代数入門・筆答レポート (第一回 2022/05/30)

- 1. 次のようなものを具体的に一つずつ答えよ。(説明不要。集合と演算が明確になるように答えること。) [3 点 \times 5]
 - (1) 結合法則をみたさない二項演算
 - (2) モノイドでない半群
 - (3) 群でないモノイド
 - (4) アーベル群でない (交換法則をみたさない) 群
 - (5) 無限群
- 2. モノイド M の正則元 u に対して、その逆元は唯一つであることを示せ。[5 点]
- 3. 集合 $S = \{(a, b, c) \mid a, b, c \in \mathbb{R}\}$ に演算を

$$(a,b,c)(d,e,f) = (af + cd, bf + ce, cf)$$

で定める。このとき次の問いに答えよ。[5 点 × 2]

- (1) この演算が結合法則をみたすことを示し、さらに単位元を求めよ。
- (2) $(a,b,c) \in S$ が正則元であるための必要十分条件を a,b,c に関する条件として求め、その条件をみたすときの逆元も求めよ。
- 4. $\mathbb{Z}/12\mathbb{Z} = \{a + 12\mathbb{Z} \mid a \in \mathbb{Z}\}$ を考える。 $[5 点 \times 2]$
 - (1) $\mathbb{Z}/12\mathbb{Z}$ に $(a+12\mathbb{Z})(b+12\mathbb{Z})=ab+12\mathbb{Z}$ で乗法が矛盾なく定義できることを示せ。
 - (2) $\mathbb{Z}/12\mathbb{Z}$ は乗法に関してモノイドである (示さなくてよい)。 $\mathbb{Z}/12\mathbb{Z}$ の乗法に関する単数群 $U(\mathbb{Z}/12\mathbb{Z})$ を求めよ。
- 5. G を群とする。 $a,b \in G$ に対して、 $a \sim b$ であることを、「ある $g \in G$ が存在して $b = g^{-1}ag$ となる」ことで定める。このとき関係 \sim は G 上の同値関係であること を示せ。[5 点]
- 6. G を群とし H, K を G の部分群とする。このとき $H \cap K$ も G の部分群であることを示せ。[5 点]
- 7. G をアーベル群とする。G の位数が有限である元全体の集合を H とする。この とき H は G の部分群であることを示せ。[5 点]
- 8. 位数 |G| が素数 p である群 G は巡回群であることを示せ。[5 点]

 $[(3 点 \times 5) + (5 点 \times 9) = 60 点満点]$