I1 = 0, so the

inclusion B0(KS) → KS induces a monomorphism B0(KS) → KS/I1. This means the
following.

Proposition 5.1. Suppose the principal block B0(KS) is a local Frobenius algebra. Then
dimK(B0(KS)) ≤ �{g ∈ S | p � ng}.
Corollary 5.2. Suppose KS is a local algebra. Then the following statements are equiv-
alent.

(1) S is p′-valenced.

(2) KS is a Frobenius algebra.

(3) KS is a symmetric algebra.

Proof. By Corollary 3.2, (1) implies (3), and clearly (3) implies (2). Suppose (2). Then
we can apply Proposition 5.1 and we have

|S| = dimK KS = dimK B0(KS) ≤ �{g ∈ S | p � ng}.
This means that KS is p′-valenced.

In general, it is not so easy to determine whether KS is local. But if |X| is a p-power,
then KS is local [8]. So we can apply Corollary 5.2 for schemes of prime power order.

6 Examples

In this section, let K be a field of characteristic p > 0.

6.1 Hamming schemes

We consider the Hamming scheme H(n, q). We denote KH(n, q) for the adjacency
algebra of H(n, q) over K. If p � q, then KH(n, q) is semisimple. If p | q, then
KH(n, q) ∼= KH(n, p) and KH(n, q) is a local algebra. For details, see [10].

We determine when KH(n, q) is a symmetric algebra. By Corollary 5.2, it is enough

to see the valencies. The i-th valency of H(n, q) is given by

(
n

i

)
(q − 1)i. By Lucas’

theorem [5, Theorem 3.4.1], the following holds.
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Lemma 6.1. Suppose a ≤ n and put

n =
�∑

i=0

nip
i, a =

�∑
i=0

aip
i, 0 ≤ ni, ai < p.

Then

(
n

a

)
is prime to p if and only if ai ≤ ni for all 0 ≤ i ≤ �. Especially

(
n

a

)
is prime

to p for all 0 ≤ a ≤ n if and only if ni = p − 1 all 0 ≤ i ≤ � − 1, namely n = kp� − 1
for some 1 ≤ k < p.

Proposition 6.2. Let K be a field of characteristic p > 0. Suppose p | q. Then the
adjacency algebra of the Hamming scheme H(n, q) over K is a symmetric algebra if and
only if n = kp� − 1 for some 1 ≤ k < p and some non-negative integer �.

6.2 Some distance-regular graphs on vector spaces

We consider some distance-regular graphs on vector spaces over finite fields : bilinear
form graphs [4, p.280], alternating form graphs [4, p.282], Hermitian form graphs [4,
p.285], and quadratic form graphs [4, p.290]. Suppose the characteristic of the base field
of the graph is p. Then easily we can check that the second valency k2 of the graph
is a multiple of p. So the adjacency algebra of the graph over K never be a Frobenius
algebra, except for the case of diameter one.

6.3 Schurian schemes of prime power order

Let G be a finite group, and H a subgroup of G. Then we can define a Schurian scheme
(X,S) [2, Example II.2.1 (1)]. Suppose |X| = |G : H| is a p-power. Then the adjacency
algebra KS is local. In this case, KS is a symmetric algebra if and only if p does not
divide |H : H ∩ Hg| for every g ∈ G.

6.4 Group association schemes with local adjacency algebras

Let G be a finite group, and (X,S) its group association scheme [2, Example II.2.1 (2)].
Then the adjacency algebra KS is local if and only if the principal block is the unique
block of the group algebra KG. Suppose G has a normal p-subgroup Q such that CG(Q)
is a p-group. Then the adjacency algebra KS over a field K of characteristic p is local
[9, Exercise 5.2.10]. In this case, KS is a symmetric algebra if and only if G is an abelian
p-group.
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