A NOTE ON COMPLEX MATRIX REPRESENTATIONS OF
ASSOCIATION SCHEMES

AKIHIDE HANAKI

ABSTRACT. I write this note for a supplement of Higman’s paper [1]. Especially,
we prove Frobenius-Schur Theorem for association schemes. This note contains
no new result.

1. PRELIMINARIES

We denote by @ the complex conjugate of a complex number or a complex matrix
«. The transposition of a matrix M will be denoted by M. The (i, j)-entry of
a matrix M will be denoted by M;;. For a complex matrix M, we denote by M*

the Hermitian adjoint of M, namely M* = M By FE, we denote the identity
matrix. Vectors in C" are row vectors. The standard inner product of C"* will be
denoted by (x,y) = zy*.

Always (X, .S) is an association scheme. For a representation ® : CS — M, (C)
of (X,S) and a non-singular matrix P, we denote by P~'*®P the representation
of (X, S) defined by o, — P~'®(c,)P.

2. *-REPRESENTATIONS

We often consider the condition
O(og) = (o))" forallse S.
We call this condition *x-condition and a representation with this condition a -

representation.

Proposition 2.1. Let & : CS — M, (C) be an irreducible representation of an
association scheme (X, S). Then there is a x-representation ¥ of (X, S) which is
similar to P.

To prove Proposition 2.1, we put
1
A= Z n—sq)(as)q)(as)*.
ses
Lemma 2.2. The matriz A is a positive definite Hermitian matriz.
Proof. By definition, it is clear that A is a positive semidefinite Hermitian matrix.
Suppose zAz* = 0 for x € C". Since ®(04)P(05)* (s € S) are positive semidefinite,

we have x®(0,) = 0 for all s € S. Since @ is irreducible, ®(o;) (s € S) span M,,(C).
Thus we have z = 0. Now A is positive definite. O

Date: September 27, 2016, revised June 1, 2017.
1



2 AKIHIDE HANAKI

Lemma 2.3. For everyt € S, ®(op)A = AP(0y)* holds.
Proof. We have

Blor)A = 3 B0 B(E)Be) = 3 Y S pt B0 ()"

ses ° ses ues
1 1
AD()" = ) n—(IJ(JS)@(US)*@(Jt)* = n—cp(as)cp(atas)*

ses ses

= > —pts CALICHEDY Z D (020"
ses uES ses uES

DI ICATIERS
sesS uES

The equation holds. u

Proof of Proposition |2.1 By Lemma there is a non-singular square matrix B
such that A = BB*. By Lemma [2.3] we have ®(04+)BB* = BB*®(0¢)*, and so
B7'®(04+)B = B*®(0y)*(B*)™! = (B™'®(0y)B)* for all t € S. Then ¥ = B~'®B
satisfies the required condition. O

Remark. For an irreducible representation ® : CS — M,,(C), we suppose that
®(o,) € M,(R) for all s € S. Then there is a *-representation ¥ which is similar
to ® and ¥(og) € M,(R) for all s € S.

Corollary 2.4. Let & : CS — M, (C) be a representation of an association scheme
(X, S). Then there is a x-representation ¥ of (X, S) which is similar to ®.

Proof. Consider an irreducible decomposition of ® and apply Proposition 2.1} O

Proposition 2.5. Let ® and ¥ be similar x-representations of an association
scheme (X, S). Then there exists a unitary matriz U such that ¥ = U~ 1®U.

The proof will be done by some steps.

Lemma 2.6. Let & and VU be similar irreducible x-representations of an associa-
tion scheme (X, S). Then there exists a unitary matriz U such that ¥ = U~ 1®U.

Proof. Since ® and ¥ are similar, there is a non-singular matrix P such that ¥ =
P7'®P. Now ¥(os) = P'®(0)P and so ¥(os) = U(o,)* = P*®(04 ) (P~ =
P*® (0, )(P*)~!. Also we have ¥ (0, ) = P~'® (04 ) P. Therefore (PP*) '® (0, )(PP*) =
O(0,+) for all s € S. Since ®(o4+) (s € S) span the full matrix algebra, PP* = aF
for some a € C. Since PP* is positive definite, a must be a positive real number.
Put U = P then U is unitary and ¥ = U~ 1(I>U O

Lemma 2.7. Let ® be a reducible x-representation of an association scheme
(X,S). Then there exists a unitary matriz U such that

for all s € S. In this case, ®; (i =1,2) are also x-representations.
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Proof. Let C™ be the representation space of ®, and let W be a CS-invariant
subspace of C". We consider W+ = {x € C" | (W,z) = 0}, where (e, @) is the
standard inner product. We show that W+ is also CS-invariant. Suppose z € W+.
Then, for any w € W and s € S, we have

(w, 2P (0,)) = wP(04) x" = wWP(0g )" = (WP (04),2) =0

since w®(o,-) € W. This means that W+ is also CS-invariant.

Now we choose orthonormal bases of W and W+ and combine them to get
an orthonormal basis of C". We make a unitary matrix U by the orthonormal
basis. Then we have a decomposition of ®. It is clear that ®; (i = 1,2) satisfy
x-condition. U

Proof of Proposition[2.5. By Lemma we have irreducible decompositions of ®
and ¥ by unitary matrices. Since they are similar, the assertion holds by Lemma
O

3. FROBENIUS-SCHUR THEOREM

For x € Irr(S), we define
My

]‘ 2
%00 = XD Zn—sx(as)

ses

and call this number the Frobenius-Schur indicator of x.
For x € Irr(S), we say that

e  is of the first kind if x is afforded by a real representation,
e Y is of the second kind if x is real and not afforded by a real representation,
and

e Y is of the third kind if x is not real,
where we say that x is real if x(o5) € R for all s € S, and a representation ® is
real if ®(o,) are matrices over R for all s € S. Obviously, a real representation
affords a real character.

We will prove Frobenius-Schur Theorem for association schemes.

Theorem 3.1 (Frobenius-Schur Theorem [1} (7.5)]). Let x be an irreducible char-
acter of an association scheme (X, S). Then vs(x) € {—1,0,1} and

e 15(x) =1 if and only if x if of the first kind,

e 1y(x) = —1 if and only if x if of the second kind, and

e y(x) =0 if and only if x if of the third kind.

We will prove Theorem [3.1] by the following way :

If x is of the first kind, then 15(x) = 1 (Lemma [3.2)).

If x is of the third kind, then v5(x) = 0 (Lemma [3.2)).

If x is of the first or second kind, then vy(x) € {—1,1} (Lemma [3.3).
If v5(x) = 1, then x is of the first kind (Lemma [3.4)).

Combining these facts, we can prove Theorem [3.1}

Lemma 3.2. If x is of the third kind, then vs(x) = 0. If x is of the first kind,
then va(x) = 1.
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Proof. Let ® be a representation affording y. We may assume that & satisfies
x-condition. We have

mX i 02 = mX i race g g
r(x) = m;nsx( 5) |X|X(1)z;nst (®(0s)®(0s))

X(l) x(1)

— !X|X Z ZZ(DUS“ as i

=1 j5=1
x(1) x(1)

1
- RS LT

i=1 j=1

Suppose that y is of the third kind. Then ® and ® are non-similar. Thus v5(x) = 0
by Schur relations ([I, (3.8)] or [3, Theorem 4.2.4]).

Suppose that x is of the first kind. By Remark after the proof of Proposition
x is afforded by a real %-representation. Hence we assume that ® is a real
x-representation. Then, again by Schur relations, we have

x(1) x(1)

V2(X) = |X‘X Z ZZ(DO-S ]z Us i

i=1 j=1
x(1) x(1)

- RS L e

i=1 j=1
x(l)

O-S [z

My |X| .
- |X|x<1>x<1)m_x‘1‘

Thus the lemma holds. O

Lemma 3.3. Suppose that x is of the first or second kind. Let ® be a x-representation
affording x. Then there is a unitary matriz U such that ® = U=1®U. In this case,
UT = u(x)U and 15(x) € {—1,1}.

Proof. By assumption, ® and ® are similar. Thus there is a unitary matrix U
such that & = U~1®U. By ®(0,-) = U~1®(0,-)U, we have ®(0,) = U ®(0,)U.
Thus

B(0,) = U'U " ®(0,)UU = (UU) " ®(0,)(UUV).

This equation holds for all s € S and ®(o;) (s € S) span M,(1)(C), we can write
UU = aF for some a € C. Since U is unitary, we have U = aU' = a?U.
Therefore a? = 1 and o = £1.
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We will show that oo = v2(x). We put U = (u;;). By definition, u;; = au;;. By
Schur relations, we have

1 x(1) x(1)
n(y) = — D(05+);i®(0) ;i
SGS 5 =1 j=1
m 1 X 1) x(1) x(1) x(1)
= Ny — Ui (05 ) e (o)
kj keteq ji
‘X’XG) s€s Ns j=1 k=1 ¢=1
m x(1) x(1) 1
= X Ui —®(04)i5P(0s)
) 2 2 1 2 M)
1 x(1) x(1) o x(1) x(1)
= T Ujjlji = —= UijUij
X(l) i=1 j=1 X 1) i=1 j=1
a — e}
= trace(UU ") = trace(E) = «
x(1) x(1)
Thus a = v,(x) holds. O

Lemma 3.4. If v5(x) = 1, then x is of the first kind.

Proof. Let ® be a x-representation affording x. Suppose v5(x) = 1. There is
a unitary matrix U such that ® = U~'®U and UT = U by Lemma

[2, Lemma 4.18], there is a non-singular matrix V such that U = VV . Now
B(o,) = VV1d(o,)VV " and so V_ @(0,)V = V-'®(o,)V for all s € S. This
means that the representation V~1®V is a real representation. U

Now Theorem [3.1] was proved.
Corollary 3.5. We have 3 1.5 2(X)x(1) =f{s € S| s = s"}.
Proof. We denote by ~ the standard character of (X,S). Then

BESICOED DR BITRIC D BN A

sES SGS % xelrr(S) X€EIrr(S) X
and
1 1 "
So (o) = 30 —phIX] = 3OIX| = |X] s e S |5 = s,
ses 8 ses 8 s=s*
Thus the statement holds. O

Example 3.6. Let (X, S) be a noncommutative association scheme with |S| = 6.
Then we can set Irr(S) = {x1, x2, x3}» x1(1) = x2(1) = 1 and x3(1) = 2. Since
there is a trivial character, we can see that vs(x1) = v2(x2) = 1. Also we have
X3 = X3. Suppose vo(x3) = —1. Then f{s € S | s =s} =1+1-2 =0,
but this is impossible since 1 = 1*. Hence 15(x3) = 1. Now we can see that
H{seS|s=s}t=1+1+42=4and 3 is afforded by a real representation.
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