Elementary functions for association schemes on GAP

Akihide Hanaki

November 24, 2019

You can get GAP at http://www.gap-system.org/. We suppose the version of
GAP is 4.x. Some functions need the package grape 4.4.

Read my file association_scheme.gap on GAP, Read("association_scheme.gap").
Then you can use the following functions.

We use notations and terminologies in [2] and [12]. Let R be a relation matrix.
We use the notation (X, S) for the association scheme with relation matrix R.

1 Basic functions

1.1 ClassOfAssociationScheme

ClassOfAssociationScheme(R) returns the class of R, namely $|S| - 1$. The numbers of
the relations must be $[0..d]$.

1.2 Valency

Valency(R, i) returns the valency of the i-th relation of R, namely p_{ii}^0.

1.3 Valencies

Valencies(R) returns the list of valencies of R, namely the list
{$p_{ii}^0, | i = 0, 1, \cdots, d$}.

1.4 SumOfValencies

SumOfValencies(R, L) returns the sum of the valencies in the list of relations L.

1.5 OrderOfScheme

OrderOfScheme(R) returns the order of R, namely $|X|$.

1.6 Relation

Relation(R, x, y) returns the relation r of R such that $(x, y) \in r$.
1.7 TransposedRelations
TransposedRelations(R) returns the list of transpositions of the relations.

1.8 SymmetricRelations
SymmetricRelations(R) returns the list of symmetric relations of R.

1.9 NonSymmetricRelations
NonSymmetricRelations(R) returns the list of non-symmetric relations of R.

1.10 Involutions
Involutions(R) returns the list of involutions of R. A relation g is called an involution if [0, g] is a closed subset.

1.11 AdjacencyMatrices
AdjacencyMatrices(R) returns the list of adjacency matrices of R.

1.12 SumOfAdjacencyMatrices
SumOfAdjacencyMatrices(R, L) returns the sum of adjacency matrices in the list of relation numbers L. For example, use SumOfAdjacencyMatrices(R, [1,2]).

1.13 IntersectionNumber
IntersectionNumber(R, i, j, k) returns the intersection number p_{ij}^k of R.

1.14 IntersectionMatrices
IntersectionMatrices(R) returns the list of the intersection matrices. Namely, the list of (p_{ij}^k).

1.15 IsAssociationScheme
IsAssociationScheme(R) returns whether R is the relation matrix of an association scheme.

1.16 ComplexProduct
ComplexProduct(R, L1, L2) returns the complex product of L1 and L2. L1 and L2 must be lists of relation numbers.
1.17 HadamardProduct

HadamardProduct(L1, L2) returns the Hadamard product (entry-wise product) of matrices L1 and L2.

1.18 Neighbors

Neighbors(R, p, L) returns the L-neighbors of a point p.

1.19 NrCharacters

NrCharacters(R) returns the number of the complex irreducible characters of R. Of course, this number is the dimension of the center of the adjacency algebra.

1.20 NumCharacters

Same as NrCharacters.

1.21 NrModularSimpleModules

NrModularSimpleModules(R, p) returns the number of simple modules of adjacency algebra over an algebraically closed field of characteristic p. The method is based on results by R. Brauer (see [7], for example).

1.22 AutomorphismGroupOfScheme

AutomorphismGroupOfScheme(R) returns the automorphism group of R.

1.23 AlgebraicAutomorphismGroupOfScheme

AlgebraicAutomorphismGroupOfScheme(R) returns the algebraic automorphism group of R (see [6]).

1.24 CoefficientsOfAdjacencyMatrices

Let R be an association scheme and let F be a field. If F is not given, then we assume that F is the rational number field. For an element M of the adjacency algebra of R over F, CoefficientsOfAdjacencyMatrices(R, M [,F]) returns the coefficients of M with respect to the standard basis.
1.25 Examples

gap> R :=
 > [[0, 1, 2, 2, 2, 3, 3, 3],
 > [1, 0, 3, 3, 3, 2, 2, 2],
 > [3, 2, 0, 2, 3, 1, 2, 3],
 > [3, 2, 3, 0, 2, 2, 3, 1],
 > [3, 2, 2, 3, 0, 3, 1, 2],
 > [2, 3, 1, 3, 2, 0, 3, 2],
 > [2, 3, 3, 2, 1, 2, 0, 3],
 > [2, 3, 2, 1, 3, 3, 2, 0]];;
gap> ClassOfAssociationScheme(R);
3
gap> Valency(R, 2);
3
gap> Valencies(R);
[1, 1, 3, 3]
gap> OrderOfScheme(R);
8
gap> Relation(R, 1, 3); Relation(R, 5, 4);
2
3
gap> TransposedRelations(R);
[1, 3, 2]
gap> SymmetricRelations(R);
[0, 1]
gap> NonSymmetricRelations(R);
[2, 3]
gap> Involutions(R);
[1]
gap> IntersectionNumber(R, 1, 2, 3);
1
gap> IntersectionMatrices(R);
[[[0, 0, 1, 0], [0, 0, 1, 0], [0, 0, 1, 0], [1, 0, 0, 0], [0, 0, 0, 1], [0, 0, 1, 0], [0, 0, 1, 0]],
 [[0, 1, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [1, 0, 0, 0], [0, 0, 0, 1], [0, 0, 1, 0], [0, 0, 1, 0]],
 [[0, 0, 1, 0], [0, 0, 0, 1], [0, 3, 1, 1], [3, 0, 1, 1], [1, 0, 0, 0], [0, 0, 0, 1], [0, 1, 0, 0]],
 [[0, 0, 0, 1], [0, 0, 0, 1], [3, 0, 1, 1], [0, 3, 1, 1], [1, 0, 0, 0], [0, 0, 0, 1], [0, 1, 0, 0]]]
gap> A := AdjacencyMatrices(R);
[3, 0, 1, 1]
gap> NrCharacters(R);
4
gap> AutomorphismGroupOfScheme(R);
Group([(3,4,5)(6,8,7), (1,2)(3,6)(4,8)(5,7), (1,3,2,6)(4,7,8,5)])
gap> AlgebraicAutomorphismGroupOfScheme(R);
Group([(2,3)])
2 Construction of schemes

2.1 DirectProductScheme

DirectProductScheme(R, S) returns the direct product of R and S.

2.2 WreathProductScheme

WreathProductScheme(R, S) returns the wreath product of R and S.

2.3 TransitivePermutationGroupScheme

Let G be a finite group and H a subgroup of G. TransitivePermutationGroupScheme(G, H) returns the Schurian scheme defined by them. If G is given as a transitive permutation group, then use it as TransitivePermutationGroupScheme(G, Stabilizer(G, 1)).

2.4 SchurianScheme

Same as TransitivePermutationGroupScheme.

2.5 GroupAssociationScheme

Let G be a finite group. GroupAssociationScheme(G) returns the group association scheme of G.

2.6 NormalSubgroupScheme

Let G be a finite group and H a normal subgroup of G. NormalSubgroupScheme(G, H) returns the scheme defined by G-conjugacy classes of H.

2.7 CyclotomicScheme

Let q be a prime power, and d a divisor of $q - 1$. CyclotomicScheme(q, d) returns the cyclotomic scheme $Cyc(q, d)$.

2.8 HammingScheme

HammingScheme(n, q) returns the Hamming scheme $H(n, q)$.

2.9 JohnsonScheme

JohnsonScheme(v, k) returns the Johnson scheme $J(v, k)$.
2.10 CompleteGraphScheme

CompleteGraphScheme(n) returns the scheme of order n and of class 1.

2.11 CompleteMultipartiteGraphScheme

CompleteMultipartiteGraphScheme(n, m) returns the scheme defined by the complete multipartite graph.

2.12 ShrinkhandeGraphScheme

ShrinkhandeGraphScheme() returns the associationscheme obtained by the Shrinkhande Graph. This is the scheme $\text{as16}[6]$ in our list.

2.13 DoobGraphScheme

DoobGraphScheme(m, n) returns the associationscheme obtained by the Doob graph. It is the direct product of m copies of the Shrinkhande graphs and n copies of the complete graphs on four points.

2.14 FusionScheme

Let R have class d, and L a partition of $[1..d]$. FusionScheme(R, L) returns the fusion of R by L. For example, use it like as FusionScheme(R, $[[1],[2,3],[4,5,6]]$). 0 is always fixed. Note that this function does not check whether the result is a scheme. To do it, use the function IsAssociationScheme.

2.15 AlgebraicFusionOfScheme

Let R be a relation matrix of an association scheme, and let G be a subgroup of the algebraic automorphism group of R (see AlgebraicAutomorphismGroupOfAssociationScheme). AlgebraicFusionOfAssociationScheme(R, G) return the algebraic fusion of R by the action of G.

2.16 SymmetrizationOfScheme

SymmetrizationOfScheme(R) returns the symmetrization of R. This function works also for noncommutative scheme, but does not check whether the result is a scheme. To do it, use the function IsAssociationScheme.

2.17 SemidirectProductScheme

Let R be a relation matrix of size n, G a finite group, and hom a group homomorphism from G to the symmetric group of degree n. SemidirectProductScheme(R, G, hom)
returns the semidirect product of \(R \) by \(G \) in the sense of \([12, \S 2.7]\). This function does not check whether \(\text{hom} \) is a homomorphism to the automorphism group.

For example,

\begin{verbatim}
gap> R := CompleteGraphScheme(3);;
gap> gens := [(1,2,3)];;
gap> H := Group(gens);;
gap> G := Group(gens);;
gap> hom := GroupHomomorphismByImages(G, H, gens, gens);
gap> R2 := SemidirectProductScheme(R, G, hom);
gap> Display(R2);
[[0, 1, 1, 3, 2, 3, 5, 5, 4],
 [1, 0, 1, 3, 3, 2, 4, 5, 5],
 [1, 1, 0, 2, 3, 3, 5, 4, 5],
 [5, 5, 4, 0, 1, 1, 3, 2, 3],
 [4, 5, 5, 1, 0, 1, 3, 3, 2],
 [5, 4, 5, 1, 1, 0, 2, 3, 3],
 [3, 2, 3, 5, 4, 0, 1, 1],
 [3, 3, 2, 4, 5, 5, 1, 0],
 [2, 3, 3, 5, 4, 5, 1, 1]]
gap> IsAssociationScheme(R2);
true
\end{verbatim}

3 Some properties

3.1 IsPrimitiveScheme

\text{IsPrimitiveScheme}(R) returns whether \(R \) is primitive.

3.2 IsCommutativeScheme

\text{IsCommutativeScheme}(R) returns whether \(R \) is commutative.

3.3 IsSymmetricScheme

\text{IsSymmetricScheme}(R) returns whether \(R \) is symmetric.

3.4 IsThin

\text{IsThin}(R) returns whether \(R \) is thin.

3.5 IsQuasiThin

\text{IsQuasiThin}(R) returns whether \(R \) is quasi-thin.
3.6 IsResiduallyThin
IsResiduallyThin(R) returns whether R is residually thin.

3.7 IsSchurian
IsSchurian(R) returns whether R is Schurian.

3.8 IsGroupLikeScheme
IsGroupLikeScheme(R) returns whether R is a group-like scheme. A scheme is called group-like if the center of the adjacency algebra is closed by the Hadamard product (see [4]).

3.9 IsPValencedScheme
A scheme is called a p-valenced scheme if every valency is p-power. IsPValencedScheme(R, p) returns whether R is p-valenced.

3.10 IsPPrimeValencedScheme
A scheme is called a p′-valenced scheme if every valency is coprime to p. IsPPrimeValencedScheme(R, p) returns whether R is p′-valenced.

3.11 IsPiValencedScheme
A scheme is called a π-valenced scheme if every valency is a π-number. IsPiValencedScheme(R, pi) returns whether R is pi-valenced, where pi is a set of prime numbers.

3.12 IsPScheme
A scheme is called a p-scheme if it is p-valenced and its order is p-power. IsPScheme(R, p) returns whether R is a p-scheme.

3.13 IsTriplyRegularAssociationScheme
IsTriplyRegularAssociationScheme(R) returns whether R is triply regular in the sense of [8].

4 Closed subsets
Let L be a list of relation numbers.
4.1 IsClosedSubset
IsClosedSubset(R, L) returns whether L is a closed subset of R.

4.2 IsNormalClosedSubset
IsNormalClosedSubset(R, L) returns whether L is a normal closed subset of R.

4.3 GeneratedClosedSubset
GeneratedClosedSubset(R, L) returns the list of relation numbers in the closed subset generated by the relations in L.

4.4 ThinRadical
ThinRadical(R) returns the list of relation numbers in the thin radical of R.

4.5 ThinResidue
ThinResidue(R) returns the list of relation numbers in the thin residue of R.

4.6 PartitionOfPointsByClosedSubset
PartitionOfPointsByClosedSubset(R, L) returns a partition of points determined by a closed subset L.

4.7 RelationMatrixSortedByClosedSubset
RelationMatrixSortedByClosedSubset(R, L) returns a relation matrix sorted by a partition determined by a closed subset L. For example,

\[
\begin{bmatrix}
0 & 1 & 2 & 2 & 2 & 2 & 3 & 3 & 3 & 3 & 3 & 3 \\
1 & 0 & 3 & 3 & 3 & 3 & 2 & 2 & 2 & 2 & 2 & 2 \\
2 & 3 & 0 & 2 & 2 & 3 & 3 & 1 & 2 & 2 & 3 & 3 \\
2 & 3 & 2 & 0 & 3 & 2 & 3 & 3 & 2 & 3 & 1 & 2 \\
2 & 3 & 2 & 3 & 0 & 3 & 2 & 3 & 2 & 2 & 1 & 1 \\
2 & 3 & 2 & 3 & 0 & 2 & 3 & 2 & 2 & 2 & 2 & 2 \\
2 & 3 & 3 & 2 & 0 & 2 & 2 & 1 & 3 & 2 & 3 & 2 \\
3 & 2 & 1 & 3 & 3 & 2 & 0 & 3 & 3 & 2 & 2 & 2 \\
3 & 2 & 2 & 2 & 3 & 3 & 1 & 3 & 0 & 2 & 3 & 2 \\
3 & 2 & 2 & 2 & 3 & 1 & 3 & 3 & 2 & 0 & 2 & 3 \\
3 & 2 & 3 & 1 & 2 & 3 & 2 & 2 & 3 & 2 & 0 & 3 \\
3 & 2 & 3 & 2 & 1 & 2 & 3 & 2 & 2 & 3 & 0 & 3 \\
\end{bmatrix}
\]

gap> Display(R); # Display(R);
\[
\begin{bmatrix}
0 & 1 & 2 & 2 & 2 & 2 & 3 & 3 & 3 & 3 & 3 & 3 \\
1 & 0 & 3 & 3 & 3 & 3 & 2 & 2 & 2 & 2 & 2 & 2 \\
2 & 3 & 0 & 2 & 2 & 3 & 3 & 1 & 2 & 2 & 3 & 3 \\
2 & 3 & 2 & 0 & 3 & 2 & 3 & 3 & 2 & 3 & 1 & 2 \\
2 & 3 & 2 & 3 & 0 & 3 & 2 & 3 & 2 & 2 & 1 & 1 \\
2 & 3 & 2 & 3 & 0 & 2 & 3 & 2 & 2 & 2 & 2 & 2 \\
2 & 3 & 3 & 2 & 0 & 2 & 2 & 1 & 3 & 2 & 3 & 2 \\
3 & 2 & 1 & 3 & 3 & 2 & 0 & 3 & 3 & 2 & 2 & 2 \\
3 & 2 & 2 & 2 & 3 & 3 & 1 & 3 & 0 & 2 & 3 & 2 \\
3 & 2 & 2 & 2 & 3 & 1 & 3 & 3 & 2 & 0 & 2 & 3 \\
3 & 2 & 3 & 1 & 2 & 3 & 2 & 2 & 3 & 2 & 0 & 3 \\
3 & 2 & 3 & 2 & 1 & 2 & 3 & 2 & 2 & 3 & 0 & 3 \\
\end{bmatrix}
\]

gap> R2 := RelationMatrixSortedByClosedSubset(R, [0,1]);;

gap> Display(R2);
4.8 Subscheme

Subscheme(R, L [, p]) returns the subscheme of R at a point p by a closed subset L. If p is not given, then the function assume p to be 1.

4.9 FactorScheme

FactorScheme(R, L) returns the factor scheme of R by a closed subset L.

4.10 QuotientScheme

Same as FactorScheme.

4.11 CommutatorOfScheme

CommutatorOfScheme(R, s, t) returns the commutator $s^t^* st$.

4.12 CommutatorOfSubsets

CommutatorOfSubsets(R, S, T) returns the closed subset generated by commutators $\{s^t^* st | s \in S, t \in T\}$. If S and T are whole of the scheme, then this closed subset is the smallest closed subset of R such that the quotient scheme is commutative thin.

4.13 CosetDecompositionOfScheme

CosetDecompositionOfScheme(R, L) returns the coset decomposition of the relations. R is a relation matrix and L must be a closed subset. This function does not check whether L is closed.
4.14 CosetRepresentativesOfScheme

CosetRepresentativesOfScheme(R, L) returns a representatives of coset decomposition of the relations. R is a relation matrix and L must be a closed subset. This function does not check whether L is closed.

We show an example.

```gap
gap> R :=
> [ [ 0, 1, 2, 3, 4, 4, 4, 5, 5, 5, 5 ],
> [ 1, 0, 3, 2, 4, 4, 4, 5, 5, 5, 5 ],
> [ 2, 3, 0, 1, 5, 5, 5, 4, 4, 4, 4 ],
> [ 3, 2, 1, 0, 5, 5, 5, 4, 4, 4, 4 ],
> [ 4, 4, 5, 5, 0, 1, 4, 4, 2, 3, 5, 5 ],
> [ 4, 4, 5, 5, 1, 0, 4, 4, 3, 2, 5, 5 ],
> [ 4, 4, 5, 5, 4, 0, 1, 5, 5, 2, 3 ],
> [ 4, 4, 5, 4, 4, 1, 0, 5, 5, 3, 2 ],
> [ 5, 5, 4, 4, 2, 3, 5, 5, 0, 1, 4, 4 ],
> [ 5, 5, 4, 4, 3, 2, 5, 5, 1, 0, 4, 4 ],
> [ 5, 5, 4, 4, 5, 2, 3, 4, 4, 0, 1 ],
> [ 5, 5, 5, 4, 4, 4, 5, 3, 2, 4, 4, 1, 0 ] ];

gap> IsClosedSubset(M, [0, 1]);
true

gap> CosetDecompositionOfScheme(M, [0,1]);
[ [ 0, 1 ], [ 2, 3 ], [ 4 ], [ 5 ] ]

gap> CosetRepresentativesOfScheme(M, [0,1]);
[ 0, 2, 4, 5 ]
```

5 P-Polynomial schemes

5.1 IsPPolynomialScheme

IsPPolynomialScheme(R) returns whether R is a P-polynomial scheme.

5.2 AllPPolynomialOrdering

AllPPolynomialOrdering(R) returns the list of P-polynomial orderings of the relations.

5.3 IntersectionArray

IntersectionArray(R, a) returns the intersection array of the P-polynomial scheme defined by the relation a.

5.4 DRG2PPolynomialScheme

Let Gra be a distance-regular graph. DRG2PPolynomialScheme(Gra) returns the relation matrix of the P-polynomial scheme defined by Gra.
5.5 AMofDRG2PPolynomialScheme

Let A be the adjacency matrix of a distance-regular graph. $\text{AMofDRG2PPolynomialScheme}(A)$ returns the relation matrix of the P-polynomial scheme defined by A.

5.6 Example

For example, use them as the following.

```gap
gap> G := JohnsonScheme(5,2);;
gap> IsPPolynomialScheme(G);
true
gap> AllPPolynomialOrdering(G);
[ [ 1, 2 ], [ 2, 1 ] ]
gap> PrintArray(IntersectionArray(G, 1));
[ [ *, 1, 4 ],
[ 0, 3, 2 ],
[ 6, 2, * ] ]
```

6 Character tables

6.1 CharacterTableOfAssociationScheme

$\text{CharacterTableOfAssociationScheme}(R \ [, F])$ returns the character table of R, if every entry is in the field F. The field F must be of characteristic zero. If the table contains entries not in F, then this function returns \texttt{false}. If F is not given, then the function assume F the rational number field. The last column is a list of multiplicities. If you want to delete multiplicities, use it as $\text{CharacterTableOfAssociationScheme}(R, F, 1)$. If you will use the table for other functions, don’t delete the multiplicities.

6.2 CharacterTableOfHammingScheme

$\text{CharacterTableOfHammingScheme}(n, q)$ returns the character table of the Hamming scheme ($\text{HammingScheme}(n, q)$). The last column is a list of multiplicities. If you want to delete multiplicities, use it as $\text{CharacterTableOfHammingScheme}(v, k, 1)$. This function is faster than the general function $\text{CharacterTableOfAssociationScheme}$.

6.3 CharacterTableOfJohnsonScheme

$\text{CharacterTableOfJohnsonScheme}(v, k)$ returns the character table of the Johnson scheme ($\text{JohnsonScheme}(v, k)$). The last column is a list of multiplicities. If you want to delete multiplicities, use it as $\text{CharacterTableOfJohnsonScheme}(v, k, 1)$. This function is faster than the general function $\text{CharacterTableOfAssociationScheme}$.
6.4 IsCharacterTableAS
IsCharacterTableAS(R, T) returns whether T is a character table of R.

6.5 RegularCharacterOfAssociationScheme
RegularCharacterOfAssociationScheme(R) returns the regular character of the scheme R. Namely, it returns the list of \(\{ \sum_{t \in S} p_{st} | s \in S \} \).

6.6 FrameQuotient
FrameQuotient(T) return the Frame quotient (I, B) of the character table T. Note that T must be a character table, not a relation matrix.

6.7 FrameNumber
FrameNumber(T) return the Frame number (I, B) of the character table T. Note that T must be a character table, not a relation matrix. It is known that the adjacency algebra over a field of characteristic \(p \) is semisimple if and only if \(p \) does not divide the Frame number.

6.8 FrobeniusSchurIndicatorAS
Let \(R \) be a relation matrix, \(T \) the character table. FrobeniusSchurIndicatorAS(R, T, a) returns the Frobenius-Schur indicator of the \(a \)-th irreducible character [5]. It is defined by
\[
\nu_2(\chi) = \frac{m_x}{n_s \chi(1)} \sum_{s \in S} \frac{1}{n_s} \chi(\sigma_s^2).
\]

6.9 CentralPrimitiveIdempotentByCharacterTable
Let \(R \) be an association scheme, and let \(T \) be the character table of \(R \). CentralPrimitiveIdempotentByCharacterTable(R, T, i) returns the central primitive idempotent of the adjacency algebra corresponding to the \(i \)-th row of \(T \).

6.10 CentralPrimitiveIdempotentsByCharacterTable
Let \(R \) be an association scheme, and let \(T \) be the character table of \(R \). CentralPrimitiveIdempotentsByCharacterTable(R, T) returns the list of central primitive idempotents of the adjacency algebra.

6.11 Example
\[
gap> R1 := GroupAssociationScheme(SymmetricGroup(4));;
gap> T1 := CharacterTableOfAssociationScheme(R1);;
gap> Display(T1);
\]
gap> IsCharacterTableAS(R1, T1);
true
gap> FrameQuotient(T1);
36864
gap> FrameNumber(T1);
21233664
gap> FactorsInt(last);
[2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3]
gap> R2 := CyclotomicScheme(5, 2);

7.1 IsQPolynomialScheme

IsQPolynomialScheme(T) returns whether T is the character table of a Q-polynomial scheme. Note that this function requires the character table, and does not check whether the scheme is symmetric.

7.2 AllQPolynomialOrdering

AllQPolynomialOrdering(T) returns the list of Q-polynomial orderings of the charac-
ters. Note that this function requires the character table, and does not check whether
the scheme is symmetric.

7.3 KreinParameters

KreinParameters(T) returns the Krein parameters of the character table T. Note that
this function requires the character table. If the scheme is non-commutative, then it
returns false.

8 Some algebras

8.1 AdjacencyAlgebra

AdjacencyAlgebra(R [, F]) returns the adjacency algebra (Bose-Mesner algebra) of
R over the field F. If F is not given, then the function assume that the coefficient field is
the rational number field.

8.2 IntersectionAlgebra

IntersectionAlgebra(R [, F]) returns the intersection algebra of R over the field F. If
F is not given, then the function assume that the coefficient field is the rational number
field. This algebra is isomorphic to the adjacency algebra, but the size of matrices is
smaller.

8.3 TerwilligerAlgebra

TerwilligerAlgebra(R, [, F [, p]]) returns the Terwilliger algebra (subconstituent
algebra [9, 10, 11]) of R over the field F at the point p. If F is not given, then the
function assume that the coefficient field is the rational number field. If p is not given,
then the function assume that the point is 1.

8.4 CenterOfAdjacencyAlgebra

CenterOfAdjacencyAlgebra(R [, F]) returns the center of the adjacency algebra of
R over the field F. If F is not given, then the function assume that the coefficient field is
the rational number field.

9 Rational integers and rational numbers

9.1 IsPrimePower

IsPrimePower(n, p) returns whether n is a power of the prime number p. See also the
GAP’s function IsPrimePowerInt.
9.2 P.Valuation

For an integer \(n \) and a rational prime number \(p \), \(\text{P.Valuation}(n, p) \) returns the value of the \(p \)-valuation of \(n \). For example,

\[
\text{gap> P.Valuation(12, 2)};
2
\]

9.3 P.ValuationRat

For a rational number \(r \) and a rational prime number \(p \), \(\text{P.ValuationRat}(r, p) \) returns the value of the \(p \)-valuation of \(r \). For example,

\[
\text{gap> P.ValuationRat(120/21, 7)};
-1
\]

10 Coherent configurations

10.1 IsCoherentConfiguration

\(\text{IsCoherentConfiguration}(R) \) returns whether \(R \) is a relation matrix of a coherent configuration \[5\]. This function checks whether the number of relations of \(R \) is equal to the dimension of the algebra generated by the relation matrices.

10.2 AssociationScheme2Configuration

Let \(R \) be a relation matrix of an association scheme of order \(n \), and let \(P \) be a partition of \([1..n]\). \(\text{IsCoherentConfiguration}(R, P) \) returns the configuration determined by \(R \) and \(P \).

We will show an example.

\[
\text{gap> R := CompleteGraphScheme(6);};
\text{gap> CC := AssociationScheme2Configuration(R, [[1],[2,3,4,5,6]]);};
\text{gap> Display(CC);}
\]

\[
\begin{bmatrix}
0 & 1 & 1 & 1 & 1 \\
2 & 3 & 4 & 4 & 4 \\
2 & 4 & 3 & 4 & 4 \\
2 & 4 & 4 & 3 & 4 \\
2 & 4 & 4 & 4 & 3 \\
\end{bmatrix}
\]

\[
\text{gap> IsCoherentConfiguration(CC);} \quad \text{true}
\]

10.3 STS2CC

Let \(M \) be a incidence matrix of a Steiner triple system \((2-(v,k,1) \) design). Then we can define a coherent configuration.
11 Other functions

11.1 AllMultiplicityFreeSubgroups

AllMultiplicityFreeSubgroups(G) returns the set of representatives of all conjugacy classes of proper subgroups \(H \) such that the Schurian scheme defined by \(G \) and \(H \) is commutative. For example, for the symmetric group of degree 5, we have the following result:

\[
\text{gap> AllMultiplicityFreeSubgroups(SymmetricGroup(5));}
\]

\[
[\text{Group([(1,2,3,4), (1,2)]), Group([(1,2,3), (1,2), (4,5)]), Group([(3,4), (1,4)(2,3), (1,3)(2,4)]), Group([(4,5), (1,2,3)]), Alt([1 .. 4]), Alt([1 .. 5]), Group([(1,2,3), (1,2)(4,5)]), Group([(2,3,4,5), (2,4)(3,5), (1,2,3,5,4)]), Group([(2,4)(3,5), (1,2,3,5,4)])]
\]

11.2 AllMultiplicityFreeSelfPairedSubgroups

AllMultiplicityFreeSelfPairedSubgroups(G) returns the set of representatives of all conjugacy classes of proper subgroups \(H \) such that the Schurian scheme defined by \(G \) and \(H \) is symmetric. For example, we have the following result:

\[
\text{gap> AllMultiplicityFreeSelfPairedSubgroups(SpecialLinearGroup(2,4));}
\]

\[
[\text{Group([[[Z(2^2)^2, 0*Z(2)], [0*Z(2), Z(2^2)]], [0*Z(2), Z(2)^0], [Z(2)^0, 0*Z(2)]])},
\text{Group([[[Z(2^2), Z(2)^0], [Z(2)^0, 0*Z(2)]], [[Z(2)^0, Z(2^2)], [0*Z(2), Z(2)^0]]]),
\text{Group([[Z(2)^0, Z(2)^0], [0*Z(2), Z(2)^0]], [Z(2)^0, 0*Z(2)]])}],
\text{Group([[Z(2)^0, Z(2)^0], [0*Z(2), Z(2)^0]], [Z(2)^0, 0*Z(2)]])},
\text{Group([[Z(2)^0, Z(2)^0], [0*Z(2), Z(2)^0]], [Z(2)^0, 0*Z(2)]])}],
\text{Group([[[Z(2)^0, Z(2)^0], [Z(2)^0, 0*Z(2)]], [Z(2)^0, 0*Z(2)]])])
\]

11.3 PValuationFiltration

Let \(p \) be a rational prime number. \(PValuationFiltration(R, p) \) returns the list of \(R_i \), where

\[R_i = \{ s \in \{0,1,2,\ldots,d\} \mid p^i \mid n_{\sigma_s} \text{ and } p^{i+1} \nmid n_{\sigma_s} \}. \]

For example,

\[
\text{gap> Valencies(R);} \]

\[
[1, 1, 3, 3, 6, 6]
\]

\[
\text{gap> PValuationFiltration(R, 2);} \]

\[
[[0, 1, 2, 3], [4, 5]]
\]

\[
\text{gap> PValuationFiltration(R, 3);} \]

\[
[[0, 1], [2, 3, 4, 5]]
\]
11.4 PermutePoints
PermutePoints(R, P) returns the relation matrix whose rows and columns are permuted by P. If you want to use a list L instead of a permutation, then use PermList(L).

11.5 RenumberRelations
RenumberRelations(R, P) returns the relation matrix whose relation numbers are permuted by P. If you want to use a list L instead of a permutation, then use PermList(L).

11.6 RenameRelations
RenameRelations(R) returns the relation matrix defined by R. For example,

```
gap> M := [["red", "blue"], ["blue", "red"]];;
gap> RenameRelations(M);
[ [ 0, 1 ], [ 1, 0 ] ]
gap> M := [[5, 3, 1], [1, 5, 3], [3, 1, 5]];
gap> RenameRelations(M);
[ [ 0, 2, 1 ], [ 1, 0, 2 ], [ 2, 1, 0 ] ]
```

11.7 CanonicalDualBasisAS
Let A_0, A_1, \cdots, A_d be adjacency matrices of an association scheme R. CanonicalDualBasisAS(R) returns the dual basis $[[A_0, A_1, \cdots, A_d], [n_0^{-1}A_0^*, n_1^{-1}A_1^*, \cdots, n_d^{-1}A_d^*]]$.

11.8 CasimirOperatorAS
Let A_0, A_1, \cdots, A_d be adjacency matrices of an association scheme R. Let a be an element of the adjacency algebra of R over the complex number field. CasimirOperatorAS(a, R) returns

$$\sum_{i=0}^{d} \frac{1}{n_i} A_i a A_i^*.$$

It is known that this element is in the center of the adjacency algebra.

11.9 CasimirElementAS
CasimirElementAS(R) returns CasimirOperatorAS(I, R), where I is the identity matrix.

11.10 VolumeAS
Same as CasimirElementAS(R).
11.11 CommutatorOfRingElements

CommutatorOfRingElements(a, b) returns \(ab - ba\) for ring elements \(a\) and \(b\).

11.12 CommutatorOfAlgebra

Let \(K\) be a field, \(A\) an \(K\)-algebra, and let \(V\) and \(W\) be subspaces of \(A\). CommutatorOfAlgebra(K, V, W) returns the subspace \([V, W] = \langle vw - wv | v \in V, w \in W \rangle_K\). CommutatorOfAlgebra(K, V) returns \([V, V]\).

11.13 Mat2TeX

Mat2TeX(M) displays the matrix \(M\) by TeX format. For example,

\[
\begin{array}{cccccc}
 0 & 1 & 1 & 2 & 2 & 1 \\
 1 & 0 & 2 & 1 & 1 & 2 \\
 1 & 2 & 0 & 1 & 1 & 2 \\
 2 & 1 & 1 & 0 & 2 & 1 \\
 2 & 1 & 1 & 2 & 0 & 1 \\
 1 & 2 & 2 & 1 & 1 & 0 \\
\end{array}
\]

12 Examples

[hanaki@kissme home]$ gap
GAP, Version 4.5.5 of 16-Jul-2012 (free software, GPL)
GAP http://www.gap-system.org
Architecture: i686-pc-linux-gnu-gcc-default32
Libs used: gmp
Loading the library and packages ... #I You are using an old /home/hanaki/.gaprc file.
#I See '?Ref: The former .gaprc file' for hints to upgrade.
Components: trans 1.0, prim 2.1, small* 1.0, id* 1.0
Packages: AClib 1.2, Alnuth 3.0.0, AutPGrp 1.5, CRISP 1.3.5,
 Cryst 4.1.10, CrystCat 1.1.6, CTblLib 1.2.1, FactInt 1.5.3,
 FGA 1.1.1, GAPDoc 1.5.1, IRREDSOL 1.2.1, LAGUNA 3.6.1,
 Polenta 1.3.1, Polycyclic 2.10.1, RadiRoot 2.6,
 ResClasses 3.1.1, Sophus 1.23, TomLib 1.2.2
Try '?help' for help. See also '?copyright' and '?authors'
gap> Read("association_scheme.gap");

Loading GRAPE 4.6.1 (GRaph Algorithms using PERmutation groups)
by Leonard H. Soicher (http://www.maths.qmul.ac.uk/~leonard/).
Homepage: http://www.maths.qmul.ac.uk/~leonard/grape/

```gap
gap> R := HammingScheme(4,2);
gap> Display(R);
[[ 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 3, 3, 4 ],
 [ 1, 0, 2, 1, 2, 1, 3, 2, 2, 1, 3, 4, 2, 3, 2 ],
 [ 1, 2, 0, 1, 2, 2, 3, 1, 2, 3, 1, 2, 3, 4, 3 ],
 [ 2, 1, 1, 0, 3, 2, 2, 1, 3, 2, 2, 1, 4, 3, 2 ],
 [ 1, 2, 2, 3, 0, 1, 1, 2, 2, 3, 3, 4, 1, 2, 2 ],
 [ 2, 1, 3, 2, 1, 0, 2, 1, 3, 2, 4, 3, 2, 1, 3 ],
 [ 2, 3, 1, 2, 1, 2, 0, 1, 3, 4, 2, 3, 2, 3, 1 ],
 [ 3, 2, 2, 1, 2, 1, 1, 0, 4, 3, 3, 2, 2, 2, 1 ],
 [ 1, 2, 2, 3, 2, 3, 3, 4, 0, 1, 1, 2, 1, 2, 2 ],
 [ 2, 1, 3, 2, 3, 2, 4, 3, 1, 0, 2, 1, 2, 1, 3 ],
 [ 2, 3, 1, 2, 3, 4, 2, 3, 1, 2, 0, 1, 2, 3, 1 ],
 [ 3, 2, 2, 1, 4, 3, 3, 2, 2, 1, 1, 0, 3, 2, 1 ],
 [ 2, 3, 3, 4, 1, 2, 2, 3, 1, 2, 3, 0, 1, 1, 2 ],
 [ 3, 2, 4, 3, 2, 1, 3, 2, 2, 1, 3, 2, 1, 0, 2 ],
 [ 3, 4, 2, 3, 2, 3, 1, 2, 2, 3, 3, 2, 2, 0, 1 ],
 [ 4, 3, 3, 2, 2, 3, 2, 2, 1, 3, 2, 2, 1, 2, 0, 1 ]]

gap> trad := ThinRadical(R);
[ 0, 4 ]

gap> tres := ThinResidue(R);
[ 0, 2, 4 ]

gap> R2 := RelationMatrixSortedByClosedSubset(R, trad);
gap> Display(R2);
[[ 0, 4, 1, 3, 1, 3, 2, 2, 1, 3, 2, 3, 3, 3, 1 ],
 [ 4, 0, 3, 1, 3, 1, 2, 2, 3, 1, 2, 2, 2, 1, 3 ],
 [ 1, 3, 0, 4, 2, 2, 1, 3, 2, 2, 1, 3, 3, 1, 2 ],
 [ 3, 1, 4, 0, 2, 2, 3, 1, 2, 2, 3, 1, 1, 3, 2 ],
 [ 1, 3, 2, 2, 0, 4, 1, 3, 2, 2, 3, 1, 1, 3, 2 ],
 [ 3, 1, 2, 4, 0, 3, 1, 2, 2, 1, 3, 3, 1, 2, 2 ],
 [ 2, 2, 1, 3, 1, 3, 0, 4, 3, 1, 2, 2, 2, 1, 3 ],
 [ 2, 2, 3, 3, 1, 3, 0, 4, 1, 3, 2, 2, 2, 3, 1 ],
 [ 1, 3, 2, 2, 2, 2, 3, 1, 0, 4, 1, 3, 2, 2, 2 ],
 [ 3, 1, 2, 2, 2, 1, 3, 4, 0, 3, 1, 3, 3, 2, 2 ],
 [ 2, 2, 1, 3, 3, 1, 2, 2, 1, 3, 0, 4, 2, 2, 1, 3 ],
 [ 2, 2, 3, 3, 1, 3, 0, 4, 2, 2, 1, 3, 0, 4, 1, 3 ],
 [ 2, 2, 1, 3, 3, 1, 2, 2, 1, 3, 0, 4, 2, 2, 1, 3 ],
 [ 1, 3, 2, 2, 2, 3, 1, 0, 4, 0, 1, 3, 3, 2, 2 ]]

gap> R3 := RelationMatrixSortedByClosedSubset(R, tres);
gap> Display(R3);
[[ 0, 2, 2, 2, 2, 2, 2, 4, 1, 1, 1, 3, 1, 3, 3, 3 ],
 [ 2, 0, 2, 2, 2, 2, 4, 2, 1, 1, 3, 1, 3, 1, 3, 3 ],
 [ 2, 2, 2, 2, 2, 2, 2, 4, 1, 1, 3, 3, 3, 3, 3, 3 ],
 [ 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 1, 3, 1, 3 ],
 [ 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 3, 1, 3 ],
 [ 4, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 3, 1, 3 ],
 [ 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 3, 1, 3 ],
 [ 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 3, 1, 3 ],
 [ 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 3, 1, 3 ],
 [ 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 3, 1, 3 ],
 [ 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 3, 1, 3 ]]
```
gap> R4 := Subscheme(R, trad);;
gap> Display(R4);
[[0, 1],
 [1, 0]]
gap> R5 := Subscheme(R, tres, 1);;
gap> Display(R5);
[[0, 1, 1, 1, 1, 1, 1, 2],
 [1, 0, 1, 1, 1, 2, 1, 1],
 [1, 1, 0, 1, 1, 2, 1, 1],
 [1, 1, 1, 0, 2, 1, 1, 1],
 [1, 1, 1, 2, 0, 1, 1, 1],
 [1, 1, 2, 1, 1, 0, 1, 1],
 [1, 2, 1, 1, 1, 1, 0, 1],
 [2, 1, 1, 1, 1, 1, 1, 0]]
gap> R6 := FactorScheme(R, trad);;
gap> Display(R6);
[[0, 1, 1, 2, 1, 2, 2, 1],
 [1, 0, 2, 1, 2, 1, 1, 2],
 [1, 2, 0, 1, 2, 1, 1, 2],
 [2, 1, 1, 0, 1, 2, 2, 1],
 [1, 2, 2, 1, 0, 1, 1, 2],
 [2, 1, 1, 2, 0, 2, 1],
 [2, 1, 1, 2, 1, 0, 1],
 [1, 2, 2, 1, 2, 1, 1, 0]]
gap> R7 := FactorScheme(R, tres);;
gap> Display(R7);
[[0, 1],
 [1, 0]]
gap> IsThin(R6);
false
gap> IsThin(R7);
true
gap> IsQuasiThin(R6);
false
gap> IsQuasiThin(R7);
false
gap> quit;

References

