A NOTE ON COMPLEX MATRIX REPRESENTATIONS OF ASSOCIATION SCHEMES

AKIHIDE HANAKI

ABSTRACT. I write this note for a supplement of Higman's paper [1]. Especially, we prove Frobenius-Schur Theorem for association schemes. This note contains no new result.

1. Preliminaries

We denote by $\overline{\alpha}$ the complex conjugate of a complex number or a complex matrix α . The transposition of a matrix M will be denoted by M^{\top} . The (i, j)-entry of a matrix M will be denoted by M_{ij} . For a complex matrix M, we denote by M^* the Hermitian adjoint of M, namely $M^* = \overline{M}^{\top}$. By E, we denote the identity matrix. Vectors in \mathbb{C}^n are row vectors. The standard inner product of \mathbb{C}^n will be denoted by $\langle x, y \rangle = xy^*$.

Always (X, S) is an association scheme. For a representation $\Phi : \mathbb{C}S \to M_n(\mathbb{C})$ of (X, S) and a non-singular matrix P, we denote by $P^{-1}\Phi P$ the representation of (X, S) defined by $\sigma_s \mapsto P^{-1}\Phi(\sigma_s)P$.

2. *-Representations

We often consider the condition

$$\Phi(\sigma_{s^*}) = \Phi(\sigma_s)^* \quad \text{for all } s \in S.$$

We call this condition *-condition and a representation with this condition a *representation.

Proposition 2.1. Let $\Phi : \mathbb{C}S \to M_n(\mathbb{C})$ be an irreducible representation of an association scheme (X, S). Then there is a *-representation Ψ of (X, S) which is similar to Φ .

To prove Proposition 2.1, we put

$$A = \sum_{s \in S} \frac{1}{n_s} \Phi(\sigma_s) \Phi(\sigma_s)^*.$$

Lemma 2.2. The matrix A is a positive definite Hermitian matrix.

Proof. By definition, it is clear that A is a positive semidefinite Hermitian matrix. Suppose $xAx^* = 0$ for $x \in \mathbb{C}^n$. Since $\Phi(\sigma_s)\Phi(\sigma_s)^*$ $(s \in S)$ are positive semidefinite, we have $x\Phi(\sigma_s) = 0$ for all $s \in S$. Since Φ is irreducible, $\Phi(\sigma_s)$ $(s \in S)$ span $M_n(\mathbb{C})$. Thus we have x = 0. Now A is positive definite.

Date: September 27, 2016, revised June 1, 2017.

Lemma 2.3. For every $t \in S$, $\Phi(\sigma_{t^*})A = A\Phi(\sigma_t)^*$ holds.

Proof. We have

$$\begin{split} \Phi(\sigma_{t^*})A &= \sum_{s \in S} \frac{1}{n_s} \Phi(\sigma_{t^*}) \Phi(\sigma_s) \Phi(\sigma_s)^* = \sum_{s \in S} \sum_{u \in S} \frac{1}{n_s} p_{t^*s}^u \Phi(\sigma_u) \Phi(\sigma_s)^*, \\ A\Phi(\sigma_t)^* &= \sum_{s \in S} \frac{1}{n_s} \Phi(\sigma_s) \Phi(\sigma_s)^* \Phi(\sigma_t)^* = \sum_{s \in S} \frac{1}{n_s} \Phi(\sigma_s) \Phi(\sigma_t \sigma_s)^* \\ &= \sum_{s \in S} \sum_{u \in S} \frac{1}{n_s} p_{ts}^u \Phi(\sigma_s) \Phi(\sigma_u)^* = \sum_{s \in S} \sum_{u \in S} \frac{1}{n_u} p_{u^*t}^{s^*} \Phi(\sigma_s) \Phi(\sigma_u)^* \\ &= \sum_{s \in S} \sum_{u \in S} \frac{1}{n_u} p_{t^*u}^s \Phi(\sigma_s) \Phi(\sigma_u)^*. \end{split}$$

The equation holds.

Proof of Proposition 2.1. By Lemma 2.2, there is a non-singular square matrix B such that $A = BB^*$. By Lemma 2.3, we have $\Phi(\sigma_{t^*})BB^* = BB^*\Phi(\sigma_t)^*$, and so $B^{-1}\Phi(\sigma_{t^*})B = B^*\Phi(\sigma_t)^*(B^*)^{-1} = (B^{-1}\Phi(\sigma_t)B)^*$ for all $t \in S$. Then $\Psi = B^{-1}\Phi B$ satisfies the required condition.

Remark. For an irreducible representation $\Phi : \mathbb{C}S \to M_n(\mathbb{C})$, we suppose that $\Phi(\sigma_s) \in M_n(\mathbb{R})$ for all $s \in S$. Then there is a *-representation Ψ which is similar to Φ and $\Psi(\sigma_s) \in M_n(\mathbb{R})$ for all $s \in S$.

Corollary 2.4. Let $\Phi : \mathbb{C}S \to M_n(\mathbb{C})$ be a representation of an association scheme (X, S). Then there is a *-representation Ψ of (X, S) which is similar to Φ .

Proof. Consider an irreducible decomposition of Φ and apply Proposition 2.1. \Box

Proposition 2.5. Let Φ and Ψ be similar *-representations of an association scheme (X, S). Then there exists a unitary matrix U such that $\Psi = U^{-1}\Phi U$.

The proof will be done by some steps.

Lemma 2.6. Let Φ and Ψ be similar irreducible *-representations of an association scheme (X, S). Then there exists a unitary matrix U such that $\Psi = U^{-1}\Phi U$.

Proof. Since Φ and Ψ are similar, there is a non-singular matrix P such that $\Psi = P^{-1}\Phi P$. Now $\Psi(\sigma_s) = P^{-1}\Phi(\sigma_s)P$ and so $\Psi(\sigma_{s^*}) = \Psi(\sigma_s)^* = P^*\Phi(\sigma_{s^*})(P^{-1})^* = P^*\Phi(\sigma_{s^*})(P^*)^{-1}$. Also we have $\Psi(\sigma_{s^*}) = P^{-1}\Phi(\sigma_{s^*})P$. Therefore $(PP^*)^{-1}\Phi(\sigma_{s^*})(PP^*) = \Phi(\sigma_{s^*})$ for all $s \in S$. Since $\Phi(\sigma_{s^*})$ ($s \in S$) span the full matrix algebra, $PP^* = \alpha E$ for some $\alpha \in \mathbb{C}$. Since PP^* is positive definite, α must be a positive real number. Put $U = \frac{1}{\sqrt{\alpha}}P$, then U is unitary and $\Psi = U^{-1}\Phi U$.

Lemma 2.7. Let Φ be a reducible *-representation of an association scheme (X, S). Then there exists a unitary matrix U such that

$$U^{-1}\Phi(\sigma_s)U = \begin{pmatrix} \Phi_1(\sigma_s) & \\ & \Phi_2(\sigma_s) \end{pmatrix},$$

for all $s \in S$. In this case, Φ_i (i = 1, 2) are also *-representations.

Proof. Let \mathbb{C}^n be the representation space of Φ , and let W be a $\mathbb{C}S$ -invariant subspace of \mathbb{C}^n . We consider $W^{\perp} = \{x \in \mathbb{C}^n \mid \langle W, x \rangle = 0\}$, where $\langle \bullet, \bullet \rangle$ is the standard inner product. We show that W^{\perp} is also $\mathbb{C}S$ -invariant. Suppose $x \in W^{\perp}$. Then, for any $w \in W$ and $s \in S$, we have

$$\langle w, x\Phi(\sigma_s) \rangle = w\Phi(\sigma_s)^* x^* = w\Phi(\sigma_{s^*}) x^* = \langle w\Phi(\sigma_{s^*}), x \rangle = 0$$

since $w\Phi(\sigma_{s^*}) \in W$. This means that W^{\perp} is also $\mathbb{C}S$ -invariant.

Now we choose orthonormal bases of W and W^{\perp} and combine them to get an orthonormal basis of \mathbb{C}^n . We make a unitary matrix U by the orthonormal basis. Then we have a decomposition of Φ . It is clear that Φ_i (i = 1, 2) satisfy *-condition.

Proof of Proposition 2.5. By Lemma 2.7, we have irreducible decompositions of Φ and Ψ by unitary matrices. Since they are similar, the assertion holds by Lemma 2.6.

3. Frobenius-Schur Theorem

For $\chi \in Irr(S)$, we define

$$\nu_2(\chi) = \frac{m_{\chi}}{|X|\chi(1)} \sum_{s \in S} \frac{1}{n_s} \chi(\sigma_s^2)$$

and call this number the *Frobenius-Schur indicator* of χ .

For $\chi \in Irr(S)$, we say that

- χ is of the *first kind* if χ is afforded by a real representation,
- χ is of the *second kind* if χ is real and not afforded by a real representation, and
- χ is of the *third kind* if χ is not real,

where we say that χ is *real* if $\chi(\sigma_s) \in \mathbb{R}$ for all $s \in S$, and a representation Φ is *real* if $\Phi(\sigma_s)$ are matrices over \mathbb{R} for all $s \in S$. Obviously, a real representation affords a real character.

We will prove Frobenius-Schur Theorem for association schemes.

Theorem 3.1 (Frobenius-Schur Theorem [1, (7.5)]). Let χ be an irreducible character of an association scheme (X, S). Then $\nu_2(\chi) \in \{-1, 0, 1\}$ and

- $\nu_2(\chi) = 1$ if and only if χ if of the first kind,
- $\nu_2(\chi) = -1$ if and only if χ if of the second kind, and
- $\nu_2(\chi) = 0$ if and only if χ if of the third kind.

We will prove Theorem 3.1 by the following way :

- If χ is of the first kind, then $\nu_2(\chi) = 1$ (Lemma 3.2).
- If χ is of the third kind, then $\nu_2(\chi) = 0$ (Lemma 3.2).
- If χ is of the first or second kind, then $\nu_2(\chi) \in \{-1, 1\}$ (Lemma 3.3).
- If $\nu_2(\chi) = 1$, then χ is of the first kind (Lemma 3.4).

Combining these facts, we can prove Theorem 3.1.

Lemma 3.2. If χ is of the third kind, then $\nu_2(\chi) = 0$. If χ is of the first kind, then $\nu_2(\chi) = 1$.

Proof. Let Φ be a representation affording χ . We may assume that Φ satisfies *-condition. We have

$$\nu_{2}(\chi) = \frac{m_{\chi}}{|X|\chi(1)} \sum_{s \in S} \frac{1}{n_{s}} \chi(\sigma_{s}^{2}) = \frac{m_{\chi}}{|X|\chi(1)} \sum_{s \in S} \frac{1}{n_{s}} \operatorname{trace}(\Phi(\sigma_{s})\Phi(\sigma_{s}))$$

$$= \frac{m_{\chi}}{|X|\chi(1)} \sum_{s \in S} \frac{1}{n_{s}} \sum_{i=1}^{\chi(1)} \sum_{j=1}^{\chi(1)} \Phi(\sigma_{s})_{ij} \Phi(\sigma_{s})_{ji}$$

$$= \frac{m_{\chi}}{|X|\chi(1)} \sum_{s \in S} \frac{1}{n_{s}} \sum_{i=1}^{\chi(1)} \sum_{j=1}^{\chi(1)} \overline{\Phi(\sigma_{s^{*}})_{ji}} \Phi(\sigma_{s})_{ji}.$$

Suppose that χ is of the third kind. Then Φ and $\overline{\Phi}$ are non-similar. Thus $\nu_2(\chi) = 0$ by Schur relations ([1, (3.8)] or [3, Theorem 4.2.4]).

Suppose that χ is of the first kind. By Remark after the proof of Proposition 2.1, χ is afforded by a real *-representation. Hence we assume that Φ is a real *-representation. Then, again by Schur relations, we have

$$\nu_{2}(\chi) = \frac{m_{\chi}}{|X|\chi(1)} \sum_{s \in S} \frac{1}{n_{s}} \sum_{i=1}^{\chi(1)} \sum_{j=1}^{\chi(1)} \overline{\Phi(\sigma_{s^{*}})_{ji}} \Phi(\sigma_{s})_{ji}$$

$$= \frac{m_{\chi}}{|X|\chi(1)} \sum_{s \in S} \frac{1}{n_{s}} \sum_{i=1}^{\chi(1)} \sum_{j=1}^{\chi(1)} \Phi(\sigma_{s^{*}})_{ji} \Phi(\sigma_{s})_{ji}$$

$$= \frac{m_{\chi}}{|X|\chi(1)} \sum_{s \in S} \frac{1}{n_{s}} \sum_{i=1}^{\chi(1)} \Phi(\sigma_{s^{*}})_{ii} \Phi(\sigma_{s})_{ii}$$

$$= \frac{m_{\chi}}{|X|\chi(1)} \chi(1) \frac{|X|}{m_{\chi}} = 1.$$

Thus the lemma holds.

Lemma 3.3. Suppose that χ is of the first or second kind. Let Φ be a *-representation affording χ . Then there is a unitary matrix U such that $\overline{\Phi} = U^{-1}\Phi U$. In this case, $U^{\top} = \nu_2(\chi)U$ and $\nu_2(\chi) \in \{-1, 1\}$.

Proof. By assumption, $\overline{\Phi}$ and Φ are similar. Thus there is a unitary matrix U such that $\overline{\Phi} = U^{-1}\Phi U$. By $\overline{\Phi(\sigma_{s^*})} = U^{-1}\Phi(\sigma_{s^*})U$, we have $\Phi(\sigma_s) = \overline{U}^{-1}\overline{\Phi(\sigma_s)}\overline{U}$. Thus

$$\overline{\Phi(\sigma_s)} = U^{-1}\overline{U}^{-1}\overline{\Phi(\sigma_s)}\overline{U}U = (\overline{U}U)^{-1}\overline{\Phi(\sigma_s)}(\overline{U}U).$$

This equation holds for all $s \in S$ and $\Phi(\sigma_s)$ $(s \in S)$ span $M_{\chi(1)}(\mathbb{C})$, we can write $\overline{U}U = \alpha E$ for some $\alpha \in \mathbb{C}$. Since U is unitary, we have $U = \alpha U^{\top} = \alpha^2 U$. Therefore $\alpha^2 = 1$ and $\alpha = \pm 1$.

A NOTE ON COMPLEX MATRIX REPRESENTATIONS OF ASSOCIATION SCHEMES 5

We will show that $\alpha = \nu_2(\chi)$. We put $U = (u_{ij})$. By definition, $u_{ji} = \alpha u_{ij}$. By Schur relations, we have

$$\nu_{2}(\chi) = \frac{m_{\chi}}{|X|\chi(1)} \sum_{s \in S} \frac{1}{n_{s}} \sum_{i=1}^{\chi(1)} \sum_{j=1}^{\chi(1)} \overline{\Phi(\sigma_{s^{*}})_{ji}} \Phi(\sigma_{s})_{ji}
= \frac{m_{\chi}}{|X|\chi(1)} \sum_{s \in S} \frac{1}{n_{s}} \sum_{i=1}^{\chi(1)} \sum_{j=1}^{\chi(1)} \sum_{k=1}^{\chi(1)} \sum_{\ell=1}^{\chi(1)} \overline{u_{kj}} \Phi(\sigma_{s^{*}})_{k\ell} u_{\ell i} \Phi(\sigma_{s})_{ji}
= \frac{m_{\chi}}{|X|\chi(1)} \sum_{i=1}^{\chi(1)} \sum_{j=1}^{\chi(1)} \overline{u_{ij}} u_{ji} \sum_{s \in S} \frac{1}{n_{s}} \Phi(\sigma_{s^{*}})_{ij} \Phi(\sigma_{s})_{ji}
= \frac{1}{\chi(1)} \sum_{i=1}^{\chi(1)} \sum_{j=1}^{\chi(1)} \overline{u_{ij}} u_{ji} = \frac{\alpha}{\chi(1)} \sum_{i=1}^{\chi(1)} \sum_{j=1}^{\chi(1)} \overline{u_{ij}} u_{ij}
= \frac{\alpha}{\chi(1)} \operatorname{trace}(\overline{U}U^{\top}) = \frac{\alpha}{\chi(1)} \operatorname{trace}(E) = \alpha.$$

Thus $\alpha = \nu_2(\chi)$ holds.

Lemma 3.4. If $\nu_2(\chi) = 1$, then χ is of the first kind.

Proof. Let Φ be a *-representation affording χ . Suppose $\nu_2(\chi) = 1$. There is a unitary matrix U such that $\overline{\Phi} = U^{-1}\Phi U$ and $U^{\top} = U$ by Lemma 3.3. By [2, Lemma 4.18], there is a non-singular matrix V such that $U = V\overline{V}^{-1}$. Now $\overline{\Phi(\sigma_s)} = \overline{V}V^{-1}\Phi(\sigma_s)V\overline{V}^{-1}$ and so $\overline{V}^{-1}\overline{\Phi(\sigma_s)}\overline{V} = V^{-1}\Phi(\sigma_s)V$ for all $s \in S$. This means that the representation $V^{-1}\Phi V$ is a real representation. \Box

Now Theorem 3.1 was proved.

Corollary 3.5. We have $\sum_{\chi \in Irr(S)} \nu_2(\chi)\chi(1) = \sharp \{s \in S \mid s = s^*\}.$

Proof. We denote by γ the standard character of (X, S). Then

$$\sum_{s \in S} \frac{1}{n_s} \gamma(\sigma_s^2) = \sum_{s \in S} \frac{1}{n_s} \sum_{\chi \in \operatorname{Irr}(S)} m_\chi \chi(\sigma_s^2) = \sum_{\chi \in \operatorname{Irr}(S)} m_\chi \nu_2(\chi) \frac{|X|\chi(1)}{m_\chi}$$

and

$$\sum_{s \in S} \frac{1}{n_s} \gamma(\sigma_s^2) = \sum_{s \in S} \frac{1}{n_s} p_{ss}^1 |X| = \sum_{s = s^*} |X| = |X| \cdot \sharp \{ s \in S \mid s = s^* \}.$$

Thus the statement holds.

Example 3.6. Let (X, S) be a noncommutative association scheme with |S| = 6. Then we can set $Irr(S) = \{\chi_1, \chi_2, \chi_3\}, \chi_1(1) = \chi_2(1) = 1 \text{ and } \chi_3(1) = 2$. Since there is a trivial character, we can see that $\nu_2(\chi_1) = \nu_2(\chi_2) = 1$. Also we have $\overline{\chi_3} = \chi_3$. Suppose $\nu_2(\chi_3) = -1$. Then $\sharp\{s \in S \mid s = s^*\} = 1 + 1 - 2 = 0$, but this is impossible since $1 = 1^*$. Hence $\nu_2(\chi_3) = 1$. Now we can see that $\sharp\{s \in S \mid s = s^*\} = 1 + 1 + 2 = 4$ and χ_3 is afforded by a real representation.

AKIHIDE HANAKI

References

- D. G. Higman. Coherent configurations. I. Ordinary representation theory. *Geometriae Ded*icata, 4(1):1–32, 1975.
- [2] I. M. Isaacs. *Character theory of finite groups*. Academic Press [Harcourt Brace Jovanovich Publishers], New York, 1976.
- [3] P.-H. Zieschang. An algebraic approach to association schemes, volume 1628 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1996.

E-mail address: hanaki@shinshu-u.ac.jp (Akihide Hanaki)