- 1
-
Z. Arad, E. Fisman, and M. Muzychuk.
Generalized table algebras.
Israel J. Math., 114:29-60, 1999.
- 2
-
E. Bannai and T. Ito.
Algebraic combinatorics. I.
The Benjamin/Cummings Publishing Co. Inc., Menlo Park, CA, 1984.
- 3
-
A. Hanaki.
Semisimplicity of adjacency algebras of association schemes.
J. Algebra, 225(1):124-129, 2000.
- 4
-
A. Hanaki.
Characters of association schemes and normal closed subsets.
Graphs Combin., 19(3):363-369, 2003.
- 5
-
D. G. Higman.
Coherent configurations. I. Ordinary representation theory.
Geometriae Dedicata, 4(1):1-32, 1975.
- 6
-
M. Klin, M. Muzychuk, C. Pech, A. Woldar, and P.-H. Zieschang.
Association schemes on 28 points as mergings of a half-homogeneous
coherent configuration.
European J. Combin., 28(7):1994-2025, 2007.
- 7
-
B. Külshammer.
Group-theoretical descriptions of ring-theoretical invariants of
group algebras.
In Representation theory of finite groups and finite-dimensional
algebras (Bielefeld, 1991), volume 95 of Progr. Math., pages 425-442.
Birkhäuser, Basel, 1991.
- 8
-
A. Munemasa.
An application of Terwilliger's algebra.
unpublished, 1993.
- 9
-
P. Terwilliger.
The subconstituent algebra of an association scheme. I.
J. Algebraic Combin., 1(4):363-388, 1992.
- 10
-
P. Terwilliger.
The subconstituent algebra of an association scheme. II.
J. Algebraic Combin., 2(1):73-103, 1993.
- 11
-
P. Terwilliger.
The subconstituent algebra of an association scheme. III.
J. Algebraic Combin., 2(2):177-210, 1993.
- 12
-
P.-H. Zieschang.
An algebraic approach to association schemes, volume 1628 of
Lecture Notes in Mathematics.
Springer-Verlag, Berlin, 1996.