
A NOTE ON COMPLEX MATRIX REPRESENTATIONS OF
ASSOCIATION SCHEMES

AKIHIDE HANAKI

Abstract. I write this note for a supplement of Higman’s paper [1]. Especially,
we prove Frobenius-Schur Theorem for association schemes. This note contains
no new result.

1. Preliminaries

We denote by α the complex conjugate of a complex number or a complex matrix
α. The transposition of a matrix M will be denoted by M>. The (i, j)-entry of
a matrix M will be denoted by Mij. For a complex matrix M , we denote by M∗

the Hermitian adjoint of M , namely M∗ = M
>

. By E, we denote the identity
matrix. Vectors in Cn are row vectors. The standard inner product of Cn will be
denoted by 〈x, y〉 = xy∗.

Always (X,S) is an association scheme. For a representation Φ : CS →Mn(C)
of (X,S) and a non-singular matrix P , we denote by P−1ΦP the representation
of (X,S) defined by σs 7→ P−1Φ(σs)P .

2. ∗-Representations

We often consider the condition

Φ(σs∗) = Φ(σs)
∗ for all s ∈ S.

We call this condition ∗-condition and a representation with this condition a ∗-
representation.

Proposition 2.1. Let Φ : CS → Mn(C) be an irreducible representation of an
association scheme (X,S). Then there is a ∗-representation Ψ of (X,S) which is
similar to Φ.

To prove Proposition 2.1, we put

A =
∑
s∈S

1

ns
Φ(σs)Φ(σs)

∗.

Lemma 2.2. The matrix A is a positive definite Hermitian matrix.

Proof. By definition, it is clear that A is a positive semidefinite Hermitian matrix.
Suppose xAx∗ = 0 for x ∈ Cn. Since Φ(σs)Φ(σs)

∗ (s ∈ S) are positive semidefinite,
we have xΦ(σs) = 0 for all s ∈ S. Since Φ is irreducible, Φ(σs) (s ∈ S) spanMn(C).
Thus we have x = 0. Now A is positive definite. �
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Lemma 2.3. For every t ∈ S, Φ(σt∗)A = AΦ(σt)
∗ holds.

Proof. We have

Φ(σt∗)A =
∑
s∈S

1

ns
Φ(σt∗)Φ(σs)Φ(σs)

∗ =
∑
s∈S

∑
u∈S

1

ns
put∗sΦ(σu)Φ(σs)

∗,

AΦ(σt)
∗ =

∑
s∈S

1

ns
Φ(σs)Φ(σs)

∗Φ(σt)
∗ =

∑
s∈S

1

ns
Φ(σs)Φ(σtσs)

∗

=
∑
s∈S

∑
u∈S

1

ns
putsΦ(σs)Φ(σu)

∗ =
∑
s∈S

∑
u∈S

1

nu
ps

∗

u∗tΦ(σs)Φ(σu)
∗

=
∑
s∈S

∑
u∈S

1

nu
pst∗uΦ(σs)Φ(σu)

∗.

The equation holds. �

Proof of Proposition 2.1. By Lemma 2.2, there is a non-singular square matrix B
such that A = BB∗. By Lemma 2.3, we have Φ(σt∗)BB∗ = BB∗Φ(σt)

∗, and so
B−1Φ(σt∗)B = B∗Φ(σt)

∗(B∗)−1 = (B−1Φ(σt)B)∗ for all t ∈ S. Then Ψ = B−1ΦB
satisfies the required condition. �

Remark. For an irreducible representation Φ : CS → Mn(C), we suppose that
Φ(σs) ∈ Mn(R) for all s ∈ S. Then there is a ∗-representation Ψ which is similar
to Φ and Ψ(σs) ∈Mn(R) for all s ∈ S.

Corollary 2.4. Let Φ : CS →Mn(C) be a representation of an association scheme
(X,S). Then there is a ∗-representation Ψ of (X,S) which is similar to Φ.

Proof. Consider an irreducible decomposition of Φ and apply Proposition 2.1. �

Proposition 2.5. Let Φ and Ψ be similar ∗-representations of an association
scheme (X,S). Then there exists a unitary matrix U such that Ψ = U−1ΦU .

The proof will be done by some steps.

Lemma 2.6. Let Φ and Ψ be similar irreducible ∗-representations of an associa-
tion scheme (X,S). Then there exists a unitary matrix U such that Ψ = U−1ΦU .

Proof. Since Φ and Ψ are similar, there is a non-singular matrix P such that Ψ =
P−1ΦP . Now Ψ(σs) = P−1Φ(σs)P and so Ψ(σs∗) = Ψ(σs)

∗ = P ∗Φ(σs∗)(P−1)∗ =
P ∗Φ(σs∗)(P ∗)−1. Also we have Ψ(σs∗) = P−1Φ(σs∗)P . Therefore (PP ∗)−1Φ(σs∗)(PP ∗) =
Φ(σs∗) for all s ∈ S. Since Φ(σs∗) (s ∈ S) span the full matrix algebra, PP ∗ = αE
for some α ∈ C. Since PP ∗ is positive definite, α must be a positive real number.
Put U = 1√

α
P , then U is unitary and Ψ = U−1ΦU . �

Lemma 2.7. Let Φ be a reducible ∗-representation of an association scheme
(X,S). Then there exists a unitary matrix U such that

U−1Φ(σs)U =

(
Φ1(σs)

Φ2(σs)

)
,

for all s ∈ S. In this case, Φi (i = 1, 2) are also ∗-representations.
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Proof. Let Cn be the representation space of Φ, and let W be a CS-invariant
subspace of Cn. We consider W⊥ = {x ∈ Cn | 〈W,x〉 = 0}, where 〈•, •〉 is the
standard inner product. We show that W⊥ is also CS-invariant. Suppose x ∈ W⊥.
Then, for any w ∈ W and s ∈ S, we have

〈w, xΦ(σs)〉 = wΦ(σs)
∗x∗ = wΦ(σs∗)x∗ = 〈wΦ(σs∗), x〉 = 0

since wΦ(σs∗) ∈ W . This means that W⊥ is also CS-invariant.
Now we choose orthonormal bases of W and W⊥ and combine them to get

an orthonormal basis of Cn. We make a unitary matrix U by the orthonormal
basis. Then we have a decomposition of Φ. It is clear that Φi (i = 1, 2) satisfy
∗-condition. �

Proof of Proposition 2.5. By Lemma 2.7, we have irreducible decompositions of Φ
and Ψ by unitary matrices. Since they are similar, the assertion holds by Lemma
2.6. �

3. Frobenius-Schur Theorem

For χ ∈ Irr(S), we define

ν2(χ) =
mχ

|X|χ(1)

∑
s∈S

1

ns
χ(σ2

s)

and call this number the Frobenius-Schur indicator of χ.
For χ ∈ Irr(S), we say that

• χ is of the first kind if χ is afforded by a real representation,
• χ is of the second kind if χ is real and not afforded by a real representation,

and
• χ is of the third kind if χ is not real,

where we say that χ is real if χ(σs) ∈ R for all s ∈ S, and a representation Φ is
real if Φ(σs) are matrices over R for all s ∈ S. Obviously, a real representation
affords a real character.

We will prove Frobenius-Schur Theorem for association schemes.

Theorem 3.1 (Frobenius-Schur Theorem [1, (7.5)]). Let χ be an irreducible char-
acter of an association scheme (X,S). Then ν2(χ) ∈ {−1, 0, 1} and

• ν2(χ) = 1 if and only if χ if of the first kind,
• ν2(χ) = −1 if and only if χ if of the second kind, and
• ν2(χ) = 0 if and only if χ if of the third kind.

We will prove Theorem 3.1 by the following way :

• If χ is of the first kind, then ν2(χ) = 1 (Lemma 3.2).
• If χ is of the third kind, then ν2(χ) = 0 (Lemma 3.2).
• If χ is of the first or second kind, then ν2(χ) ∈ {−1, 1} (Lemma 3.3).
• If ν2(χ) = 1, then χ is of the first kind (Lemma 3.4).

Combining these facts, we can prove Theorem 3.1.

Lemma 3.2. If χ is of the third kind, then ν2(χ) = 0. If χ is of the first kind,
then ν2(χ) = 1.
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Proof. Let Φ be a representation affording χ. We may assume that Φ satisfies
∗-condition. We have

ν2(χ) =
mχ

|X|χ(1)

∑
s∈S

1

ns
χ(σ2

s) =
mχ

|X|χ(1)

∑
s∈S

1

ns
trace(Φ(σs)Φ(σs))

=
mχ

|X|χ(1)

∑
s∈S

1

ns

χ(1)∑
i=1

χ(1)∑
j=1

Φ(σs)ijΦ(σs)ji

=
mχ

|X|χ(1)

∑
s∈S

1

ns

χ(1)∑
i=1

χ(1)∑
j=1

Φ(σs∗)jiΦ(σs)ji.

Suppose that χ is of the third kind. Then Φ and Φ are non-similar. Thus ν2(χ) = 0
by Schur relations ([1, (3.8)] or [3, Theorem 4.2.4]).

Suppose that χ is of the first kind. By Remark after the proof of Proposition
2.1, χ is afforded by a real ∗-representation. Hence we assume that Φ is a real
∗-representation. Then, again by Schur relations, we have

ν2(χ) =
mχ

|X|χ(1)

∑
s∈S

1

ns

χ(1)∑
i=1

χ(1)∑
j=1

Φ(σs∗)jiΦ(σs)ji

=
mχ

|X|χ(1)

∑
s∈S

1

ns

χ(1)∑
i=1

χ(1)∑
j=1

Φ(σs∗)jiΦ(σs)ji

=
mχ

|X|χ(1)

∑
s∈S

1

ns

χ(1)∑
i=1

Φ(σs∗)iiΦ(σs)ii

=
mχ

|X|χ(1)
χ(1)
|X|
mχ

= 1.

Thus the lemma holds. �

Lemma 3.3. Suppose that χ is of the first or second kind. Let Φ be a ∗-representation
affording χ. Then there is a unitary matrix U such that Φ = U−1ΦU . In this case,
U> = ν2(χ)U and ν2(χ) ∈ {−1, 1}.

Proof. By assumption, Φ and Φ are similar. Thus there is a unitary matrix U

such that Φ = U−1ΦU . By Φ(σs∗) = U−1Φ(σs∗)U , we have Φ(σs) = U
−1

Φ(σs)U .
Thus

Φ(σs) = U−1U
−1

Φ(σs)UU = (UU)−1Φ(σs)(UU).

This equation holds for all s ∈ S and Φ(σs) (s ∈ S) span Mχ(1)(C), we can write

UU = αE for some α ∈ C. Since U is unitary, we have U = αU> = α2U .
Therefore α2 = 1 and α = ±1.
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We will show that α = ν2(χ). We put U = (uij). By definition, uji = αuij. By
Schur relations, we have

ν2(χ) =
mχ

|X|χ(1)

∑
s∈S

1

ns

χ(1)∑
i=1

χ(1)∑
j=1

Φ(σs∗)jiΦ(σs)ji

=
mχ

|X|χ(1)

∑
s∈S

1

ns

χ(1)∑
i=1

χ(1)∑
j=1

χ(1)∑
k=1

χ(1)∑
`=1

ukjΦ(σs∗)k`u`iΦ(σs)ji

=
mχ

|X|χ(1)

χ(1)∑
i=1

χ(1)∑
j=1

uijuji
∑
s∈S

1

ns
Φ(σs∗)ijΦ(σs)ji

=
1

χ(1)

χ(1)∑
i=1

χ(1)∑
j=1

uijuji =
α

χ(1)

χ(1)∑
i=1

χ(1)∑
j=1

uijuij

=
α

χ(1)
trace(UU>) =

α

χ(1)
trace(E) = α.

Thus α = ν2(χ) holds. �

Lemma 3.4. If ν2(χ) = 1, then χ is of the first kind.

Proof. Let Φ be a ∗-representation affording χ. Suppose ν2(χ) = 1. There is
a unitary matrix U such that Φ = U−1ΦU and U> = U by Lemma 3.3. By

[2, Lemma 4.18], there is a non-singular matrix V such that U = V V
−1

. Now

Φ(σs) = V V −1Φ(σs)V V
−1

and so V
−1

Φ(σs)V = V −1Φ(σs)V for all s ∈ S. This
means that the representation V −1ΦV is a real representation. �

Now Theorem 3.1 was proved.

Corollary 3.5. We have
∑

χ∈Irr(S) ν2(χ)χ(1) = ]{s ∈ S | s = s∗}.

Proof. We denote by γ the standard character of (X,S). Then∑
s∈S

1

ns
γ(σ2

s) =
∑
s∈S

1

ns

∑
χ∈Irr(S)

mχχ(σ2
s) =

∑
χ∈Irr(S)

mχν2(χ)
|X|χ(1)

mχ

and ∑
s∈S

1

ns
γ(σ2

s) =
∑
s∈S

1

ns
p1ss|X| =

∑
s=s∗

|X| = |X| · ]{s ∈ S | s = s∗}.

Thus the statement holds. �

Example 3.6. Let (X,S) be a noncommutative association scheme with |S| = 6.
Then we can set Irr(S) = {χ1, χ2, χ3}, χ1(1) = χ2(1) = 1 and χ3(1) = 2. Since
there is a trivial character, we can see that ν2(χ1) = ν2(χ2) = 1. Also we have
χ3 = χ3. Suppose ν2(χ3) = −1. Then ]{s ∈ S | s = s∗} = 1 + 1 − 2 = 0,
but this is impossible since 1 = 1∗. Hence ν2(χ3) = 1. Now we can see that
]{s ∈ S | s = s∗} = 1 + 1 + 2 = 4 and χ3 is afforded by a real representation.
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