gap> R := > [ [ 0,1,2,2,2,3,3,3 ], > [ 1,0,3,3,3,2,2,2 ], > [ 3,2,0,2,3,1,2,3 ], > [ 3,2,3,0,2,2,3,1 ], > [ 3,2,2,3,0,3,1,2 ], > [ 2,3,1,3,2,0,3,2 ], > [ 2,3,3,2,1,2,0,3 ], > [ 2,3,2,1,3,3,2,0 ] ];; gap> ClassOfAssociationScheme(R); 3 gap> Valency(R, 2); 3 gap> Valencies(R); [ 1, 1, 3, 3 ] gap> OrderOfScheme(R); 8 gap> Relation(R, 1, 3); Relation(R, 5, 4); 2 3 gap> TransposedRelations(R); [ 1, 3, 2 ] gap> SymmetricRelations(R); [ 0, 1 ] gap> NonSymmetricRelations(R); [ 2, 3 ] gap> Involutions(R); [ 1 ] gap> IntersectionNumber(R, 1, 2, 3); 1 gap> IntersectionMatrices(R); [ [ [ 1, 0, 0, 0 ], [ 0, 1, 0, 0 ], [ 0, 0, 1, 0 ], [ 0, 0, 0, 1 ] ], [ [ 0, 1, 0, 0 ], [ 1, 0, 0, 0 ], [ 0, 0, 0, 1 ], [ 0, 0, 1, 0 ] ], [ [ 0, 0, 1, 0 ], [ 0, 0, 0, 1 ], [ 0, 3, 1, 1 ], [ 3, 0, 1, 1 ] ], [ [ 0, 0, 0, 1 ], [ 0, 0, 1, 0 ], [ 3, 0, 1, 1 ], [ 0, 3, 1, 1 ] ] ] gap> A := AdjacencyMatrices(R); gap> CoefficientsOfAdjacencyMatrices(R, A[3] * A[4]); [ 3, 0, 1, 1 ] gap> NrCharacters(R); 4 gap> AutomorphismGroupOfScheme(R); Group([ (3,4,5)(6,8,7), (1,2)(3,6)(4,8)(5,7), (1,3,2,6)(4,7,8,5) ]) gap> AlgebraicAutomorphismGroupOfScheme(R); Group([ (2,3) ])