
SELF DUAL GROUPS AND FINITE SYMMETRIC

ALGEBRAS

OF LOEWY LENGTH 4

AKIHIDE HANAKI

Abstract. A finite group G is said to be self dual if its group
association scheme is self dual. Some examples of self dual groups
are known but no general method to construct self dual groups is
known. In this paper, we construct self dual groups from symmet-
ric algebras over prime fields whose Loewy lengths are 4.

Let G be a finite group, Cl(G) = {C1, · · · , Ck} and Irr(G) = {χ1, · · · , χk}
be the complete sets of conjugacy classes and irreducible characters of
G, respectively. Let {xi} be a representatives of conjugacy classes. We
say G is self dual if, after renumbering indices,

|Cj|χi(xj)

χi(1)
= χj(1)χj(xi)

for all i, j. This is equivalent to that the group association scheme of G
is self dual. Clearly abelian groups are self dual, and some non-abelian
self dual groups were constructed in [1], [2], and [5].

For the structure of self dual groups, the next result is known.

Theorem 1 (T.Okuyama [4]). Self dual groups are nilpotent.

T.Okuyama suggested that self dual groups are related to some finite
algebras. In this point of view, we shall try to construct self dual groups
from finite symmetric algebras.

In this paper, we use the next notations. Let F be a prime field
GF(p), and let A be a finite dimensional symmetric algebra over F .
J(A) and Soc(A) denote the Jacobson radical and the socle of A, respec-
tively. We consider finite groups G = 1+J(A) and G = G/(1+Soc(A)).
For g ∈ G, g means g(1+Soc(A)), and for v ∈ J(A), v means v+Soc(A).
Since A is symmetric, there exists a non-degenetate associative sym-
metric bilinear form f : A × A → F , and define λ : A → F by
f(a, b) = λ(ab) then ker λ contains no non-zero right (left) ideal.
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For u ∈ J(A) such that up = 0, we define

ln(1 + u) =
p−1
∑

n=1

−
(−u)n

n
,

exp(u) =
p−1
∑

n=0

un

n!
.

These appear in [3]. The next lemma seems to be well known.

Lemma 2. The followings hold :

1. exp(ln(1 + u)) = 1 + u,

2. ln(exp(u)) = u,

3. if uv = vu then ln((1 + u)(1 + v)) = ln(1 + u) + ln(1 + v).

Throughout the rest of this paper, we assume that the exponent of
G is equal to p (then p must be odd if G is non-abelian). We fix a
primitive p-th root of unity ω in the complex number field. For v,
w ∈ J(A), we define

Φ1+u(1 + v) =
1

|CG(u)|

∑

g∈G

ωf(ln(1+u)g ,ln(1+v)),

where g ∈ G can act on G since 1 + Soc(G) is in the center of G. Note
that under our assumption up may be non-zero, but we can ignore the
term of up since up is in Soc(A). This is a class function of G, and we
can see it is a class function of G.

The next is our main result.

Theorem 3. If J4(A) = 0 and the exponent of G is p then G is self

dual.

I think that the assumption J4(A) = 0 is not essential, but the
assumption about the exponent is essential in a sense.

To show this, we shall show that Φ1+u = χ1+u(1)χ1+u for some
χ1+u ∈ Irr(G), and that

∣

∣

∣G : CG(1 + v)
∣

∣

∣

Φ1+u(1)
Φ1+u(1 + v) = Φ1+v(1 + u).

The second equation holds immediately since

f(ln(1 + u)g, ln(1 + v)) = f(ln(1 + v)g−1

, ln(1 + u)).

Lemma 4. If J4(A) = 0 then

f(ln(1 + u), ln((1 + v)(1 + w)))

=f(ln(1 + u), ln(1 + v)) + f(ln(1 + u), ln(1 + w))

+ f(ln(1 + u), (vw − wv)/2)
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for all u, v, w ∈ J(A).

Proof. By direct calculation, we have

ln((1 + v)(1 + w)) = ln(1 + v) + ln(1 + w) +
1

2
(vw − wv)

+
1

6
{(wv2 − v2w) + (wv2 − vwv) + (w2v − wvw) + (w2v − vw2)}.

Since ln(1 + u) ∈ J(A) and J4(A) = 0, we have the result.

Lemma 5. For u ∈ J(A), Φ1+u = χ1+u(1)χ1+u for some χ1+u ∈
Irr(G).

Proof. If u ∈ J2(A), the result holds immediately by Lemma 2 (3). Put
H = CG(u), and put ϕ(1 + v) = ωf(ln(1+u),ln(1+v)) for 1 + v ∈ H. Then,
for 1+v, 1+w ∈ H, f(ln(1+u), (vw−wv)/2) = 0 since f is symmetric
and ln(1 + u) and v commute. Thus ϕ is a linear character of H by

Lemma 4. We shall show that ϕG = Φ1+v .

Clearly Φ1+u = ϕG on H. H is normal in G since H contains 1 +

J2(A), and thus ϕG(1 + v) = 0 for 1 + v 6∈ H. We shall show Φ1+u(1 +
v) = 0 for 1 + v 6∈ H. Put a = ln(1 + u) and b = ln(1 + v). We have

∑

g∈G

ωf(ag ,b) = ωf(a,b)
∑

g0∈J(A)/ Soc(A)

ωf(ag0−g0a,b)

= ωf(a,b)
∑

g0∈J(A)/ Soc(A)

ωf(ba−ab,g0).

The map g0 7→ f(ba − ab, g0) is F -linear and non-zero since ba − ab ∈
Soc(A) if and only if uv − vu ∈ Soc(A) by Lemma 2. Thus the sum is

zero. This means Φ1+u(1 + v) = 0 for 1 + v 6∈ H. Now Φ1+u = ϕG.
Let χ be an irreducible constituent of Φ1+u. For 1+v, g = 1+g0 ∈ G,

χ((1 + v)g) = χ(1 + v)ϕ([1 + v, g])

= χ(1 + v)ωf(u,vg0−g0v)

= χ(1 + v)ωf(uv−vu,g0),

here we use that [1 + v, g] ∈ Z(χ). If 1 + v 6∈ H then there exists
g0 ∈ J(A) such that f(uv − vu, g0) 6= 0. Thus χ(1 + v) = 0. Now ϕ is
fully ramified. The result follows.

Finally we must show that

Lemma 6. Φ1+u = Φ1+v if and only if 1 + u is conjugate to 1 + v in

G.
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Proof. If u or v is in J2(A) then the result is clear. Assume u, v 6∈ J2(A).
Then CG(u) = CG(v) and f(u−v, x) = 0 for all x ∈ CG(u). We denote
CG(u) by H. Write H = 1 + U . We must show 1 + u =G 1 + v and
this is equivalent to u − v = ua − au for some a ∈ J(A).

Put U⊥ = {x ∈ J(A)
∣

∣

∣ f(x, w) = 0 for all w ∈ U}. Then u − v ∈

U⊥. Also put V = {ub − bu
∣

∣

∣ b ∈ J(A)}. It is enough to show taht

U⊥ = V , and it is easy to see U⊥ ⊇ V . Since f is non-degenerate,
|U⊥| = |J(A) : U |. The map b 7→ ub − bu is F -linear, its image is V ,

and its kernel is U . Thus |V | = |J(A) : U |. The proof is complete.

Now Theorem 3 holds clearly.
We remark that Theorem 3 holds over arbitrary finite fields. If A is a

finite dimensional sysmetric algebra over a finite field, we can regard A
as a symmetric algebra over the prime field of the same characteristic
and the Jacobson radicals and the socles are coinside, respectively.
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