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We consider representation theory of (not nec-
essary commutative) association schemes (homo-
geneous coherent configurations). Representation
means a linear representation of the adjacency alge-
bra (Bose-Mesner algebra). The adjacency algebra
is defined over an arbitrary commutative ring with
1. We say an ordinary representation for it over a
field of characteristic O, and a modular represen-
tation for it over a field of positive characteristic.
To simplify our argument, we assume that the co-
efficient field is algebraically closed, in this talk.

It is well known that the adjacency algebra over a
field of characteristic O is a semisimple algebra. So
representation theory is almostly the same as char-
acter theory, and many facts are known, in this case.
(But I think that it is not enough, especially for non-
commutative case.)



For modular representations, we know a few facts.

General Results:
o [Arad-Fisman-Muzychuk 1999, H. 2000]
Semisimplicity of adjacency algebras
(a generalization of Maschke's Theorem)
o [H. 2002] If the order is a p-power,
then the adjacency algebra is a local algebra.
Standard modules:
o [Brouwer-van Eijl 1989]
p-ranks of adjacency matrices for SRG
o [Peeters 2002]
p-ranks of adjacency matrices for DRG
o [Yoshikawa-H. preprint] Structure of
standard modules for small schemes
Special Schemes:
o [Yoshikawa preprint] Structure of adjacency
algebras of the Hamming schemes
o [Shimabukuro preprint] Block decomposition of
irreducible characters of the Johnson schemes
Other:
o [Arad-Erez-Muzychuk 2003]
On even generalized table algebras



We want to consider general theory for modular
representations. We need good tools.

It is natural to consider generalization of modular
representation theory of finite groups. In group rep-
resentation theory, block theory is very important
and the defect group, a p-subgroup, plays a crucial
role.

A block of an algebra is an indecomposable direct
summand of the algebra as a two-sided ideal. We
can also consider blocks for adjacency algebras. But
we can not consider the defect group of it, since we
can not consider something like Sylow p-subgroups
in an association scheme. So I try to define the
defect number for a block of adjacency algebras.
But, I can not define it, at present.

I will define some invariants. I believe that it is
closely related to the defect numbers.



p . a prime
(K,R,F) : a p-modular system

R : a complete discrete valuation ring
with the maximal ideal (7),

K : the quotient field of R, charK = 0O,

F' : the residue field R/(x), charF = p.

We assume K is algebraically closed, then so is F'.

The image of a € R by the natural epimorphism
R — F'is denoted by a*.

Let v be the valuation of R with v(p) = 1. For a
rational integer n = p®m, p{m, we have v(n) =e.

Note that

R={a€ K |v(a) > 0},

v(ab) = v(a) + v(b), v(a+b) > min(v(a),v(d)), and
v(0) = oo.



Let (X,G) be an association scheme. We denote
the adjacency matrix of g € G by o4. Put

geG
and

OG :=7ZG @7 O,

for O € {K, R, F}. We call OG the adjacency algebra
of (X,G) over O.

Remark. Kd is essentially the same as CdE, and it
IS semisimple.

The image of a = > ,cqgagog € RG by the natural
epimorphism RG — RG/mRG = FG is also denoted
by a®. Namely,

(Z agag) = ) ag'og".

geG geqG



There are natural bijections between the following
sets.

(1) The set of central primitive idempotents
of RG : ep.

(2) The set of central primitive idempotents
of F@G : €B*.

(3) The set of indecomposable direct summands
of RG as two-sided ideals : B = egRG.

(4) The set of indecomposable direct summands
of I'G as two-sided ideals : B* = ep*F@.

We say that B is a block (or a p-block) of the associ-
ation scheme (X, G), and ep is the block idempotent.
Of course, B is an algebra with the identity ep.



Let BI(G) be the set of blocks of G. For x € Irr(G)
and B € BI(G), we say that x belongs to B if x(eg) #
0, and put Irr(B) :={x € Irr(G) | x(eg) # 0}. Then

Irr(G) = |J TIrr(B)
BeBI(Q)
is a partition of Irr(G). If x € Irr(B), then x(ep) =
x(1). Also we have

ERB — Z ex,

x€Irr(B)
where ey is the central primitive idempotent in KG
corresponding to x € Irr(G). Actually, Irr(B) is a
minimal subset of Irr(G) such that 3, cp(pyex is in
RG.

‘The trivial character 15 is the map o4 — ng. The
principal block is the block B with 1, € Irr(B), and
we denote it by Bg(G) or Bg.



For x € Irr(G) and z € Z(KG), we put

wy(z) = X(z)
x(1)
Then x # ¢ implies wy # wy, and moreover, {wy |
x € Irr(G)} is the set of all irreducible characters of
Z(KG). If (X,G) is commutative, then wy = x.

For x,p € Irr(G), we can see that they are in the
same block if and only if

Wx(z)* — W@(Z)*
for any z € Z(RG).

So in the case x € Irr(B), we write wg™* 1= wy™.

For a commutative scheme (X,G), x,p € Irr(G) are
in the same block if and only if



Some invariants for commmutative schemes

In this section, we always assume that the associa-
tion scheme (X, G) is commutative.

Let B € BI(G). Since FG is a splitting commutative
algebra, its indecomposable direct summand B* is
a local algebra. So wpg™® is the unique irreducible
representation of B*. We put

s(B) := max{v(ng) | wp*(c4") # 0}.

This is our first invariant of B. Since wg*(eg*) = 1,
there exists g € G such that wg*(o4*) # 0. So this
is well-defined. The next proposition is clear.

Proposition. s(Bg) = 0.

Remark. For noncommutative schemes, we can
also define s(B) by the same definition. But it is
not a good definition, I think.



Let ¢ be a nonnegative integer. We define
Iy = & Fog4"
v(ng)>4
Then I, is an ideal of FG. For B € BI(G), we put

S/(B) = max{/ | GB* e Iy}

This is our second invariant of B, but we have the
following.

Proposition. s(B) = s'(B).

Proof. Firstly, we will show that, if v(ng) > s'(B),
then wp*(oy*) = 0. Since B* is a local algebra, B*
has the unique maximal ideal, the Jacobson radical
radB*. Now ep*og4™ is in a proper ideal GB*IS/(B)—I—]_’
so it is in radB*. The Jacobson radical annihilates
any simple module, so wp*(o4*) = wp*(ep*ogs*) = 0.
This means s(B) < s'(B).

Now wB*([s’(B)) =) wB*(eB*) # 0, so S(B) > S/(B). []



We write

e = ) Bp(g)ag (Bp(9) € R).

geG
Clearly we have

s(B) = min{v(ng) | Bp(9)* # 0},
We put Bly(G) ;= {B € BI(G) | s(B) = ¢} and
Gy ={9€G|ving) =1}

Proposition. Let B, B’ € Bl,(G), x € Irr(B), and
X €lrr(B"). Then B = B’ if and only if

X(Ug>* — X/(Ug)*a
for any g € Gy. Moreover {(wgp* |g,) | B € Bly(G)} is

linearly independent over F', so we have |Bl,(G)| <
|Gl

Proof. Suppose x(og)* = X'(og)* for any g € Gy.
Then we have

WB*(eB/*) — Z 53/(9)*0‘13*(09)

geGy

= Y Bp(g)'wp*(og) =wp*(ep™) =1,
9eGy

and so B = B’. The converse is clear.



Suppose Y pegi,(¢) @B(wB™ |g,) = 0. Then, for B’ €
Bl,(G),

0=> ap(wp”lg)(ep™) =) apwp®(ep™) = ap
B B

so {(wg”* |g,) | B € Bly(G)} is linearly independent.
]

Now we define the third invariant t(B). Let FX be
the (right) standard module of (X,G) over F. We
consider the dimension of FXeg*. Then we have

dimp FXepg* = )  myx(1),
x€lrr(B)
where m, is the multiplicity. Of course, x(1) =1
since (X, G) is commutative, but this relation is also
true for non-commutative schemes.

Lemma. v (dimgp FXeg*) > v(ng). (This is true for
arbitrary schemes.)

Proof. We have 85(1) = (X, crr(p) max(1)) /ng,
and thisis in R. [



We put
t(B) =v(dimp FXeg®) —v(ng).

Lemma says that ¢(B) > 0. There are many exam-
ples such that s(B) = t(B) but also many examples
such that s(B) # t(B).

Conjecture 1. s(B) < t(B).
Conjecture 2. v(8g(g)) > s(B) —v(ng).

If Conjecture 2 is true, then

t(B) = v(Bp(1)) > s(B) —v(n1) = s(B)

and so Conjecture 1 is true.

Conjecture 2 is true for
o group association schemes (we will see later)
o G=J(,k), 1 <v<40, FG is not semisimple
(by computer calculations)

Remark. There exist examples such that t(Bg) > 0.



Example. Let (X,G) be a commutative scheme.
Assume that F'G is semisimple.

(i,e. p 1 ng and Y cqring) = >ovetrr(q) v(my).)
Then |BI,(G)| = |Gy| for any £, and s(B) = t(B)
for any B € BI(G). So Conjecture 1 is true in this
case.

(We can restrict possibilities of the character table.)



Defect Number for a Block of Group Algebras

Let © be a finite group, and (@,@) be the group
association scheme constructed by ©. Now there is
a natural bijection between BI(®) and BI(©) since
Z(FO) = FO. Let B € BI(©) and B € BI(©®) be cor-
responding blocks. In group representation theory,
the defect d(B) of B is defined by

d(B) = min{v(|©]/x(1)) [ x € Irr(B)}.
Now it is known that
s(B) = t(B) = v(|©]) — d(B).

Conjecture 1 and 2 are also true in this case.

Problem. Consider the similar argument as above
for noncommutative schemes.

Problem. Consider a reasonable definition of defect
numbers for blocks of association schemes.



Other Problem 1.
We want to know when |Irr(B)| = 1.

Of cource, |[Irr(B)| = 1 if and only if eg € RG. But
it is not so easy to check this condition.

If G is thin (F'G is a group algebra), then |Irr(B)| =1
if and only if B* is a simple algebra. But this is not
true for association schemes. There is an example
such that |Irr(B)| = 1 but B* is not simple.

Question. Is it true that |[Irr(B)| = 1 if and only if
dimpZ(B*) =17

If G is thin, then every B* is a symmetric algebra.
If B* is a symmetric algebra, then dimp Z(B*) =1

implies that B* is simple.

Question. Can we characterize |Irr(B)| = 1 by s(B),
t(B) and some other invariants ?

If G is thin, then |Irr(B)| = 1 if and only if the defect
number d(B) = 0.

Fact. |Irr(Bp)| = 1 if and only if p{ng.



Example. Let G be the unique noncommutative
scheme of order ngz = 15, and let p = 2. Then

FG=By"®B1"® By*, Bg"E& B

(Note that 2 = p 1t ng = 15. The principal block is
simple.) The block By* is not simple, but |Irr(By)| =
1 (only one character of degree 2). The structure
of B>™ is as follows.

basis: {v,w, a, 8}
multiplication:

v w o (
viv 0O a O
w0 w 0 B8 (1=v+w)
a0 o 0 O
BB 0 0 O
o)
N
v w
~_
G

The algebra is not symmetric, and the dimension of
the center is one.



Other Problem 2.

Let H be a normal closed subset of G. Define
T 72G — Z(G//H), (JgHﬂagH).

n
gH

Then 7 is an algebra homomorphism. Since ng/ngH c
Z., we can define 7 : OG — O(G//H) for any com-
mutative ring O with 1.

Let T : O(G//H) — My(O) be a representation of
G//H. Then Totn : OG — M4(O) is a representation
of G.

If O is an algebraically closed field and 7o is an epi-
morphism, then the followings hold.

o If T is irreducible, then so is T o 7.

o If T AT’ then ToTn £ T o1p.

o Irr(O(G//H)) is embedded into Irr(OG).

If O is a field of characteristic O, then 7p is an epi-
morphism. But it is not true, in general.



Example. Let H be a scheme such that ngy is a
p-power, and let G be any scheme. Consider the
wreath product H!G. In this case, F(H!1G) is a
local algebra. So, 1 = |[Irr(F(HG))| < |Irr(FG)|. If
T is a non-linear representation of G, then T o 1p is
reducible.

If G is a finite group and H is a normal p-subgroup
of G, then H is in the kernel of every irreducible
F-representation of G. I want to generalize this to
association scheme.

Problem. Let (X,G) be an association scheme, and
let H be a normal closed subset such that ng is p-
power. Is any irreducible representation of F'G given
by a representation of F(G//H) ?



Example.
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({a,b} = {3,4}. The choice of {a,b} depends on the

p-modular system.)



