Representations of p'-Valenced Schemes

Akihide Hanaki (Shinshu University)

October 3, 2005

Blocks of group algebras of defect 1 (a cyclic defect group) [R. Brauer, E. C. Dade]

Brauer tree

- vertex \longleftrightarrow *p*-conjugate class of irreducible ordinary characters
- ments edge \longleftrightarrow irreducible modular character

 $\chi \qquad \varphi \qquad \iff \chi|_{G_{p'}} \text{ contains } \varphi.$

At most $q_{pg} = g_{pag} = g_{pag}$

 φ

Examples

Remark. (1) If G is solvable, then the shape of the graph is a "star" by Fong-Swan's Theorem. (2) If the block is local, then the graph has the only one edge.

Examples of blocks of association schemes

Questions. Let (X,G) be a p'-valenced scheme, B a block of (X,G) with "defect" 1.

(1) Is it true that $d_{\chi\varphi} = 0$ or 1 ?

(2) For an irreducible modular character φ , is it true that

 $\sharp \{\chi \in Irr(B) \mid d_{\chi\varphi} \geq 1\}/(\mathfrak{P}-conjugate) = 2$?

- (3) If (2) is true, then we can define a graph by decomposition numbers. Is the graph a tree ?
- (4) Is it true that there exists at most one exceptional vertex ?
- (5) Does B^* have finite representation type ? Is it a Brauer tree algebra ?

Note that we have not defined the "defect" for a block of an association scheme. So the statements above is incomplete.

Definitions.

Let X be a finite set, G a collection of non-empty subsets of $X \times X$. For $g \in G$, we define the **adjacency matrix** $\sigma_g \in Mat_X(\mathbb{Z})$ by $(\sigma_g)_{xy} = 1$ if $(x, y) \in g$, and 0 otherwise.

(X,G) is called an **association scheme** if

(1)
$$X \times X = \bigcup_{g \in G} g$$
 (disjoint),
(2) $1 := \{(x, x) \mid x \in X\} \in G$,
(3) if $g \in G$, then $g^* := \{(y, x) \mid (x, y) \in g\} \in G$,
(4) and $\sigma_f \sigma_g = \sum_{h \in G} p_{fg}^h \sigma_h$ for some $p_{fg}^h \in \mathbb{Z}$.

Then every row (column) of σ_g contains exactly $n_g := p_{gg^*}^1$ ones. We call n_g the **valency** of $g \in G$.

(X,G) is said to be p'-valenced if every valency is a p'-number.

Define

$$\mathbb{Z}G = \bigoplus_{g \in G} \mathbb{Z}\sigma_g \subset Mat_X(\mathbb{Z}),$$

then $\mathbb{Z}G$ is a \mathbb{Z} -algebra. For a commutative ring R with unity, we define

$$RG = R \otimes_{\mathbb{Z}} \mathbb{Z}G$$

and call this the **adjacency** algebra of (X,G) over R.

We say that (X,G) is **commutative** if $\mathbb{Z}G$ is a commutative ring.

The followings are known.

- (1) If K is a field of characteristic zero, then KG is separable (semisimple).
- (2) If F is a field of characteristic p > 0 and (X,G) is p'-valenced, then FG is a symmetric algebra. (Note that Brauer tree algebras are symmetric algebras.)

We say that a field K is a **splitting field** of (X,G)if K is a splitting field of $\mathbb{Q}G$, namely charK =0 and KG is isomorphic to a direct sum of full matrix algebras over K.

For an association scheme (X,G), there exists a finite Galois extension K of \mathbb{Q} which is a splitting field of (X,G). We fix such K and denote the ring of integers in K by \mathcal{O} . Let p be a (rational) prime number, \mathfrak{P} a prime ideal of \mathcal{O} lying above $p\mathbb{Z}$. The **inertia group** T of \mathfrak{P} is defined by

 $T = \{ \tau \in Gal(K/\mathbb{Q}) \mid a - a^{\tau} \in \mathfrak{P} \quad \forall a \in \mathcal{O} \}.$

We call the corresponding subfield of K the **inertia field** of \mathfrak{P} and denote it by L. We denote \mathcal{O}_L for the ring of integers in L, and \mathfrak{p} for the unique prime ideal of \mathcal{O}_L lying below \mathfrak{P} . It is known that \mathfrak{p} is unramified in L/\mathbb{Q} , namely $p \notin \mathfrak{p}^2$. Let $\mathcal{O}_{\mathfrak{P}}$ be the localization of \mathcal{O} by \mathfrak{P} . Put $F = \mathcal{O}_{\mathfrak{P}}/\mathfrak{P}\mathcal{O}_{\mathfrak{P}} \cong \mathcal{O}/\mathfrak{P}$, a field of characteristic p. We also suppose F is large enough. For $\alpha \in \mathcal{O}_{\mathfrak{P}}$, we denote $\alpha^* \in F$ for the image of the natural epimorphism $\mathcal{O}_{\mathfrak{P}} \to F$.

We denote the set of all irreducible characters of KG and FG by Irr(G) and IBr(G), respectively.

Let γ be the standard character, namely the character of the representation $\sigma_g \mapsto \sigma_g$. For $\chi \in$ Irr(G), we denote m_{χ} for the multiplicity of χ in γ and call it the **multiplicity** of χ .

An indecomposable direct summand B of $\mathcal{O}_{\mathfrak{P}}G$ as a two-sided ideal is called a \mathfrak{P} -**block** of (X, G). Then there exists a central primitive idempotent e_B of $\mathcal{O}_{\mathfrak{P}}G$ such that $e_B\mathcal{O}_{\mathfrak{P}}G = B$.

We say $\chi \in Irr(G)$ belongs to a \mathfrak{P} -block B if $\chi(e_B) \neq 0$, and denote Irr(B) for the set of irreducible ordinary characters belonging to B.

It is known that

$$e_B = \sum_{\chi \in \operatorname{Irr}(B)} e_{\chi},$$

where $e_{\chi} = \frac{m_{\chi}}{n_G} \sum_{g \in G} \frac{1}{n_g} \chi(\sigma_{g^*}) \sigma_g$. Also Irr(B) is a minimal subset S of Irr(G) such that $\sum_{\chi \in S} e_{\chi} \in \mathcal{O}_{\mathfrak{P}}G$.

Let Ψ be a matrix representation affording $\chi \in$ Irr(G). We can suppose $\Psi(\sigma_g) \in Mat_{\chi(1)}(\mathcal{O}_{\mathfrak{P}})$ for every $g \in G$. Then we obtain a representation Ψ^* of FG. Consider the irreducible constituents of Ψ^* and denote the multiplicity of an irreducible modular character φ in Ψ^* by $d_{\chi\varphi}$. We call $d_{\chi\varphi}$ the **decomposition number** and the matrix D = $(d_{\chi\varphi})$ the **decomposition matrix**.

We say that $\varphi \in \operatorname{IBr}(G)$ belongs to a block B if there exists $\chi \in \operatorname{Irr}(B)$ such that $d_{\chi\varphi} \neq 0$. Then φ belongs to the only one block. We denote $\operatorname{IBr}(B)$ for the set of modular irreducible characters belonging to B.

If $\chi \in Irr(B)$, $\varphi \in IBr(B')$, and $B \neq B'$, then $d_{\chi\varphi} = 0$. So we can consider the decomposition matrix D_B of a block B.

Let Ψ be a matrix representation affording $\chi \in$ Irr(G) such that $\Psi(\sigma_g) \in Mat_{\chi(1)}(\mathcal{O}_{\mathfrak{P}})$ for every $g \in G$ as before. For $\tau \in Gal(K/\mathbb{Q})$, we can define a representation Ψ^{τ} by $\Psi^{\tau}(\sigma_g) = \Psi(\sigma_g)^{\tau}$ (entrywise action), and denote its character by χ^{τ} .

In general, χ and χ^{τ} may belong to different blocks. But if $\tau \in Gal(K/L)$, L is the inertia field of \mathfrak{P} , then they belong to the same block.

We say that two irreducible ordinary characters are \mathfrak{P} -conjugate if they are conjugate by the action of the inertia group Gal(K/L).

Now Irr(B) is a disjoint union of some \mathfrak{P} -conjugate classes. We denote the size of the \mathfrak{P} -conjugate class containing χ by r_{χ} .

We denote ν_p for the \mathfrak{P} -valuation on K such that $\nu_p(p) = 1$. Namely, if $p\mathcal{O}_{\mathfrak{P}} = \mathfrak{P}^e\mathcal{O}_{\mathfrak{P}}$ and $\alpha\mathcal{O}_{\mathfrak{P}} = \mathfrak{P}^f\mathcal{O}_{\mathfrak{P}}$, then $\nu_p(\alpha) = f/e$.

Block of "defect 0"

In group representation theory, "defect 0" means the block over a field of characteristic p is a simple algebra.

In the following, we suppose B is a block of an association scheme (X, G) and $\chi \in Irr(B)$.

Proposition. Let (X, G) be a p'-valenced scheme. If $\nu_p(m_{\chi}) \ge \nu_p(|X|)$, then $\nu_p(m_{\chi}) = \nu_p(|X|)$, $Irr(B) = \{\chi\}$, χ^* is irreducible, and $IBr(B) = \{\chi^*\}$.

Proposition. Let (X,G) be a p'-valenced scheme. Suppose $\nu_p(\chi(1)) = 0$. Then the following conditions are equivalent.

(1)
$$\nu_p(m_{\chi}) \ge \nu_p(|X|).$$

(2) $\nu_p(m_{\chi}) = \nu_p(|X|).$
(3) $Irr(B) = \{\chi\}.$

Remark. If (X, G) is not p'-valenced, then this is not true.

Proposition. Let (X, G) be a commutative scheme. If $\nu_p(m_\chi) < \nu_p(|X|)$, then $|Irr(B)| \ge 2$.

Block of "defect 1"

In group representation theory, the structure of a block of defect 1 is almost determined by the Brauer tree.

For a p'-valenced scheme, we consider a block B with a character χ such that $\nu_p(m_{\chi}) + 1 = \nu_p(|X|)$.

Proposition. Let (X, G) be a p'-valenced scheme. If $\nu_p(m_{\chi}) + 1 = \nu_p(|X|)$ and $\nu_p(r_{\chi}) > 0$, then $Irr(B) = \{\chi^{\tau} \mid \tau \in Gal(K/L)\}.$

For a block satisfying the property in the above Proposition, we cannot define the Brauer tree, since it has only one vertex. But I do not know such an example. We denote K^G for the set of K-valued functions on $\{\sigma_g \mid g \in G\}$. For $\alpha, \beta \in K^G$, we define

$$[\alpha,\beta] = \sum_{g \in G} \frac{1}{n_g} \alpha(\sigma_{g^*}) \beta(\sigma_g).$$

Let Φ be a matrix representation of KG. We denote $\Phi_{ij} \in K^G$ for the (i, j)-entries of Φ , namely $\Phi_{ij}(\sigma_g) = \Phi(\sigma_g)_{ij}$.

Proposition (Schur relation).

- (1) If Φ is an irreducible representation affording χ , then $[\Phi_{ij}, \Phi_{k\ell}] = \delta_{i\ell}\delta_{jk}|X|/m_{\chi}$. (δ is the Kronecker's delta.)
- (2) If Φ and Ψ have no common irreducible constituent, then $[\Phi_{ij}, \Psi_{k\ell}] = 0$.

Let Ψ_i , i = 1, 2, 3, be irreducible representations of KG affording ψ_i , respectively. We may assume that all $\Psi_i(\sigma_g)$, $g \in G$ are matrices over $\mathcal{O}_{\mathfrak{P}}$, and then, we can consider representations Ψ_i^* of FG. Suppose Ψ_i^* , i = 1, 2, 3, have a common irreducible constituent S. We may assume

$$\Psi_i = \left(\begin{array}{cc} S_i & * \\ * & * \end{array}\right),$$

where $S_i^* = S$.

We define $u, v \in K^G$ by $u = (\Psi_1)_{11} - (\Psi_2)_{11}$ and $v = (\Psi_1)_{11} - (\Psi_3)_{11}$. Then $u(\sigma_g), v(\sigma_g) \in \mathfrak{PO}_{\mathfrak{P}}$ for every $g \in G$.

By Schur relation, we have

$$[(\Psi_1)_{11}, (\Psi_1)_{11}] = \frac{|X|}{m_{\psi_1}}.$$

Then

$$0 = [(\Psi_1)_{11}, (\Psi_2)_{11}] \\ = [(\Psi_1)_{11}, (\Psi_1)_{11}] - [(\Psi_1)_{11}, u].$$

So we have

$$[(\Psi_1)_{11}, u] = [(\Psi_1)_{11}, (\Psi_1)_{11}].$$
 Similarly

$$[(\Psi_1)_{11}, v] = [(\Psi_1)_{11}, (\Psi_1)_{11}].$$

Now

$$0 = [(\Psi_2)_{11}, (\Psi_3)_{11}]$$

= $[(\Psi_1)_{11}, (\Psi_1)_{11}]$
 $-[u, (\Psi_1)_{11}] - [(\Psi_1)_{11}, v] + [u, v]$
= $-[(\Psi_1)_{11}, (\Psi_1)_{11}] + [u, v].$

This means

$$\frac{|X|}{m_{\psi_1}} = [u, v].$$

Consider the traces over K/L of u and v, then we have

$$\frac{|X| \cdot |K:L|^2}{m_{\psi_1}} = \sum_{g \in G} \frac{1}{n_g} \operatorname{Tr}_{K/L}(u(\sigma_{g^*})) \operatorname{Tr}_{K/L}(v(\sigma_g)).$$

14

Suppose (X,G) is p'-valenced, $\nu_p(m_{\psi_1})+1 = \nu_p(|X|)$, and ψ_i , i = 1, 2, 3, are not \mathfrak{P} -conjugate to each other. Then we have $\nu_p(r_{\psi_i}) = 0$, i = 1, 2, 3.

Case 1. K is cyclotomic (abelian).

In this case, we can prove that

$$\nu_p(\operatorname{Tr}_{K/L}(u(\sigma_{g^*}))) \ge \nu_p(|K:L|) + 1$$

and

$$\nu_p(\operatorname{Tr}_{K/L}(v(\sigma_g))) \ge \nu_p(|K:L|) + 1.$$

This is a contradiction.

Case 2. $\nu_p(|K:L|) = 0.$

In this case, we can prove that

$$u_p(\operatorname{Tr}_{K/L}(u(\sigma_{g^*}))) \ge 1$$

and this is a contradiction.

(This condition is equivalent to that p is tamely ramified in K/\mathbb{Q} .)

Proposition. Let (X, G) be a p'-valenced scheme, B a block of G, and $\varphi \in \operatorname{IBr}(B)$. Assume there exists $\chi \in \operatorname{Irr}(B)$ with $\nu_p(m_\chi) + 1 = \nu_p(|X|)$. Suppose that the minimal splitting field K of G is abelian or $\nu_p(|K : L|) = 0$ (p is tamely ramified in K/\mathbb{Q}). Then the number of \mathfrak{P} -conjugate classes of $\operatorname{Irr}(B)$ such that their modular characters contain φ is at most two.

For $\psi \in Irr(B)$ such that $d_{\psi\varphi} \ge 0$, we suppose $\nu_p(r_{\psi}\psi(1)) = 0$. Then the number is exactly two.

Remark. If $\nu_p(r_{\psi}\psi(1)) = 0$ for all $\psi \in \operatorname{Irr}(B)$, then we may assume $\nu_p(|K:L|) = 0$.

If all the numbers above are two, then we can draw a graph. Its vartex is a \mathfrak{P} -conjugate class, and its edge is an irreducible modular character.

By a similar argument, we can show that the following.

Proposition. Let (X,G) be a commutative p'-valenced scheme, B a block of G, and $\chi \in Irr(B)$. Suppose $\nu_p(m_{\chi}) + 1 = \nu_p(|X|)$ and $\nu_p(r_{\chi}) = 0$. Then $\nu_p(m_{\psi}) + 1 = \nu_p(|X|)$ for all $\psi \in Irr(B)$ and the number of \mathfrak{P} -conjugate classes of Irr(B) is exactly two.

Corollary. Let (X, G) be a commutative p'-valenced scheme with $\nu_p(|X|) = 1$. Then all non-trivial irreducible ordinary characters in the principal block are \mathfrak{P} -conjugate.

Proposition. If |X| = p, then all non-trivial irreducible ordinary characters are \mathfrak{P} -conjugate.

Using this fact, we can prove that (X,G) is commutative, if |X| = p.

Proposition. Let (X, G) be a p'-valenced scheme, $\psi \in \operatorname{Irr}(G)$. Suppose $\nu_p(m_{\chi}) + 1 = \nu_p(|X|)$. If the Schur index $m_L(\chi) = 1$, $\nu_p(r_{\chi}) = 0$, and $p \neq 2$, then $d_{\chi\varphi} \leq 1$ for every $\varphi \in \operatorname{IBr}(G)$.

(The assumption on Schur indices holds if there exists an *L*-representation of *G* affording χ .)

Remark. (1) If $p \neq 2$, then the Schur index $m_L(\chi)$ equals to one for a group character χ . (Note that the base field is not \mathbb{Q} .) The assumption $\nu_p(r_{\chi}) = 0$ can be replaced by that $L(\chi(\sigma_g) \mid g \in G)$ is a Galois extension of L.

(2) If we can define a graph, $d_{\chi\varphi} \leq 1$ holds for $\chi \in Irr(B)$ and $\varphi \in IBr(B)$, and $p \neq 2$, then the graph is bipartite. (Of cource, a tree is bipartite.)

(3) Almost all results in this talk are not true for non p'-valenced schemes.

(4) For commutative p'-valenced scheme, it is reasonable to define the "defect" of a block by $\max\{\nu_p(|X|) - \nu_p(m_\chi) \mid \chi \in Irr(B)\}$. But, in general, it is still difficult. Let (X,G) be a p'-valenced scheme. Suppose $\nu_p(m_\chi)+1 = \nu_p(|X|), d_{\chi\varphi} \leq 1$ for all $\chi \in Irr(B)$ and all $\varphi \in IBr(B)$, and a graph is defined. Then the graph is a tree if and only if rank $D_B = |IBr(B)|$. Especially, if the Cartan matrix C_B is invertible, then the graph is a tree.

Question. For a p'-valenced scheme, is the Cartan matrix invertible ?

END.