number of vertices | valencies | primitive permutation groups |
---|---|---|
9 | 1, 4, 4 | 3^2:4, 3^2:D8 |
10 | 1, 3, 6 | A(5), S(5) |
15 | 1, 6, 8 | A(6), S(6) |
1, 7, 7 | None (prim15) | |
16 | 1, 5, 10 | (2^4:5).4, 2^4:A_5, 2^4:S_5 |
1, 6, 9 | (A_4xA_4):2, 2^4.3^2:4, | |
2^4.S_3xS_3, (S_4xS_4):2 | ||
1, 6, 9 | None (prim16_1) | |
1, 5, 5, 5 | 2^4:5, 2^4:D_10 | |
1, 5, 5, 5 | None (prim16_2) | |
19 | 1, 9, 9 | None (prim19) |
21 | 1, 10, 10 | A(7), S(7) |
1, 4, 8, 8 | PGL(2,7) |
Note that there exists no non-trivial primitive scheme
with 20, 22, or 24 vertices.
For 23 vertices, see here.
prim15 0 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 0 1 1 1 2 2 2 1 1 1 1 2 2 2 2 2 0 1 1 1 2 2 1 2 2 2 1 1 1 2 2 2 0 1 2 1 1 2 1 1 2 1 1 2 2 2 2 2 0 1 1 1 1 1 2 1 2 2 1 2 1 2 1 2 0 1 2 2 2 1 1 1 2 1 2 1 1 2 2 2 0 1 1 2 1 2 2 1 1 2 1 1 2 2 1 2 0 2 1 2 1 1 1 2 1 2 2 1 2 1 2 1 0 2 1 1 2 1 2 1 2 1 2 2 1 1 2 1 0 1 2 1 2 2 1 2 1 2 1 2 2 1 2 2 0 1 1 2 1 1 2 1 1 2 2 1 2 2 1 2 0 2 1 1 1 1 2 2 1 2 1 2 1 2 2 1 0 1 2 1 1 2 2 1 1 2 2 2 1 1 2 2 0 1 1 1 2 1 2 2 2 1 1 1 2 2 1 2 0 prim16_1 0 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 1 0 1 1 2 2 2 1 1 1 2 2 2 2 2 2 1 1 0 2 1 2 2 1 2 2 1 1 2 2 2 2 1 1 2 0 2 1 2 2 1 2 2 2 1 1 2 2 1 2 1 2 0 2 1 2 2 2 1 2 1 2 1 2 1 2 2 1 2 0 1 2 2 2 2 1 2 1 2 1 1 2 2 2 1 1 0 2 2 1 2 2 2 2 1 1 2 1 1 2 2 2 2 0 2 1 2 1 2 1 1 2 2 1 2 1 2 2 2 2 0 1 1 2 1 2 2 1 2 1 2 2 2 2 1 1 1 0 2 2 2 2 1 1 2 2 1 2 1 2 2 2 1 2 0 1 1 2 2 1 2 2 1 2 2 1 2 1 2 2 1 0 2 1 2 1 2 2 2 1 1 2 2 2 1 2 1 2 0 1 1 2 2 2 2 1 2 1 2 1 2 2 2 1 1 0 1 2 2 2 2 2 1 2 1 1 2 1 2 2 1 1 0 2 2 2 2 2 2 1 1 2 1 1 1 1 2 2 2 0 prim16_2 0 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3 1 0 2 2 3 3 1 1 2 2 3 1 1 2 3 3 1 2 0 3 2 3 1 2 1 3 2 2 3 1 1 3 1 2 3 0 3 2 2 1 3 1 2 3 2 1 3 1 1 3 2 3 0 2 2 3 2 1 1 1 3 3 1 2 1 3 3 2 2 0 3 2 1 2 1 3 1 3 2 1 2 1 1 2 2 3 0 3 3 1 1 2 3 2 3 1 2 1 2 1 3 2 3 0 1 3 1 3 2 2 1 3 2 2 1 3 2 1 3 1 0 1 3 1 2 3 2 3 2 2 3 1 1 2 1 3 1 0 3 2 1 3 3 2 2 3 2 2 1 1 1 1 3 3 0 3 3 1 2 2 3 1 2 3 1 3 2 3 1 2 3 0 2 1 2 1 3 1 3 2 3 1 3 2 2 1 3 2 0 1 1 2 3 2 1 1 3 3 2 2 3 3 1 1 1 0 2 2 3 3 1 3 1 2 3 1 2 3 2 2 1 2 0 1 3 3 3 1 2 1 1 3 3 2 2 1 2 2 1 0 prim19 0 1 1 1 2 2 2 1 1 1 2 2 2 1 1 1 2 2 2 2 0 1 1 1 1 1 1 1 2 1 2 2 2 2 2 1 2 2 2 2 0 2 1 1 2 1 1 1 2 1 2 2 2 1 2 1 1 2 2 1 0 2 2 1 1 2 2 2 1 1 1 2 1 1 2 1 1 2 2 1 0 1 2 2 1 2 2 2 1 2 1 1 1 2 1 1 2 2 1 2 0 2 1 2 1 1 2 2 1 2 2 1 1 1 1 2 1 2 1 1 0 1 2 2 2 2 1 1 1 2 2 1 2 2 2 2 2 1 2 2 0 1 1 1 1 1 1 1 2 1 2 2 2 2 2 1 2 1 1 2 0 2 1 1 2 1 1 1 2 1 2 2 1 2 1 1 2 1 2 1 0 2 2 1 1 2 2 2 1 1 1 2 1 1 1 2 1 2 2 1 0 1 2 2 1 2 2 2 1 1 1 2 2 1 1 1 2 2 1 2 0 2 1 2 1 1 2 2 1 1 1 2 2 1 2 2 1 2 1 1 0 1 2 2 2 2 1 2 1 1 2 1 2 2 2 2 2 1 2 2 0 1 1 1 1 1 2 1 1 1 2 1 2 2 2 1 2 1 1 2 0 2 1 1 2 2 1 2 2 2 1 1 1 2 1 1 2 1 2 1 0 2 2 1 1 2 1 2 2 2 1 2 1 1 1 2 1 2 2 1 0 1 2 1 1 2 1 1 2 2 1 2 2 1 1 1 2 2 1 2 0 2 1 1 2 2 2 2 1 1 1 2 2 1 2 2 1 2 1 1 0