集合論・筆答レポート (第一回 2022/11/16)

- 1. 「あるx があって、任意のy に対してP(x,y) は真である」という命題の否定を論理記号を用いて表せ。ただしP(x,y) はx とy に依存する命題である。[5 点]
- 2. A, B を命題とする。命題「A \Longrightarrow B」に対して、その対偶「 $(\neg B) \Longrightarrow (\neg A)$ 」が必要十分条件となることを示せ。[5 点]
- 3. A, B, C を集合とする。 $(A \cap B) \cup C = (A \cup C) \cap (B \cup C)$ であることを示せ。[5 点]
- 4. 写像 $f: A \rightarrow B$ と $g: B \rightarrow C$ を考える。 [5 点 × 3]
 - (1) 合成写像 $g \circ f$ が単射であるならば f は単射であることを示せ。
 - (2) f と g が全射であるならば、合成写像 $g \circ f$ も全射であることを示せ。
 - (3) 合成写像 $g \circ f$ が全射であるが f が全射ではないような例を書け。(説明不要。答のみでもよい)
- 5. 写像 $f: A \to B, X \subset A, Y \subset B$ を考える。[5 点 × 4]
 - (1) $f^{-1}(f(X)) \supset X$ であることを示せ。
 - (2) $f^{-1}(f(X)) = X$ が正しいならば証明し、正しくないならば成り立たないような具体例を書け (具体例には説明不要)。
 - (3) $f(f^{-1}(Y)) \subset Y$ であることを示せ。
 - (4) $f(f^{-1}(Y)) = Y$ が正しいならば証明し、正しくないならば成り立たないような具体例を書け (具体例には説明不要)。
- 6. $X = \{1, 2\}$ とする。X のべき集合 2^X から X への写像はいくつあるかを答えよ。またそのうちの一つを具体的に書け。 $[5 \ 点]$
- 7. 集合 X,Y に対して、X から Y への写像全体の集合を $\mathrm{Map}(X,Y)$ と書く。 写像 $f:A\to B$ と集合 C に対して、写像 $f^*:\mathrm{Map}(B,C)\to\mathrm{Map}(A,C)$ を $f^*(\varphi)=\varphi\circ f$ で定める。f が全射であるならば f^* は単射であることを示せ。 [5 点]

 $[5 点 \times 12 = 60 点満点]$