## Block Theory of Association Schemes

## Akihide Hanaki

## Shinshu University

We consider representation theory of (not necessary commutative) association schemes (homogeneous coherent configurations). Representation means a linear representation of the adjacency algebra (Bose-Mesner algebra). The adjacency algebra is defined over an arbitrary commutative ring with 1. We say an ordinary representation for it over a field of characteristic 0 , and a modular representation for it over a field of positive characteristic. To simplify our argument, we assume that the coefficient field is algebraically closed, in this talk.

It is well known that the adjacency algebra over a field of characteristic 0 is a semisimple algebra. So representation theory is almostly the same as character theory, and many facts are known, in this case. (But I think that it is not enough, especially for noncommutative case.)

For modular representations, we know a few facts.

## General Results:

- [Arad-Fisman-Muzychuk 1999, H. 2000] Semisimplicity of adjacency algebras
(a generalization of Maschke's Theorem)
- [H. 2002] If the order is a $p$-power,
then the adjacency algebra is a local algebra.


## Standard modules:

- [Brouwer-van Eijl 1989]
p-ranks of adjacency matrices for SRG
- [Peeters 2002]
p-ranks of adjacency matrices for DRG
- [Yoshikawa-H. preprint] Structure of standard modules for small schemes


## Special Schemes:

- [Yoshikawa preprint] Structure of adjacency algebras of the Hamming schemes
- [Shimabukuro preprint] Block decomposition of irreducible characters of the Johnson schemes


## Other:

- [Arad-Erez-Muzychuk 2003]

On even generalized table algebras

We want to consider general theory for modular representations. We need good tools.

It is natural to consider generalization of modular representation theory of finite groups. In group representation theory, block theory is very important and the defect group, a $p$-subgroup, plays a crucial role.

A block of an algebra is an indecomposable direct summand of the algebra as a two-sided ideal. We can also consider blocks for adjacency algebras. But we can not consider the defect group of it, since we can not consider something like Sylow $p$-subgroups in an association scheme. So I try to define the defect number for a block of adjacency algebras. But, I can not define it, at present.

I will define some invariants. I believe that it is closely related to the defect numbers.
$p$ : a prime
$(K, R, F)$ : a $p$-modular system
$R$ : a complete discrete valuation ring with the maximal ideal $(\pi)$,
$K$ : the quotient field of $R, \operatorname{char} K=0$, $F$ : the residue field $R /(\pi)$, char $F=p$.

We assume $K$ is algebraically closed, then so is $F$. The image of $a \in R$ by the natural epimorphism $R \rightarrow F$ is denoted by $a^{*}$.

Let $\nu$ be the valuation of $R$ with $\nu(p)=1$. For a rational integer $n=p^{e} m, p \nmid m$, we have $\nu(n)=e$.

Note that

$$
R=\{a \in K \mid \nu(a) \geq 0\}
$$

$\nu(a b)=\nu(a)+\nu(b), \nu(a+b) \geq \min (\nu(a), \nu(b))$, and $\nu(0)=\infty$.

Let $(X, G)$ be an association scheme. We denote the adjacency matrix of $g \in G$ by $\sigma_{g}$. Put

$$
\mathbb{Z} G:=\bigoplus_{g \in G} \mathbb{Z} \sigma_{g}
$$

and

$$
\mathcal{O} G:=\mathbb{Z} G \otimes_{\mathbb{Z}} \mathcal{O}
$$

for $\mathcal{O} \in\{K, R, F\}$. We call $\mathcal{O} G$ the adjacency algebra of $(X, G)$ over $\mathcal{O}$.

Remark. $K G$ is essentially the same as $\mathbb{C} G$, and it is semisimple.

The image of $a=\sum_{g \in G} a_{g} \sigma_{g} \in R G$ by the natural epimorphism $R G \rightarrow R G / \pi R G \cong F G$ is also denoted by $a^{*}$. Namely,

$$
\left(\sum_{g \in G} a_{g} \sigma_{g}\right)^{*}=\sum_{g \in G} a_{g}{ }^{*} \sigma_{g}{ }^{*}
$$

There are natural bijections between the following sets.
(1) The set of central primitive idempotents of $R G: e_{B}$.
(2) The set of central primitive idempotents of $F G: e_{B}{ }^{*}$.
(3) The set of indecomposable direct summands of $R G$ as two-sided ideals : $B=e_{B} R G$.
(4) The set of indecomposable direct summands of $F G$ as two-sided ideals : $B^{*}=e_{B}{ }^{*} F G$.

We say that $B$ is a block (or a $p$-block) of the association scheme $(X, G)$, and $e_{B}$ is the block idempotent. Of course, $B$ is an algebra with the identity $e_{B}$.

Let $\mathrm{BI}(G)$ be the set of blocks of $G$. For $\chi \in \operatorname{Irr}(G)$ and $B \in \operatorname{BI}(G)$, we say that $\chi$ belongs to $B$ if $\chi\left(e_{B}\right) \neq$ 0 , and put $\operatorname{Irr}(B):=\left\{\chi \in \operatorname{Irr}(G) \mid \chi\left(e_{B}\right) \neq 0\right\}$. Then

$$
\operatorname{Irr}(G)=\bigcup_{B \in \operatorname{BI}(G)} \operatorname{Irr}(B)
$$

is a partition of $\operatorname{Irr}(G)$. If $\chi \in \operatorname{Irr}(B)$, then $\chi\left(e_{B}\right)=$ $\chi(1)$. Also we have

$$
e_{B}=\sum_{\chi \in \operatorname{Irr}(B)} e_{\chi},
$$

where $e_{\chi}$ is the central primitive idempotent in $K G$ corresponding to $\chi \in \operatorname{Irr}(G)$. Actually, $\operatorname{Irr}(B)$ is a minimal subset of $\operatorname{Irr}(G)$ such that $\sum_{\chi \in \operatorname{Irr}(B)} e_{\chi}$ is in $R G$.

The trivial character $1_{G}$ is the map $\sigma_{g} \mapsto n_{g}$. The principal block is the block $B$ with $1_{G} \in \operatorname{Irr}(B)$, and we denote it by $B_{0}(G)$ or $B_{0}$.

For $\chi \in \operatorname{Irr}(G)$ and $z \in Z(K G)$, we put

$$
\omega_{\chi}(z):=\frac{\chi(z)}{\chi(1)}
$$

Then $\chi \neq \varphi$ implies $\omega_{\chi} \neq \omega_{\varphi}$, and moreover, $\left\{\omega_{\chi} \mid\right.$ $\chi \in \operatorname{Irr}(G)\}$ is the set of all irreducible characters of $Z(K G)$. If $(X, G)$ is commutative, then $\omega_{\chi}=\chi$.

For $\chi, \varphi \in \operatorname{Irr}(G)$, we can see that they are in the same block if and only if

$$
\omega_{\chi}(z)^{*}=\omega_{\varphi}(z)^{*}
$$

for any $z \in Z(R G)$.

So in the case $\chi \in \operatorname{Irr}(B)$, we write $\omega_{B}^{*}:=\omega_{\chi}{ }^{*}$.
For a commutative scheme $(X, G), \chi, \varphi \in \operatorname{Irr}(G)$ are in the same block if and only if

$$
\chi\left(\sigma_{g}\right)^{*}=\varphi\left(\sigma_{g}\right)^{*}, \quad \text { for all } g \in G
$$

## Some invariants for commutative schemes

In this section, we always assume that the association scheme $(X, G)$ is commutative.

Let $B \in \mathrm{Bl}(G)$. Since $F G$ is a splitting commutative algebra, its indecomposable direct summand $B^{*}$ is a local algebra. So $\omega_{B}{ }^{*}$ is the unique irreducible representation of $B^{*}$. We put

$$
s(B):=\max \left\{\nu\left(n_{g}\right) \mid \omega_{B}{ }^{*}\left(\sigma_{g}{ }^{*}\right) \neq 0\right\} .
$$

This is our first invariant of $B$. Since $\omega_{B}{ }^{*}\left(e_{B}{ }^{*}\right)=1$, there exists $g \in G$ such that $\omega_{B}{ }^{*}\left(\sigma_{g}{ }^{*}\right) \neq 0$. So this is well-defined. The next proposition is clear.

Proposition. $s\left(B_{0}\right)=0$.

Remark. For noncommutative schemes, we can also define $s(B)$ by the same definition. But it is not a good definition, I think.

Let $\ell$ be a nonnegative integer. We define

$$
I_{\ell}:=\bigoplus_{\nu\left(n_{g}\right) \geq \ell} F \sigma_{g}{ }^{*} .
$$

Then $I_{\ell}$ is an ideal of $F G$. For $B \in \mathrm{BI}(G)$, we put

$$
s^{\prime}(B):=\max \left\{\ell \mid e_{B}^{*} \in I_{\ell}\right\} .
$$

This is our second invariant of $B$, but we have the following.

Proposition. $s(B)=s^{\prime}(B)$.

Proof. Firstly, we will show that, if $\nu\left(n_{g}\right)>s^{\prime}(B)$, then $\omega_{B}{ }^{*}\left(\sigma_{g}{ }^{*}\right)=0$. Since $B^{*}$ is a local algebra, $B^{*}$ has the unique maximal ideal, the Jacobson radical $\operatorname{rad} B^{*}$. Now $e_{B}{ }^{*} \sigma_{g}{ }^{*}$ is in a proper ideal $e_{B}{ }^{*} I_{s^{\prime}(B)+1}$, so it is in $\operatorname{rad} B^{*}$. The Jacobson radical annihilates any simple module, so $\omega_{B}{ }^{*}\left(\sigma_{g}{ }^{*}\right)=\omega_{B}{ }^{*}\left(e_{B}{ }^{*} \sigma_{g}{ }^{*}\right)=0$. This means $s(B) \leq s^{\prime}(B)$.

Now $\omega_{B}{ }^{*}\left(I_{s^{\prime}(B)}\right) \ni \omega_{B}{ }^{*}\left(e_{B}{ }^{*}\right) \neq 0$, so $s(B) \geq s^{\prime}(B) . \square$

We write

$$
e_{B}=\sum_{g \in G} \beta_{B}(g) \sigma_{g} \quad\left(\beta_{B}(g) \in R\right)
$$

Clearly we have

$$
s(B)=\min \left\{\nu\left(n_{g}\right) \mid \beta_{B}(g)^{*} \neq 0\right\}
$$

We put $\mathrm{Bl}_{\ell}(G):=\{B \in \mathrm{Bl}(G) \mid s(B)=\ell\}$ and $G_{\ell}:=\left\{g \in G \mid \nu\left(n_{g}\right)=\ell\right\}$.

Proposition. Let $B, B^{\prime} \in \mathrm{Bl}_{\ell}(G), \chi \in \operatorname{Irr}(B)$, and $\chi^{\prime} \in \operatorname{Irr}\left(B^{\prime}\right)$. Then $B=B^{\prime}$ if and only if

$$
\chi\left(\sigma_{g}\right)^{*}=\chi^{\prime}\left(\sigma_{g}\right)^{*}
$$

for any $g \in G_{\ell}$. Moreover $\left\{\left(\left.\omega_{B}{ }^{*}\right|_{G_{\ell}}\right) \mid B \in \mathrm{BI}_{\ell}(G)\right\}$ is linearly independent over $F$, so we have $\left|\mathrm{Bl}_{\ell}(G)\right| \leq$ $\left|G_{\ell}\right|$.

Proof. Suppose $\chi\left(\sigma_{g}\right)^{*}=\chi^{\prime}\left(\sigma_{g}\right)^{*}$ for any $g \in G_{\ell}$. Then we have

$$
\begin{gathered}
\omega_{B}^{*}\left(e_{B^{\prime}}^{*}\right)=\sum_{g \in G_{\ell}} \beta_{B^{\prime}}(g)^{*} \omega_{B}^{*}\left(\sigma_{g}\right) \\
=\sum_{g \in G_{\ell}} \beta_{B}(g)^{*} \omega_{B}^{*}\left(\sigma_{g}\right)=\omega_{B}^{*}\left(e_{B}^{*}\right)=1
\end{gathered}
$$

and so $B=B^{\prime}$. The converse is clear.

Suppose $\sum_{B \in \mathrm{BI}_{\ell}(G)} \alpha_{B}\left(\left.\omega_{B}{ }^{*}\right|_{G_{\ell}}\right)=0$. Then, for $B^{\prime} \in$ $\mathrm{Bl}_{\ell}(G)$,

$$
0=\sum_{B} \alpha_{B}\left(\left.\omega_{B}{ }^{*}\right|_{G_{\ell}}\right)\left(e_{B^{\prime}}{ }^{*}\right)=\sum_{B} \alpha_{B} \omega_{B}{ }^{*}\left(e_{B^{\prime}}{ }^{*}\right)=\alpha_{B^{\prime}}
$$

so $\left\{\left(\left.\omega_{B}{ }^{*}\right|_{G_{\ell}}\right) \mid B \in \mathrm{Bl}_{\ell}(G)\right\}$ is linearly independent. $\square$

Now we define the third invariant $t(B)$. Let $F X$ be the (right) standard module of $(X, G)$ over $F$. We consider the dimension of $F X e_{B}{ }^{*}$. Then we have

$$
\operatorname{dim}_{F} F X e_{B}^{*}=\sum_{\chi \in \operatorname{Irr}(B)} m_{\chi} \chi(1)
$$

where $m_{\chi}$ is the multiplicity. Of course, $\chi(1)=1$ since $(X, G)$ is commutative, but this relation is also true for non-commutative schemes.

Lemma. $\nu\left(\operatorname{dim}_{F} F X e_{B}{ }^{*}\right) \geq \nu\left(n_{G}\right)$. (This is true for arbitrary schemes.)

Proof. We have $\beta_{B}(1)=\left(\sum_{\chi \in \operatorname{Irr}(B)} m_{\chi} \chi(1)\right) / n_{G}$, and this is in $R$.

We put

$$
t(B)=\nu\left(\operatorname{dim}_{F} F X e_{B}^{*}\right)-\nu\left(n_{G}\right)
$$

Lemma says that $t(B) \geq 0$. There are many examples such that $s(B)=t(B)$ but also many examples such that $s(B) \neq t(B)$.

Conjecture 1. $s(B) \leq t(B)$.

Conjecture 2. $\nu\left(\beta_{B}(g)\right) \geq s(B)-\nu\left(n_{g}\right)$.

If Conjecture 2 is true, then

$$
t(B)=\nu\left(\beta_{B}(1)\right) \geq s(B)-\nu\left(n_{1}\right)=s(B)
$$

and so Conjecture 1 is true.

Conjecture 2 is true for

- group association schemes (we will see later)
- $G=J(v, k), 1 \leq v \leq 40, F G$ is not semisimple (by computer calculations)

Remark. There exist examples such that $t\left(B_{0}\right)>0$.

Example. Let $(X, G)$ be a commutative scheme. Assume that $F G$ is semisimple.
(i.e. $\quad p \nmid n_{G}$ and $\sum_{g \in G} \nu\left(n_{g}\right)=\sum_{\chi \in \operatorname{Irr}(G)} \nu\left(m_{\chi}\right)$.)

Then $\left|\mathrm{BI}_{\ell}(G)\right|=\left|G_{\ell}\right|$ for any $\ell$, and $s(B)=t(B)$ for any $B \in \mathrm{BI}(G)$. So Conjecture 1 is true in this case.
(We can restrict possibilities of the character table.)

## Defect Number for a Block of Group Algebras

Let $\Theta$ be a finite group, and $(\Theta, \widehat{\Theta})$ be the group association scheme constructed by $\Theta$. Now there is a natural bijection between $\mathrm{BI}(\Theta)$ and $\mathrm{BI}(\widehat{\Theta})$ since $Z(F \Theta)=F \widehat{\Theta}$. Let $\widehat{B} \in \mathrm{BI}(\widehat{\Theta})$ and $B \in \mathrm{BI}(\Theta)$ be corresponding blocks. In group representation theory, the defect $d(B)$ of $B$ is defined by

$$
d(B):=\min \{\nu(|\Theta| / \chi(1)) \mid \chi \in \operatorname{Irr}(B)\} .
$$

Now it is known that

$$
s(\widehat{B})=t(\widehat{B})=\nu(|\Theta|)-d(B) .
$$

Conjecture 1 and 2 are also true in this case.

Problem. Consider the similar argument as above for noncommutative schemes.

Problem. Consider a reasonable definition of defect numbers for blocks of association schemes.

## Other Problem 1.

We want to know when $|\operatorname{Irr}(B)|=1$.
Of cource, $|\operatorname{Irr}(B)|=1$ if and only if $e_{B} \in R G$. But it is not so easy to check this condition.

If $G$ is thin ( $F G$ is a group algebra), then $|\operatorname{Irr}(B)|=1$ if and only if $B^{*}$ is a simple algebra. But this is not true for association schemes. There is an example such that $|\operatorname{Irr}(B)|=1$ but $B^{*}$ is not simple.

Question. Is it true that $|\operatorname{Irr}(B)|=1$ if and only if $\operatorname{dim}_{F} Z\left(B^{*}\right)=1$ ?

If $G$ is thin, then every $B^{*}$ is a symmetric algebra. If $B^{*}$ is a symmetric algebra, then $\operatorname{dim}_{F} Z\left(B^{*}\right)=1$ implies that $B^{*}$ is simple.

Question. Can we characterize $|\operatorname{Irr}(B)|=1$ by $s(B)$, $t(B)$ and some other invariants ?

If $G$ is thin, then $|\operatorname{Irr}(B)|=1$ if and only if the defect number $d(B)=0$.

Fact. $\left|\operatorname{Irr}\left(B_{0}\right)\right|=1$ if and only if $p \nmid n_{G}$.

Example. Let $G$ be the unique noncommutative scheme of order $n_{G}=15$, and let $p=2$. Then

$$
F G=B_{0}^{*} \oplus B_{1}^{*} \oplus B_{2}^{*}, \quad B_{0}{ }^{*} \cong B_{1}^{*} \cong F
$$

(Note that $2=p \nmid n_{G}=15$. The principal block is simple.) The block $B_{2}{ }^{*}$ is not simple, but $\left|\operatorname{Irr}\left(B_{2}\right)\right|=$ 1 (only one character of degree 2). The structure of $B_{2}{ }^{*}$ is as follows.
basis: $\{v, w, \alpha, \beta\}$ multiplication:


The algebra is not symmetric, and the dimension of the center is one.

## Other Problem 2.

Let $H$ be a normal closed subset of $G$. Define

$$
\tau: \mathbb{Z} G \rightarrow \mathbb{Z}(G / / H), \quad\left(\sigma_{g} \mapsto \frac{n_{g}}{n_{g^{H}}} \sigma_{g^{H}}\right)
$$

Then $\tau$ is an algebra homomorphism. Since $n_{g} / n_{g^{H}} \in$ $\mathbb{Z}$, we can define $\tau_{\mathcal{O}}: \mathcal{O} G \rightarrow \mathcal{O}(G / / H)$ for any commutative ring $\mathcal{O}$ with 1.

Let $T: \mathcal{O}(G / / H) \rightarrow M_{d}(\mathcal{O})$ be a representation of $G / / H$. Then $T \circ \tau_{\mathcal{O}}: \mathcal{O} G \rightarrow M_{d}(\mathcal{O})$ is a representation of $G$.

If $\mathcal{O}$ is an algebraically closed field and $\tau_{\mathcal{O}}$ is an epimorphism, then the followings hold.

- If $T$ is irreducible, then so is $T \circ \tau_{\mathcal{O}}$.
- If $T \nsim T^{\prime}$, then $T \circ \tau_{\mathcal{O}} \nsim T^{\prime} \circ \tau_{\mathcal{O}}$.
- $\operatorname{Irr}(\mathcal{O}(G / / H))$ is embedded into $\operatorname{Irr}(\mathcal{O} G)$.

If $\mathcal{O}$ is a field of characteristic 0 , then $\tau_{\mathcal{O}}$ is an epimorphism. But it is not true, in general.

Example. Let $H$ be a scheme such that $n_{H}$ is a $p$-power, and let $G$ be any scheme. Consider the wreath product $H$ 亿 $G$. In this case, $F(H \imath G)$ is a local algebra. So, $1=|\operatorname{Irr}(F(H \imath G))| \leq|\operatorname{Irr}(F G)|$. If $T$ is a non-linear representation of $G$, then $T \circ \tau_{F}$ is reducible.

If $G$ is a finite group and $H$ is a normal $p$-subgroup of $G$, then $H$ is in the kernel of every irreducible $F$-representation of $G$. I want to generalize this to association scheme.

Problem. Let $(X, G)$ be an association scheme, and let $H$ be a normal closed subset such that $n_{H}$ is $p$ power. Is any irreducible representation of $F G$ given by a representation of $F(G / / H)$ ?

Example.
$\left(\begin{array}{lllllll|lllllll}0 & 1 & 1 & 1 & 1 & 1 & 1 & 2 & 2 & 2 & 3 & 3 & 3 & 3 \\ 1 & 0 & 1 & 1 & 1 & 1 & 1 & 3 & 3 & 2 & 2 & 2 & 3 & 3 \\ 1 & 1 & 0 & 1 & 1 & 1 & 1 & 2 & 3 & 3 & 3 & 2 & 2 & 3 \\ 1 & 1 & 1 & 0 & 1 & 1 & 1 & 2 & 3 & 3 & 2 & 3 & 3 & 2 \\ 1 & 1 & 1 & 1 & 0 & 1 & 1 & 3 & 2 & 3 & 3 & 2 & 3 & 2 \\ 1 & 1 & 1 & 1 & 1 & 0 & 1 & 3 & 3 & 2 & 3 & 3 & 2 & 2 \\ 1 & 1 & 1 & 1 & 1 & 1 & 0 & 3 & 2 & 3 & 2 & 3 & 2 & 3 \\ \hline 2 & 3 & 2 & 2 & 3 & 3 & 3 & 0 & 1 & 1 & 1 & 1 & 1 & 1 \\ 2 & 3 & 3 & 3 & 2 & 3 & 2 & 1 & 0 & 1 & 1 & 1 & 1 & 1 \\ 2 & 2 & 3 & 3 & 3 & 2 & 3 & 1 & 1 & 0 & 1 & 1 & 1 & 1 \\ 3 & 2 & 3 & 2 & 3 & 3 & 2 & 1 & 1 & 1 & 0 & 1 & 1 & 1 \\ 3 & 2 & 2 & 3 & 2 & 3 & 3 & 1 & 1 & 1 & 1 & 0 & 1 & 1 \\ 3 & 3 & 2 & 3 & 3 & 2 & 2 & 1 & 1 & 1 & 1 & 1 & 0 & 1 \\ 3 & 3 & 3 & 2 & 2 & 2 & 3 & 1 & 1 & 1 & 1 & 1 & 1 & 0\end{array}\right)$

|  | $g_{0}$ | $g_{1}$ | $g_{2}$ | $g_{3}$ | $m_{i}$ |
| :--- | ---: | ---: | ---: | ---: | :---: |
| $\chi_{1}$ | 1 | 6 | 3 | 4 | 1 |
| $\chi_{2}$ | 1 | 6 | -3 | -4 | 1 |
| $\chi_{3}$ | 1 | -1 | $\sqrt{2}$ | $-\sqrt{2}$ | 6 |
| $\chi_{4}$ | 1 | -1 | $-\sqrt{2}$ | $\sqrt{2}$ | 6 |

$p=7, \chi_{1}^{*}=\chi_{a}^{*}, \chi_{2}^{*}=\chi_{b}^{*}$
$(\{a, b\}=\{3,4\}$. The choice of $\{a, b\}$ depends on the $p$-modular system.)

