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1 Introduction

In this article, we consider the structure of the standard modules of associa-
tion schemes. Firstly, we consider the relations between representation theory
of some algebraic objects. If we consider representation theory of a finite di-
mensional algebra, we can only use its algebra structure. For a (generalized)
table algebra [1] or a group-like algebra [4], we can use its distinguished basis.
Group-like algebras are defined by Y. Doi as a generalization of adjacency
algebras of association schemes from a viewpoint in the theory of bialgebra.
For representation theory of the adjacency algebra of an association scheme,
we can use the standard module (representation), which is the main subject in
this article. For representation theory of association schemes, we can use the
standard module with the distinguished basis. The information of the stan-
dard module with the distinguished basis is equivalent to the combinatorial
structure, since we can reconstruct the association scheme from it.

If two association schemes have isomorphic adjacency algebras over the
complex number field C, then so are the standard modules since they are
completely determined by the degrees and the multiplicities of irreducible
characters. But this is not true for over a positive characteristic field. We
show an example.

Example 1.1. There exist association schemes (X, G) and (X, G′) of order
27 and class 2, such that their adjacency algebras are isomorphic over the
rational integer ring Z (so they are isomorphic over an arbitrary commutative
ring with 1). Let F be a field of characteristic 3. Then their adjacency
algebras are isomorphic to A = F [x]/(x3), where F [x] is the usual polynomial
ring over F . The set of isomorphism classes of indecomposable A-modules is
{M1, M2, M3}, where dimF Mi = i. The standard modules are

FXFG
∼= M3 ⊕ 12M2, FXFG′

∼= M3 ⊕ 11M2 ⊕ 2M1,
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and they are not isomorphic. We can find similar observations in [2] and [8].

This example shows us that the structure of a standard module plays an
important role in representation theory of association schemes. We consider
the structure of standard modules, especially their block decompositions.

2 Definitions

We use the notations in the book of Zieschang [9].
Let X be a finite set, and let G be a collection of subsets of X × X.

For g ∈ G, we define the adjacency matrix σg of g as the following. Let σg

be a matrix over the rational integer ring whose both rows and columns are
indexed by X. The (x, y)-entry of σg is 1 if (x, y) ∈ g, and 0 otherwise. If
{σg | g ∈ G} satisfies the condition (1) – (4), we call (X, G) an association
scheme.

(1) The matrix
∑

g∈G σg is the all one matrix.

(2) There exists g ∈ G such that σg is the identity matrix (we will denote
this g by 1).

(3) For any g ∈ G, there exists g∗ ∈ G such that σg∗ = tσg, where tσg is
the transposed matrix of σg.

(4) There exist rational integers aefg, such that σeσf =
∑

g∈G aefgσg.

By the condition (4), we can define a Z-algebra
⊕

g∈G Zσg. For an arbitrary
commutative ring R with 1, we define

RG :=

(
⊕

g∈G

Zσg

)
⊗Z R,

and we call this the adjacency algebra of (X, G) over R. Often we consider
the adjacency matrix σg is a matrix over the coefficient ring R. Note that
{σg | g ∈ G} is linearly independent over any commutative ring by the
condition (1).

For g ∈ G, we set ng := agg∗1 and call it the valency of g. For a subset
S of G, we also denote nS :=

∑
g∈S ng. Especially, nG is equal to the cardi-

nality of X, and we call it the order of (X, G). The number |G| − 1 is called
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the class of (X, G). Easily, we can check that the map σg 7→ ng is an alge-
bra homomorphism from the adjacency algebra RG to R (R is an arbitrary
commutative ring with 1). We call this the trivial representation of G over
R. Note that, in this article, a representation means a linear representation
of an algebra, namely, an algebra homomorphism from an R-algebra to the
full matrix ring over R of some degree.

The map ΓG : RG → MnG
(R) defined by ΓG(σg) = σg is also a repre-

sentation of G. We call this the standard representation of G over R. The
corresponding right RG-module is called the (right) standard module, and
we denote it by RX, since we can consider X as an R-basis of it.

It is well known that the adjacency algebra over the complex number field
is always semisimple. In this case, all modules are completely reducible and
they are determined by their characters. Here the character means the trace
function of a representation. We denote the set of all irreducible characters
of CG by Irr(G). We consider the irreducible decomposition of the standard
character γG over C :

γg =
∑

χ∈Irr(G)

mχχ.

We call mχ the multiplicity of χ ∈ Irr(G).

Let p be a prime, and let (K, R, F ) be a p-modular system. Namely,
R is a complete discrete valuation ring with the maximal ideal (π), K is
the quotient field of R and its characteristic is 0, and F is the residue field
R/(π) and its characteristic is p. Details about p-modular systems, see [7].
The simplest example of p-modular systems is (Qp, Zp, Z/pZ). Let (X, G)
be an association scheme. To simplify our argument, we suppose that the
adjacency algebras KG and FG are splitting algebras. In this case, we say
(K, R, F ) is a splitting p-modular system of G.

Any idempotent in FG is a image of an idempotent of RG by the natural
epimorphism from RG to FG ∼= RG/πRG. The primitivity of idempotents is
preserved by this correspondence [7, Theorem I.14.2]. Moreover, there exists
a natural correspondence between the set of primitive central idempotents of
RG and it of FG [3, Proposition 1.12]. Namely, if

1 = e0 + e1 + · · ·+ er

is the central idempotent decomposition of 1 in RG, then so is

1 = e0 + e1 + · · ·+ er
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in FG, where ei is the image of ei by the natural epimorphism. We call a
primitive central idempotent ei the block idempotent of G. In this case,

RG = RGe0 ⊕ · · · ⊕ RGer

is the indecomposable decomposition of RG as two-sided ideals. We call
RGei the block (or block ideal) of G. For a right KG- or RG-module M , we
say M belongs to a block RGei if Mei = M . For a right FG-module M ,
we say M belongs to a block ei if Mei = M . Any indecomposable module
belongs to the unique block. Let M be a right RG-module, and assume
1 = e0 + e1 + · · · + er is the central idempotent decomposition of 1 in RG.
Then we can decompose M :

M = Me0 ⊕ · · · ⊕ Mer.

We call this decomposition the block decomposition of M . We define block
decompositions for KG-modules and FG-modules similarly.

3 Block decompositions

We begin this section with a well known fact in modular representation theory
of finite groups. Let F be a field of characteristic p > 0, and let G be a finite
group of order pam, where p - m. If M is a finitely generated projective right
FG-module, then pa| dimF M . Especially, pa| dimF eFG for any idempotent
e of FG. We want to generalize this fact to adjacency algebras. But easily
we can find counter examples.

Example 3.1. Let (X, G) be an association scheme of order pa, and assume
that it is not thin. Take 1 as an idempotent, then dimF FG < pa and
pa - dimF FG.

Now we consider the standard module. Then we have the following result.

Theorem 3.2. Let (X, G) be an association scheme of order pam, where
p - m. Let F be a field of characteristic p, and let e be an idempotent in
FG. Then pa | dimF FXe. If e is primitive, then dimF FXe equals to the
multiplicity of the simple FG-module eFG/J(eFG) in FX as an irreducible
constituent.
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Proof. The proof is almost the same as [5, Theorem 3.4].
Let e be an idempotent in FG. Then there exists an idempotent f of

RG such that f = e. We have dimF eFG = rankR fRG = rank ΓG(f),
where ΓG is the standard representation. Since f is an idempotent, we have
rank ΓG(f) = γG(f) =

∑
χ∈Irr(G) mχχ(f). If f =

∑
g∈G αgσg, then γG(f) =

α1nG = α1p
am, so we have α1 = γG(f)/pam. Since f ∈ RG, α1 ∈ R, so

γG(f) must be divided by pa.

Corollary 3.3. If (X, G) is an association scheme of order pam, p - m, then
the number of isomorphism classes of irreducible FG-modules is at most m.
Moreover, this bound is best possible.

Proof. It is enough to show that FXe 6= 0 for any primitive idempotent e of
FG.

We fix an element x in X. Define a map ϕ : FG → FX by ϕ(σg) = xσg.
Then easily we can verify that ϕ is an FG-monomorphism. Now FXe 6= 0,
since FGe 6= 0.

The groups algebra of abelian group of order pam has m irreducible mod-
ules. So this bound is best possible.

We note that FXe is not an FG-module, in general. But, if e is a central
idempotent, then FXe is an FG-module. So we have the following.

Theorem 3.4. Let (X, G) be an association scheme of order pam, where
p - m. For the block decomposition of the standard module

FX = FXe0 ⊕ · · · ⊕ FXer,

we have pa | dimF FXei for any i.

For a block B of G, we write the set of irreducible characters belonging
to it by Irr(B).

Corollary 3.5. If (X, G) is an association scheme of order pam, p - m, then

pa
∣∣∣
∑

χ∈Irr(B)

mχχ(1),

for any block B of G.

Proof. Let B = eRG. For χ ∈ Irr(G), χ(e) = χ(1) if χ ∈ Irr(B), and
χ(e) = 0 otherwise. By the proof of Theorem 3.2, we have the result.
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4 Commutative case

If (X, G) is a commutative association scheme, then any block eiFG of FG
is a local commutative algebra. So we have the following.

Proposition 4.1. Let (X, G) be a commutative association scheme. If χ, ϕ ∈
Irr(G), then χ and ϕ belong to the same block if and only if

χ(σg) ≡ ϕ(σg) (mod (π)), for all g ∈ G.

The following is a easy consequence of the result in the previous section.

Corollary 4.2. If (X, G) is a commutative association scheme of order pam,
p - m, then

pa
∣∣∣
∑

χ∈Irr(B)

mχ,

for any block B of G.

5 Noncommutative case

For χ ∈ Irr(G), we define ωχ : Z(KG) → K by ωχ(z) = χ(z)/χ(1). Then, if
χ 6= ϕ, then ωχ 6= ωϕ, and we have

Irr(Z(KG)) = {ωχ | χ ∈ Irr(G)}.

Now we can say a generalization of Proposition 4.1.

Theorem 5.1. Let (X, G) be a group-like association scheme. If χ, ϕ ∈
Irr(G), then χ and ϕ belong to the same block if and only if

ωχ(z) ≡ ωϕ(z) (mod (π)), for all z ∈ Z(RG).

If we want to use this result, then we need a basis of Z(RG). But, in
general, we do not know how to calculate a basis of Z(RG). If we assume a
property of (X, G), we can decide a good basis of Z(RG). It is stated in the
next section.

Remark 5.2. If we want do know the block decomposition of Irr(G), then we
can use the following method. Let χ ∈ Irr(B). Consider S := {S ⊆ Irr(G) |∑

ϕ∈S eϕ ∈ RG}, where eϕ is the central idempotent in KG corresponding
to ϕ. Then

⋂
S∈S S ∈ S and this is Irr(B).
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6 Group-like case

Let (X, G) be an association scheme. For g, h ∈ G, we define g ∼ h if

1

ng

χ(σg) =
1

nh

χ(σh), for any χ ∈ Irr(G).

We say (X, G) is group-like if the number of ∼ equivalence classes is equal
to the number of irreducible characters of G (this is different from group-like
algebras defined by Y. Doi [4]). For details, see [6]. Suppose that (X, G) is

group-like. For g ∈ G, we put g̃ =
⋃

h∼g h, and G̃ = {g̃ | g ∈ G}. Then

(X, G̃) is an association scheme, and the adjacency algebra RG̃ is the center
of RG.

Theorem 6.1. Let (X, G) be a group-like association scheme. If χ, ϕ ∈
Irr(G), then χ and ϕ belong to the same block if and only if

ωχ(σeg) ≡ ωϕ(σeg) (mod (π)), for all g̃ ∈ G̃.

If (X, G) is thin, namely G is a finite group, then it is group-like and the
relation ∼ is the conjugacy relation of the group. In this case, our result is
well known in representation theory of finite groups.

7 Some examples

In this section, we consider some examples.

Example 7.1. We consider the association schemes defined by permutation
groups on the set of prime cardinalities. Let (X, G) be such an association
scheme of order p and class d. In this case, d must divide p − 1. Let F be
an algebraically closed field of characteristic p. Then the adjacency algebra
FG is isomorphic to F [x]/(xd + 1). The set of isomorphism classes of inde-
composable FG-modules is {Mi | 1 ≤ i ≤ d + 1}, where dimF Mi = i. Now
the standard module is

FXFG
∼= Md+1 ⊕

(
p − 1

d
− 1

)
Md.

In this case, Md+1
∼= FG as FG-modules.
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For many examples, the standard module FXFG contains the regular
module FGFG as a direct summand. But this is not true, in general.

Example 7.2. Let H(2, 2) be the Hamming scheme, and let F be a field
of characteristic 2. Then the standard module of H(2, 2) over F is inde-
composable. Especially, it does not contain the regular module as a direct
summand.

We consider a general situation. There exists an FG-module monomor-
phism from FG to FX as we see in the proof of Corollary 3.3. This does
not split, in general. If FG is self-injective (equivalently a quasi-Frobenius
algebra), then this monomorphism splits.

Proposition 7.3. If FG is self-injective, then FGFG is a direct summand
of FXFG.
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