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4. The quantized calculus (Chapter IV)

The basic new idea of noncommutative differential geometry is a new calculus which
replaces the usual differential and integral calculus.

This new calculus can be succinctly described by the following dictionary. We fix

a pair (H, F'), where H is an infinite-dimensional separable Hilbert space and F is a F fo
selfadjoint operator of square 1 in H. Giving F is the same as giving the decomposition o,

of H as the direct sum of the two orthogonal closed subspaces E '-‘—l,_

{6 et ; FE =+¢}).

Assuming, as we shall, that both subspaces are infinite-dimensional, we see that all
such pairs (H, F') are unitarily equivalent. The dictionary is then the following:
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CLASSICAL QUANTUM
Complex variable Operator in ‘H
Real variable Selfadjoint operator in H
Infinitesimal Compact operator in ‘H
Infinitesimal Compact operator in ‘H whose characteristic
of order a values p, satisty p, = O(n™*), n—oo
Differential of real
or complex variable df =[F,fl]=Ff - fF
Integral of infinitesimal Dixmier trace
of order 1 Tr,(T)



CHAPTER 6

The metric aspect of noncommutative geometry

The geometric spaces of Gauss and Riemann are defined as manifolds in which the
metric is given by the formula

(6.1) 4(p,q) = infimum of length of paths 7 from p to ¢

where the length of a path 7 is computed as the integral of the square root of a quadratic
form in the differential of the path

q
(6.2) Length of v = / (guw dz* dz”)'/?
»

These geometric spaces form a relevant class of metric spaces, inasmuch as:

«) They are general enough to include numerous examples ranging from non-Euclidean
geometries through surfaces embedded in R? to space like hypersurfaces in general
relativity.

3) They are special enough to deserve the name “geometry”, since, being determined
by local data, all the tools of differential and integral calculus are available to analyse
them.

We have developed in Chapter IV a differential and integral calculus of “infinitesimals”,
given a Fredholm module (H, F) over the algebra A of coordinates on a possibly non-
commutative space X. The Fredholm module (H, F') over A specifies the calculus on X
but not the metric structure. For instance, the construction of (H, F') in the manifold

FIGURE 1. Geodesic
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6. THE METRIC ASPECT OF NONCOMMUTATIVE GEOMETRY 553

case (Section IV.4) only used the conformal structure. In fact, in the example of Sec-
tion IV.3, where X = S! and (H, F) is the Hilbert transform, the quantum differential
expression

(6.3) dZdZ =[F,Z|[F,Z) , Z:S'-C

where Z is the boundary value of a univalent map, yields an infinitesimal unit of length
intimately tied up with the metric on Z(S') induced by the usual Riemannian metric
dzdz of C. If we vary Z, even the dimension of S! for the “metric” (3) will change (cf.

Section IV.3).

Let A be an involutive algebra and (H, F') a Fredholm module over A. To define a
“unit of length” in the corresponding space X, we shall consider an operator of the
form

(6.4) G =Y (d")" gu(dz")

where dz = [F, z| for any = € A, the z* are elements of A and where ¢ = (g0 )uv=1...¢
is a positive element of the matrix algebra M (A).

We want to think of G as the ds? of Riemannian geometry. It is by construction a
positive “infinitesimal”, i.e. a positive compact operator on H. The unit of length is
its positive square root

(6.5) ds = G'2,

To measure distances in the possibly noncommutative space X we first replace the
points p,q € X by the corresponding pure states ¢, ¢ on the C*-algebra closure of A

(6.6) p(f)=fp), ¥(f)=flg) VfEA,
We then dualise the basic formula (1) as follows
(6.7) dist(p.g) = Sup{|f(p) - f(a)| ; €A, [ldf/ds| < 1}

which only involves p._g through the associated pure states (6). Since we are in
the noncommutative set up we need to deal with The ambiguity in the order of the
terms in an expression such as df/ds which can be either df(ds)~! or (ds)~! df or
(ds)=® df(ds)~(*~2) for instance. Instead of handling this problem directly we shall
assume that G commutes with F, i.e. that dG = 0. a condition similar to the Kahler
condition, and introduce the following selfadjoint operator

(6.8) D=FGY?2=Fds, JS” = lD'

whose existence assumes that G is nonsingular, i.e. ker G = (. We shall then formulate
(7) as follows

(6.9) d(p,q) =Sup{|f(p) — f(g)|; f€A, |[D,flll <1}.
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Now the operator F' is by construction the sign of D, while GG is obtained from D by

the formula )
(6.10) C=D>2 S“b.ufraﬂ ‘fﬂ P@,

Thus it is more economical to take as our basi he triple (A, H. D) gonsisting
of a Hilbert space H, an involutive algebra A of operators on H and an unbounded
selfadjoint operator D on ‘H. The conditions satisfied by such triples are

(6.11) [D, a]is bounded for anya € A

(D — )~ 'is compact for any\ ¢ R
and were already formalised in Chapter IV Definition 2.11. In the present chapter we
shall begin a systematic investigation of those geometric spaces. Besides Riemannian

manifolds (see below) and spaces of non integral Hausdorff dimension (Section IV.3)
the following are examples of geometric spaces described by our data:

a) Discrete spaces
b) Duals of discrete subgroups of Lie groups
¢) Configuration space in supersymmetric quantum field theory.

We shall deal with Example a in Section 3 below. We have described already in great
detail the triples (A, H, D) corresponding to b) and c) in Section IV.9.

Our first task in this chapter will be to show that the Riemannian spaces are special
cases of the above notion of geometric spaces. This will be done using an elliptic dif-
ferential operator of order one, the Dirac operator (or the signature operator in the
non-spin case). We shall first see that formula (9) applied to the triple (algebra of func-
tions, Hilbert space of spinors, Dirac operator) readily gives back the geodesic distance
(1) on the Riemannian manifold. Our next task will be to develop the analogue of the
Lagrangian formulation of electrodynamics involving matter fields and gauge bosons
for our more general geometric spaces. This will be done using the tools of the quan-
tized calculus developed in Chapter IV Section 2. As mentioned above the commutator
[D, f1, f € A will play the role of the differential quotient df/ds. As a central result
We shall prove the inequality between the second Chern number of a “vector bundle”
and the minimum of the Yang-Mills action on vector potentials. We shall see that
our new notion of geometric space treats on an equal footing the continuum and the
discrete, while the action for electrodynamics on the simplest mixture of continuum
and discrete-the product of 4-dimensional continuum by a discrete 2-point space-gives
the Glashow-Weinberg-Salam model for leptons. The notion of manifold in noncom-
mutative geometry will be reached only after an understanding of Poincaré duality,
i.e., that the K-homology cycle ($, D) yields the fundamental class of the space under
consideration. The notion of manifold obtained is directly inspired by the work of D.
Sullivan [543] who discovered the basic role played by the K-homology fundamental
class of a manifold.
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The main example of a space to which all these considerations will be applied is Euclid-
ean space-time in physics, i.e., space-time but with imaginary time. What we shall give
is a geometric interpretation of the now experimentally confirmed effective low-energy
model of particle physics, namely the Glashow—Weinberg-Salam standard model. This
model is a gauge theory model with gauge group U(1) x SU(2) x SU(3) and a pair
of complex Higgs fields providing masses by the symmetry-breaking mechanism. We
interpret this model geometrically as a pure gauge theory, i.e. electrodynamics, but on
a more elaborate space-time E' = E x F, the product of ordinary Euclidean space-time
by a finite space F. The geometry of this Anite space_is specified by a pawr (9, D) as
ﬁmﬁnit&dimensional and the selfadjoint operator D encodes the nine

fymiml masses and the four Kobayashi_Maskawa mixing parameters of the standard
model.

N—
The values of the hypercharges do not have to be fitted artificially to their experimental
values but come out right from a simple unimodularity condition on the space E’.

Our analysis is limited to the classical context and does not at the moment address
the questions related to renormalization, such as the existence of relations between
coupling constants or the naturalness problem. Nevertheless, our more geometric and
conceptual interpretation of the standard model gives a clear indication that particle
physics is not so much a long list of elementary particles as the unveiling of the fine
geometric structure of space-time.

The content of this Chapter Is organized as follows:

1. Riemannian geometry and the Dirac operator.

. Positivity in Hochschild cohomology and inequalities for the Yang Mills action.

W N

. Product of continuum by discrete and the symmetry breaking mechanism.

W=

. The commutant and Poincaré duality.
. The standard U(1)x.SU(2)xSU(3) model.

[

1. Riemannian Manifolds and the Dirac Operator

Let M be a compact Riemannian spin manifold, and let D = dy; be the corresponding
Dirac operator (cf. [227]). Thus, D is an unbounded selfadjoint operator acting in the
Hilbert space § of L2-spinors on the manifold M.

We shall give four formulas below that show how to reconstruct the metric space
(M,d), where d is the geodesic distance, the volume measure dv on M, the space

of tentials, and, finally, the Yang-Mills action functional, from tie purely
operator-theoretic data -
. (-A! ﬁsD)e

where D is the Dirac operator on the Hilbert space § and where A is the abelian
von Neumann algebra of multiplication by bounded measurable functions on M.

Thus, A is an abelian von Neumann algebra on §), and knowing the pair (£, .4) yields
essentially no information (cf. Chapter V) except for the multiplicity, which is here the
constant 22 where d = dim M. Similarly, the mere knowledge of the operator D on
$ is equivalent to giving its list of eigenvalues (A, )nen, An € R, and is an impractical
point of departure for reconstructing M. The growth of these eigenvalues, i.e., the
behavior of |\,| as n — oo, is again governed by the dimension d of M, namely,
|An] ~ Cn/? as n — oc.
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The proof is straightforward, but it is relevant to go through it to see what is involved.
The operator [D,a], which by Lemma 1 is bounded iff a is Lipschitz, is then given by
the Clifford multiplication i~'y(da) by the gradient da of a. This gradient is ([202])
a bounded measurable section of the cotangent bundle T*M of M. and we have

|[D, al]|| = esssup ||da|| = the Lipschitz norm of a.

It follows at once that the right-hand side of Formula 1 is less than or equal to the
geodesic distance d(p,q). However, fixing the point p and considering the function
a(q) = d(q,p), one checks that a is Lipschitz with constant 1, so that ||[D,q]|| < 1,
which yields the desired equality. Note that Formula 1 is in essence dual to the original
formula

(%) d(p, q) = infimum of the length of paths ~ from p to ¢,

in the sense that, instead of involving arcs, namely copies of R inside the manifold M,
it involves functions a, that is, maps from M to R (or to C).

This is an essential point for us since, in the case of discrete spaces or of noncom-
mutative spaces X, there are no interesting arcs in X but there are plenty of func-
tions, namely, the elements a € A of the defining algebra. We note at once that the
right-hand side of Formula 1 is meaningful in that general context and it defines a

metric on the space of states of the C*-algebra A, the norm closure of A = {a €
A: [D,a] is bounded}

( alp) = ki) — vk o< ]
Finally, we also note that, although both Formula 1 and the formula (*) give the same

result for Riemannian manlfolds, they are of quite different nature if we try to use them
in actual measurements of distances. The formula (%) uses the idealized notion of a
path, and quantum mechanics teaches us that there is nothing like “the path followed
by a particle”. Thus, for measurements of very small distances, it is more natural to
use wave functions and Formula 1.

We have now recovered from our original data (A, ), D) the metric space (M, d), where
d is the geodesic distance. Let us now deal with the tools of differential and integral
calculus, the first obvious example being the measure given by the volume form

fr— | fdv,
M
where, in local coordinates z*, g,,,, we have

dv = (det(g,,,,))l/2|d1‘l A Adz™.

This takes us to our second formula, which is nothing more than a restatement of
H. Weyl’s theorem about the asymptotic behavior of elliptic differential operators
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([247], [227]). It does, however, involve a new tool, the Dizmier trace Tr,, (cf. Chap-
ter IV.2), which, unlike asymptotic expansions, makes sense in full generality in our
context and is the correct operator-theoretic substitute for integration:

Formula 2. For every f € A, we have fM fdv = ¢(d) Tr,(f|D|~%), where d = dim M,
c(d) = 2(@-d/2) gd/2 T (¢_2t +1).

By convention we let D! be equal to 0 on the finite-dimensional subspace KerD.

Let us refer to Section IV.2 for the detailed definition and properties of the Dixmier
trace Tr,. We can interpret the right-hand side of the equality as the limit of the

sequence
X
A,
log N ]z:; /

where the A; are the eigenvalues of the compact operator f |D|~%, or, equivalently, as
the residue, at the point s = 1, of the function

¢(s) = Trace(f|D|™%) (Rs > 1).

The crucial fact for us is that the Dixmier trace makes sense independently of the
context of pseudodifferential operators and that all properties of the integral f v fdv,
such as positivity, finiteness, covariance, etc., become obvious corollaries of the general
properties of the Dixmier trace:

A) Positivity: Tr,(T) > 0 if T is a positive operator.
B) Finiteness: Tr,(T)<oo if the eigenvalues of |T| satisty Z(',V 1n(T)=0(log N).
C) Covariance: Tr,(UTU*) = Tr,(T) for every unitary U.
D) Vanishing: Tr,(T) = 0 if T is of trace class.
R

—

Property D is the counterpart of locality in our framework; it shows that the Dixmier

race of an operator 1s unaffected by a finite-rank perturbation, and allows many iden-

tities to hold, as we have seen in Chapter IV.
——

Now, setting up the integral of functions, i.e., the Riemannian volume form, is a good
indication but quite far from the full story. In particular, many distinct Riemannian
metrics yield the same volume form. Since our aim is to investigate physical space-
time at the scale of elementary particle physics, we shall now make a deliberate choice:
instead of focusing on the intrinsic Riemannian curvature, which would drive us to-
wards general relativity, we shall concentrate on the measurement (using (£, D)) of the
curvature of connections on vector bundles, and on the Yang-Mills functional, which
takes us to the theory of matter fields. This line is of course easier since it does not
involve derivatives of the g,,.

Let us state our aim clearly: to recover the Yang—Mills functional on connections on
vector bundles, making use of only the following data (IV.2.11):

//l%(t Convan (T D}xwvl@v Troe Eg ti@

D.

<

F VN "o

(Y
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Definition 2. A K-cycle ($,D), over an algebra A with involution *, consists of
a *-representation of A on a Hilbert space $) together with an unbounded selfadjoint
operator D with compact resolvent, such that |D,a] is bounded for every a € A.

We shall assume that 4 is unital and that the unit 1 € A acts as the identity on § (cf.
Remark 12 for the nonunital case).

If the eigenvalues )\, of |D| are of the order of n'/? as n — oo, we say that the K-cycle
is (d, 00)-summable (cf. Section 2 of Chapter IV). On the algebra of functions on a
compact Riemannian spin manifold, the Dirac operator determines a K-cycle that is
(d, oo)-summable, where d = dim M. Finer regularity of functions, such as infinite

differentiability, is easily expressed using the domains of powers of the derivation §,
d(a) = [|D|, a].

We shall not be too specific about the choice of regularity; our discussion applies to
any degree of regularity higher than Lipschitz.

The value of the following construction is that it will also apply when the *-algebra A is
noncommutative, or when D is no longer the Dirac operator (cf. Section 3). The reader
can have in mind both the Riemannian case and the slightly more involved case where
the algebra A is the *-algebra of matrices of functions on a Riemannian manifold, just
to bear in mind that the notion of exterior product no longer makes sense over such
an algebra.

We shall begin with the notion of connection on the trivial bundle, i.e., the case of
“electrodynamics”, and define vector potentials and the Yang—Mills action in that case.
We shall then treat the general case of arbitrary Hermitian bundles, i.e., in algebraic
terms, of arbitrary Hermitian, finitely generated projective modules over A.

We wish to define k-forms over A as operators on §) of the form
e
w=3ai[D,a]]--[D,qj],
—

where the a{ are elements of A represented as operators on §). This idea arises because,
although the operator D fails to be invariant under the representation on § of the
unitary group U of A,

U={ue A; vu=ur" =1},
the following equality shows that the failure of invariance is governed by a 1-form in
the above sense: by w, = u[D,u*], that is,

uDu* = D + w,.

Note that w, is selfadjoint as an operator on $). Thus, it is natural to adopt the
following definition:

Definition 3. A vector potential V' is a selfadjoint element of the space of 1-forms
Y- a}[D,aj], where aj, € A.

w - “D“’( - D

10



dyu (V) + (u]
= dy(V)+y]
+uVuu[D,u*| ¥ uv
= dy(V) - [D,4|[D,u"] = [D,ulVy* + uV[D,u*] + uV?u*
= SID, udd]D,afu’] - 3 D, uahal][ D]
— [D,u]lVu* +uV[D,u*] + uV?u*
= udVu* + uV?u’,
where the last equality follows from
> [D,ulaj[D, alu’] = " [D, ulaja][D,w’] = [D,u]Vu’,
Zu[D, al][D, du’] — Zu[D,a{;]a{[D, u'] = udVu®,
Z ua)|D, d}][D, u’] = uV[D,u"].

The difficulty that we overlooked is the following: the same vector potential V' might
be written in several ways as V = Z a.’Q[D, ajl, so that the definition of dV as

av = (D, aj[D.a]

']+ uVu*)?

is ambiguous.

To understand the nature of the problem, let us introduce some algebraic notation. We
let 2* A be the reduced universal differential graded algebra over A (Chapter III.1).
It is by definition equal to A in degree 0 and is generated by symbols da (a € A) of
degree 1 with the following presentation:

«) d(ab) = (da)b+ adb (Va,b € A),
B) dl = 0.

One can check that QA is isomorphic as an A-bimodule to the kernel ker(m) of the
multiplication mapping m : A® A — A, the isomorphism being given by the mapping

Zai ® b; € ker(m) +— Z a;db; € Q' A.

The involution * of A extends uniquely to an involution on Q* with the rule

(da)” = —da”.
The differential d on Q*A is defined unambiguously by
d(ada’ - --da") = da"da’ - - - da™ Va’ € A,

and it satisfies the relations

11
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One can immediately check that in the basic example of the Dirac operator on a spin
Riemannian manifold, a vector potential in the above sense is exactly a 1-form w on
_the manifold AJ and that this form is imaginary, the corresponding operator in the
space of spino lifford multiplication:

V =iy(w) (i = vV-1).

The action of the unitary group U on vector potentials is such that it replaces the
operator D + V by u(D + V)u*; thus it is given by the algebraic formula

Yu(V) = u[D,u*] + uVu* (u € Y).

We now need only define the curvature or field strength # for a vector potential, and
use the analogue of the above Formula 2 to integrate the square of ¢: the formula

YM (V) = Tr, (6*|D| 7

should give us the Yang-Mills action.

The formula for @ should be of the form 6 = dV + V2; the only difficulty is in defining
properly the “differential” dV of a vector potential, as an operator on $).

Let us examine what happens; the naive formulation is

If V=" a)[D,af] then dV = 3 "[D, a}|[D, aj].

Before we point out what the difficulty is, let us check that if we replace V' by v, (V),
where

= u[D,u"] +Zua (D, ai]u
then the curvature is transformed covariantly:
d(vu(V)) + 7u(V)? = u(dV + V?)u*

As this computation is instructive, we shall carry it out in detail. First, in order to
write 7, (V) in the same form as V', we use the equality

[D,d})u* = [D,alu*] — a}[D,u"].
Thus, 7, (V) = u[D,u*] + Y ua}[D, dju*] — Y ua)al[D, u*], and we have
dy(V) = [D,u][D,u"] + > _[D,uaf][D, alu’] = > _[D, uajal][D,u"].
We now claim that the following operators on § are indeed equal:

A1 (V) + 7u(V)? = u(dV + V3)u".

12
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d’w =0VYw € P A,
d(wiws) = (dwi)wz + (—1)?1widws Yw; € *A.

Proposition 4.
1) The following equality defines a *-representation 7 of the reduced universal
algebra Q*(A) on $:
n(a’da' - --da") = a°[D,a']--- [D,a"] Va’ € A.
2) Let Jy = kerm C Q* be the graded two-sided ideal of Q* given by Jék) ={we

QF: Twr="0}; then J = Jy + dJy is a graded differential two-sided ideal
of U (A).

The first statement is obvious; let us discuss the second. By construction, .Jj is a two-
sided ideal but it is not, in general, a differential ideal, i.e., if w € Q¥(A) and 7(w) = 0,
one does not in general have m(dw) = 0. This is exactly the reason why the above
definition of S [D, a}][D,a}] as the differential of 3" @}[D, a]] was ambiguous.

Let us show, however, that J = Jy + dJy is still a two-sided ideal. Since d* = 0 it
is obvious that .J is then a differential ideal. Let w € J® be a homogeneous element
of J; then w is of the form w = w; + dw,, where w; € J, N QF, wy, € Jy, N Q*L. Let
W' € QF  and let us show that ww' € J*+¥) We have

w' = wiw + (dwa)w' = wiw' + d(waw') — (=1)*'wade’
= (0 + (~1)fwade’) + d(waw).
But, the first term belongs to Jo N Q" and wow' € Jy N Q-1

Using 2) of Proposition 4, we can now introduce the graded differential algebra
p=Q(A)/J.
Let us first investigate QY,, Q}, and 03,

We have J N QY = J, N Q° = {0} provided that we assume, as we shall, that A is a
subalgebra of £L($). Thus, Qf, = A.

Next, JN Q' = J,NQ +d(JoN Q%) = J, N QL thus QF is the quotient of Q! by the

kernel of 7, and it is thus exactly the A-bimodule 7(2") of operators w of the form
w="_dj[D,a}] (af € A).

Finally, J N Q? = JoN Q% 4+ d(Jy N Q') and the representation 7 gives an isomorphism

(+) [ 02 2 7(02) /7 (d(Jo N Q! )B

More precisely. this means that we can view an element w of Q%) as a class of elements
p of the form

p= Zaﬁ-’[D,a}][D, a?] (af € A)

13
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modulo the sub-bimodule of elements of the form
po=Y [D,W][D,b}] ; bEeA > H[D,bj]=0.

It is now clear that since we work modulo this subspace ﬂ'(d(.]o N Ql)), the question of
ambiguity in the definition of dw for w € 7(€2") no longer arises.

The equality () makes sense for all k,
(%) Qf = n(QF) /m(d(Jo N QF1)),

and allows us to define the following inner product on Q'L‘,: for each k let $; be the
Hilbert space completion of 7(Q2¥) with the inner product

(Th, To)i = Tr,(T3T1|D|~?) VT; € 7(QF).
Let P be the orthogonal projection of £, onto the orthogonal complement of the
subspace 7 (d(JoN2*~')). By construction, the inner product (Pw;,w,) = (Pw, Pw,)

for w; € 7(QF) depends only on their classes in %. We denote by A* the Hilbert space
completion of QF, for this inner product; it is, of course, equal to Py.

Proposition 5.

1) The actions of A on A* by left and right multiplication define commuting
unitary representations of A on AF.

2) The functional YM(V) = (dV +V?2,dV +V?) is positive, quartic and invariant
under gauge transformations,
Yu(V) = udu* + uVu* Yu € U(A).
~
3) The functional I(a) = Tr,(6*|D|~%), with 0 = n(da + o?), is positive, quartic
and gauge invariant on {a € Q' (A); a =a"}.
4) One has YM(V) = inf{I(a); 7(a) =V}.

Let us say a few words about the easy proof. First, the left and right actions of A
on ;. are unitary. The unitarity of the right action of A follows from the equality
Tr,(Ta|D|™%) = Tr(aT|D|™) VT € L(H), a € A. Since w(d(Jo N*1)) C m(QF) is

a sub-bimodule of 7(Q¥) it follows that P is a bimodule morphism:
P(ab) = aP(&)bVa,be A, £ € Hy.

Thus 1) follows. As for 2), one merely notes that by the above calculation, with dV'
now unambiguous, § = dV + V2 is covariant under gauge transformations, whence the
result. For 3), one again uses the above calculation to show that da + o? transforms
covariantly under gauge transformations.

Finally, 4) follows from the property of the orthogonal projection P: as an element
of A2, dV + V2 is equal to P(m(da + a?)) for any a with w(a) = V, and since the
ambiguity in 7(da) is exactly 7 (d(J, N Q")) one gets 4).

14
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Stated in simpler terms, the meaning of Proposition 5 is that the ambiguity that we
met above in the definition of the operator curvature § = dV + V2 can be ignored by
taking the infimum

YM(V) = inf Tr, (6| D|~%)
over all possibilities for § = dV + V2, dV = }7[D,a][D, aj] being ambiguous. The
action obtained is nevertheless quartic by 2).

We shall now check that in the case of Riemannian manifolds with the Dirac K-cycle,
the graded differential algebra 27, is canonically isomorphic to the de Rham algebra of
ordinary forms on M with their canonical pre-Hilbert space structure. The whole point
is that Propositions 4 and 5 give us these concepts in far greater generality, and the
formula in 4) will allow extending to this generality, in the case d = 4, the inequality
between the topological action and the Yang—Mills action YM (cf. Section 2). We refer
the skeptical reader to the examples of Section 3.

3. Product of the Continuum by the Discrete and the Symmetry Breaking
- Mechanism 5 | v
e

We have shown how to extend, to our context of finitely summable K-cycles ($, D)

over an algebra A, the concepts of gauge potentials and Yang—Mills action, as well as

the way in which this action is related to a topological action in the case of dimension 4.

In this section we shall give several examples of computations of this action. We first
briefly recall its definition and use the opportunity to add to it a fermionic part.

§1§

We are given a #-algebra A and a (d, oo)-summable K-cycle (£, D) over A. This gives
us a representation on §) of the reduced universal differential algebra €2%A:

’] 7(a’da’ - - - da*) = a°|D,a']--- [D,a"] Va’ € A, '

which defines a quotient differential graded algebra—

05 (A) = D (A)/J, T = Jo+dJy, I = F NnKern.

A compatible connection V on a Hermitian, finitely generated projective module &
over A is given by a linear mapping

V:E—=ERAN

which satisfies the Leibniz rule and is compatible with the inner product. The affine
space C'(£) of such connections is acted on by the unitary group U(€) of the x-algebra
of endomorphisms End4(€). This action transforms the curvature § = V2 of such
connections covariantly, and

PR

YM(V) = Tr,,(x(6)?|D|~%)

is a gauge invariant quartic positive action on C(& - ion 1).

15



2. Example a).> The space we are dealing with has two points a and b. Thus, the
algebra A 18 just the direct sum C @ C of two copies of C. An element f € A is given

by two complex numbers f(a), f(b) € C. Let ($,D,v) be a 0-dimensional K-cycle

3. PRODUCT OF THE CONTINUUM BY THE DISCRETE AND SYMMETRY BREAKING 577

over A; then 9 is finite-dimensional and the representation of A in § corresponds to
a decomposition of § as a direct sum $ = 9, + 9;, with the action of A given by

feA._.[f(“) 0 ]

0 f(b)
If we write D as a 2 x 2 matrix in this decomposition,
. Daa Dab
e [Dba Dbb] '

we can ignore the diagonal elements since they commute exactly with the action of A.
We shall thus take D to be of the form

[0 D
p=o.

where Dy, = D}, and D, is a linear mapping from §, to £;. We shall denote this
linear mapping by M and take for v the Z/2-grading given by the matrix

[(1) _Ol] = ~. We thus have

M 0 0 -1

Let us first compute the metric on the space X = {a,b}, given by Formula 1 of
Section 1. Given f € A, we have

o = [ 2] &

0 M () = 5@ _ (pm— rany [ 0 M
[—M(f(b)—f(a.)) 0 ]‘(f(”) /(@) [—M 0]-

Thus, the norm of this commutator is |f(b) — f(a)|A, where A is the largest eigenvalue
|| M| of |M|. Therefore

d(a,b) = sup{|f(a) — f®)[; [I[D,flll <1} =1/A.

Let us now determine the space of gauge potentials, the curvature and the action in
two cases.

€ = A (i.e., the trivial bundle over X)

The space Q'(A) of universal 1-forms over A is given by the kernel of the multiplication
m: AR A — A, m(f ®g) = fg. These are functions on X x X that vanish on the
diagonal. Thus, Q'(A) is a 2-dimensional space; if e € A is the idempotent e(a) = 1,
e(b) = 0, this space has as basis

A=CaC, H=9H.0, D= [0 M*], = [1 0]-

ede, (1 — e)de,

16



3. PRODUCT OF THE CONTINUUM BY THE DISCRETE AND SYMMETRY BREAKING 578

so that every element of Q'(A) is of the form Aede + (1 — €)d(1 — ¢). The differential
d: A— Q'YA) is the finite difference

df = (Af)ede — (Af)(1 - e)d(1 —e), Af = f(a) - f(b);
it is a derivation with values in the bimodule Q'(A), which fails to be commutative
since fw# wf forwe N, f e A.

Also, if M # 0 then the representation 7 : Q*(A) — L£($) is injective on Q'(A), so
that Q'(A) = Q5 (A). We have

7(Nede + p(1 — e)de) = [F(j)‘j[ —,\(fw] € L(9).

A vector potential is given by a selfadjoint element of QJ,, i.e., by a single complex

number @, with
Ay |0 B N A ®
oM 0 |- 23\0 ¢ ,

Since V = —®ede + ®(1 — e)de, its curvature is
— e T I — - 5
0 =dV + V? = —®dede — ®dede + (Pede — (1 — e)dc) ;
and, using the equalities ede(1 — ¢) = ede, e(de)e = 0, (1 — e)de(1 — €) = 0, we have
0 = —(® + ®)dede — (PP)dede. =

—-M*M 0
0 -MM*|"

y

o

Under the representation m, we have §(de) = [ ; “hnd (dede) = [
This yields the formula for the Yang-Mills-acti
"nu,( 01) » YM(V)=2(9 + 112 — 1)®Trace((M*M)?),

where @ is an arbitrary complex number. The action of the gauge group U = U(1) x
U(1) on the space of vector potentials, i.e., on @, is given by

N 1 o - \
L V‘F\ Yu(V) = udu”™ + uVu’; "(“h') ‘(o o)(M g
for u = uge + up(1 — €), this gives o
(V) = (uqe+ up(l —e))(ude — upde) 3 (6 e )
— - _ o L]
+ (uae + up(1 — €)) ( — Pede + B(1 — e)de) (Tae + Wy(1 — €))
= ede + wl,(1 — e)de — u,apede — (1 — e)de

—uatyPede + w1, P(1 — €)de,

which, on the variable 1 + ®, just means multiplication by u%,.

In this very simple case, our action YM(V') reproduces the usual situation of broken
Symmetries (Figure 3); it has a non-unique minimum, |® + 1| = 1, which is acted upon

nontrivially by the gauge group. . "
& : &% 1" ko YM(VIMN

W\NLW\&/Q- (t4a3,
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FIGURE 3. The potential Y M (V)

The fermionic action is in this case given by

(@, (D+=(V))¥),
where the operator D + w(V) is equal to
(1+ 5)M‘]

[181 Aﬂ“L [@?\/1 61(;4*] [(1 +(3I>)M 0

which is a term of Yukawa type coupling the fields (1 + ®) and .

'Let us take for £ the nontrivial bundle over X = {a.b} with fibers of di-

mensions n, and ny, respectively, over a and b. This bundle is nontrivial if and only
if n, # ny; we shall consider the simplest case n, = 2, n, = 1. The finitely generated
projective module & of sections is of the form

E = fA,

where the idempotent f € Ms(A) is given by the formula

feo [(1,L1)) o] [t o0
L0 (Lo |0 e
in terms of the notation of ).
[0
0o
o
L 0 w0

18
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To the idempotent f there corresponds a particular compatible connection on &, given
by V ¢ with the obvious notation. An arbitrary compatible connection on &

has the f
as the form S s v ,-,.-gA -('-?

selfadjoint element of M;(Q}(A)) such that fp = pf = p. If we
— |P11 P12 Q lc e
2 [P21 P22] ' \L [

Y 0o )
: L L b
€pP21 = P21L6P22 = P22 = P22€, P12€ = P12;

(o™
de (no

where p = p* is
write p as a matr

|

these conditions re

1

thus we get

pi1 = —Frede + (1 — e)de, pay = Prede, pra = p3y, pa2 =0,
where ®; and ®, ard arbitrary complex numbers. D = M"
The curvature 6 is given by LA g & ( 6 6 )
20 = faflf+ fir + ; ¥
FTS AR LR 0 0 1, [dpT (e + (eds )
= + 11 P12 + pupiL T przp pupiz|
0 edede edpay 0 2111 P21P12 s [ © 0
An easy calculation gives the action YM(V) in terms of the variables @, ®,: “M o
* 3
YM(V) = (1 + 2(1 — (@ + 112 + |<I>2|2))2)Tr((M 1\1)2). (ed (_) N, u'_a

It is, by construction, invariant under the gauge group U(1) x U(2). What we learn

in Example ) rather than in «) is that the choice of vacuum corresponds to a choice

of connection minimizing the action, and in case /) there is really no preferred choice

of Vg, the point 0 of the space of vector potentials (case o)) having no intrinsic meaning.

In fact, the space of connections realizing the minimum of the action Y M is a 3-sphere ~ b/ ,Q ,éz
owng

{(®), ;) € C% |®) + 12+ B2 = 1}
whose elements have the following meaning. Let E, (resp. E,) be the fiber of our
Hermitian bundle over the point a (resp. b) of X; then dim E, = 2, dim E, = 1. As we
saw above, the differential d : A — 0Q'(A) is the finite difference. One way to extend
it to the bundle F is to use an isometry u : E, — E, and the formula

(Af)a = &a — u&p, (AL =& — u’&a.
All minimal connections V are of the form

VE = (A€), ® ede + (A&), ® (1 — e)d(1 — e).
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shall now return to the 4-dimensional case and work out the case of the product space
in detail.

. Example b). (4-dimensional Riemannian manifold V') x (2-point space X).

Let us TiX the notation: V is a compact Riemannian spin 4-manifold, A, the algebra
of functions on V and ($;, Dy, ~5) the Dirac K-cycle on A;, with its canonical Z/2-
grading v; given by the orientation, let Ay, 92, D5 be as in Example a) above, that is,
As = C® C, £ is the direct sum s, B Hayp, and D- is given by the matrix

LetA=A1®A2,.ﬁ=f)l®f)2an D=Dl®l+",‘5®D2

The algebra A is commutative; it is the algebra of complex-valued functions on the
space Y =V x X, which is the union of two copies of the manifold V: Y =V, U V.

Let us first compute the metric on Y associated with the K-cycle (9, D):
d(p.q) = §1€13{If(p) - f(@l; I[D, flIl < 1}.

To the decomposition Y = V, UV}, there corresponds a decomposition of A as A, @ A,.
so that every f € A is a pair (f,, f,) of functions on V. Also, to the decomposition

52 = 924 D N2

there corresponds a decomposition ) = ), ® $;, in which the action of f = (f,, f») € A

is diagonal: . 7 _0‘6 Rm 4.4
A [0 fb] € L(5). Szﬁ Londed.
In this decomposition the operator D becomes
o_[vel wem U/)@'K)
T seM el
where 0y, is the Dirac operator on V' and «; is the Z/2-grading of its spinor bundle.

This gives us the formula for the “differential” of a function f € A:
[D f] s i_lhf(dfa) ® 1 (fb T fa)HIS ® AI‘ { - ] |
' (fa=fo)s®M  iTy(dfs) @1 |°

The differential [D, f] thus contains three parts: \\

«) the usual differential df, of the restriction of f to the copy V, of V;
3) the usual differential df, of the restriction of f to the copy V} of V;

v) the finite difference Af = f(p.) — f(ps), where p, and p, are the points of V,
and Vj, above a given point p of V.

,{f’:&o (l,"lc) ’)/(0((:«) -“}/M 9/0{'\-\.,

(),i¢) ©

Eacid.

20



3. PRODUCT OF THE CONTINUUM BY THE DISCRETE AND SYMMETRY BREAKING 583

A

df,

(®)

FI1GURE 4. Differential of a function on a double-space

o)
The corresponding operator in §) is given by / (TS'Q e ) : = (Sa, gs,)

T (wa) ®1 875 ® M* ° Js
S ®M  ily(w) ®1

SRR > ]

the bimodule structure over A is given, with obvious notation, by o S
[\ a
(fa.v fb)(waﬂwb‘, 6&366) — (fawa-, fbw[N fa(sa_v fb66)1 :&( Qa'wb'SQ‘SL)
(wnawba(saw(sb)(faafb) - (fawae fbwb-, fb(sa-, fadb)- L wh

The involution * is given by (wq, Wh, 04, 0)* = (—Wa, —w,,,&,,&,).

The terms 0, and d, correspond to the bimodule of finite differences on passing from
one copy V, to the other copy V, of V. Note that even though A is commutative,
this bimodule is not commutative; for. if it were commutative then the finite difference
would fail to be a derivation. With the above notation, the differential f € A — w(df)
reads as follows:

f = (far fo) = (Afar Afs, fo = far fa = f) € Q.

When we project on V, the bimodule €2}, can be viewed as a 10-dimensional bundle
over V., given by two copies of the complexified cotangent bundle, and a trivial 2-
dimensional bundle

T;(V)c ® T;(V)c ® Co C;
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however, one must keep in mind the nontrivial bimodule structure in the last two terms.
Figure IV 4 illustrates the situation.

As in the case of the Dirac operator on Riemannian manifolds (Section 1, Lemma 6),
let us compute the pairs of operators of the form 7(p) = T}, n(dp) = T3 for p € Q'(A).

Given p = ) f;dg; € Q'(A), with f;,g; € A, we have - R ) §9
== iTly(wa) @1 a5 @ M*
TOI=1 @M i ly(w)@1)°
where w, = ), fjadgja, wp = Y fipdg;s and
0q = Z fja(gjb = gja)v 0p = ijb(gja = gjb)-
We have 7(dp) = > w(df;)m(dg;), which gives the 2 x 2 matrix
i) = (&) @1+ (6. + 6) @ M*M Y51 v (1) @ M*

&= Ysi v (ms) @ M (&) @ 1+ (3, + 0) ® MM* |
where &, = > df;.dg;, and & = " df;dg;s are sections of the Clifford algebra bundle
C? over V., whereas

m = Y ((fia— fi5)dgja — (9ja — gie)dS3s),
ma = Y ((fis— fia)dgjn — (96 — ja)dfja)-
Using the equalities
dé, = Z (fia(dg;p — dgja) + (gi6 — 9ja)dfja),
Ao, = Y (fin(dgja — dgin) + (9ja — 936)dSf0),

We = Z fiaQGja, wp = Z firdgs,
we can rewrite 7, and 7, as
Ta =wb—d5,,—wa, nb=wa—d6¢,—-wb.

As in the Riemannian case (Lemma 6 of Section 1), the sections &, and &, of C? are
arbitrary except for 03(&,) = dw, and 05(§) = dw,. This shows that the subspace
7(d(Jo N Q) of w(22) is the space of 2 x 2 matrices of operators of the form

T — [7(&;()) ®1 'y(&,())@) 1] ,

where &, and &, are sections of C?, i.e., are just arbitrary scalar-valued functions on V/,
so that (&) = &a: (&) = &
A general element of 7(€?) is a 2 x 2 matrix of operators of the form
7 [77() @1+ h, @ M*M Y51 1y(Ba) @ M*
Y51 1v(6) @ M —y(ap) @1+ hy @ MM* |’

Se————
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where a,, a, are arbitrary sections of C2, h,, hy, are arbitrary functions on V and 3., 3
are arbitrary sections of C! (i.e., 1-forms).

Lemma 6. Assume that M*M is not a scalar multiple of the identity matriz. Then,
an element of 13, is given by:

1) a pair of ordinary 2-forms a,, oy, on V;

2) a pair of ordinary 1-forms 3,, 3, on V;

3) a pair of scalar functions h,, hy on V.

The hypothesis M*M # ) is important since otherwise the functions h,, h; are elimi-
nated by m(d(Jo N QY)).

Using the above computation of 7(dp) we can, moreover, compute the sextuple (a,, a,
Bas By hashy); then for the differential dw of an element w = (w,,ws, dq, &) of O, we
get:

1) a, = dw,, ap = dwy;
2) Bo = wp — Wy — ddy, By = we — wp — ddyp;
3) ha=6a+6ba hy = 04 + 0.

Thus, we see that the differential dw € Q3, involv;lche differential terms dw,. dwy, dd,
and dd, as well as the finite-difference terms w, — wy, and 8, + J;, but in combinations
such as wy — w, — dd, imposed by d(df) = 0. Let us compute the product ww' € Q3,
of two elements w = (Wa, Wh, da, 0p), W' = (W, w}, 0%, d;) of Q}); we get:

1) a,
2) Ba = b} — 8w, By = Sy, — Sfwn;
) ha = (50(5;), hb = 6[,(5;.

=W AW, o = Wy A w};

The next step is to determine the inner product on the space 03, of 2-forms given in
Section 1. By definition, we take the orthogonal complement of 7 (d(Jo N 2')) in 7(92)
with the inner product (T, T») = Tr,(T;7T:|D|~*). An easy calculation then gives:

Lemma 7. Let A(M*M) be the orthogonal projection (for the Hilbert-Schmidt scalar
product) of the matriz M*M onto the scalar matrices \id. Then, the squared norm of
an element (aa, ap, Ba, Bb, has hy) of Q3 is given by (872)~1 times
/(N,,“aa[l2 + Ny||aw|*)dv + tr(M* M) / (13all® + [|Bo|*)dv
v v
. tr((M*M—,\(M*M))Z) X / (1Rl + ||s]|?)dv,
1%

where N, = dim 2, and N, = dim .
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Since the restriction of E to V, is trivial with fiber C2, we may as well describe V, by a
. |wi Wi 3 o 5 S
2 x 2 matrix |:W},l },2] of 1-forms on V that is skew-adjoint. Similarly, V, is given by
Way Wam :

a single skew-adjoint 1-form [w},], and u by a pair of complex fields (1+ ¢y, o) = u(1).

With these notations, the connection V is given by the equality

VE=fAdE+pE € ER4Q VEEE, \
((,0) -
where £ = fA?%, f € Ms(A) being the idempotent f = [(l) S] e = (0AT € A, and

where p € My(£2},) is the 2 x 2 matrix whose entries are the following elements of Q},:

P = (w‘fpw'lfu%‘h—@l)-, u_o_J Nut '(ﬂ o
= (w2 0,0,%,), o
P12 ( ‘112 ,P2) U,_, “‘)11 'i
pr = (Wi 0pp0), e [T LR
P22 = (ng,0,0.0), ZL 93. 1]
or, equivalently, 4 ° " o

= whi wh| [wh 0] [¢r O] [7 @ S
Wi whlt |0 o] of o ol

The curvature 6 is then the following element of f 1\[2((2%)) &

0 = fdfdf + fdof + p’,

which is easily determined using the above computation of S b ® ( (()' (?»

d:Qp = 0%, A: Q%X Q) — Q3.

As we saw in Lemma 6, elements of 2, have a differential degree and a finite-difference
degree (a, 3) adding up to 2. Let us thus begin with terms in # of bi-degree (2,0). To

compute them we just use the formulas 1) following Lemma 6:
ety

\a-a=dwa., ap = dwy =wa/\w;, ab=wb/\w;.

y
We thus see that the component #>?) of hi-degree (2,0) is the following 2 x 2 matrix
of 2-forms on V, U V};:

629 = du® + 0" Awt, 620 = dub + Wb Awb = [dzﬁ’l g]

Next, we look at the component #:)) of bi-degree (1, 1) ‘and use the formulas 2):

— W — dd,, Ba = daw}, — wady,

- déb, = (Sbu); - wb(i{,.
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Thus, 41 is the following 2 x 2 matrix of 1-forms on V, U Vj:
wh 0]  [wh wh] [der 0O 10
0 0 wg wi dgs 0 00
+ [P 0] [wiy O _ | wia| (¢ O
w2 0) [0 O wy wi| [p2 0

= [—dw — (wh — b)) (e +1) - wizP2 0] _
—dps — wh (1 +1) — (Wi —wiy)p2 0

0‘(11,1)

Il

Similarly, we have

gy — 10 Wi wia| wll)l 0 - dp, dp,

b 0 0 w9 Wiy 0 0 0 0

4 P Pa| Wi Wi _ wh 0] [B1 @
0 0] |wg wsh 0 0[O0 O

_ d¢1+(w?1_wlf1())(¢1+1)'*w51¢2 —dpytwis (P +01)+(W‘212—w1171)992j|'

Finally, we have to compute the component #(®2); we use the formulas 3):
he = 641 T 5bw h‘a = 5416,7

= 0q + 0p, hy = 00"
We then have hb % b e {g /X

e - [+ 3L 8]1[ NGTD

. {asdd

€

- [vﬂw(@lw@l B J; S
1+
P2 Vl ,/\/ SQ* b
(02) _ 0 P+
b +[00H,,; #l0o
[ L e e N S S
. +[01 02:| |:¢2 0] h o
_ [l/+991+9_91+‘¢19*1 + 8.9, 0]
0 0]

Thus,
Yl\I(V) — Ig + Il + I(),

where each I; is the integral over M of a Lagrangian density given by the following
formulas.

First, for I:

|dw? + w® A w®|2N, + |dw®|2N,,
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3. PRODUCT OF THE CONTINUUM BY THE DISCRETE AND SYMMETRY BREAKING 589

where N, = dim$s,, N, = dim$s; and the norms are the squared norms for the W e &o

curvatures of the connections V¢ and V?, respectively. . (h C,,_
Next, for I;: |‘<W¢ ¢ v t; - \,ZIW\ORSS

v (1 ?:92'*’1) 2n-(zu*M), H; N M ¢ 6.

where V is the covariant differentiation of a pair of scalar fields, given by

L, a b a
k-l Wi Wiy Wia
a we, — | =
Way 22 — Wiy

Finally, for I;: H":‘Ss A-l.‘ AN c./wi-ctm
(14201 - (1 + @ + 1)) Te( (W1 21))?),

where A\t is the orthogonal projection in the Hilbert-Schmidt space of matrices onto
the orthogonal complement of the scalar multiples of the identity. These terms are
obtained, with the right coefficients, from the computation of the Hilbert space norm
on €, in Lemma 7.

The fermionic action is even easier to compute. We have

(% DVU/‘) = Jo+ J1,

2

where ¥ € £ ®4 9, Y = 1, is given by a pair of left-handed sections of S ® $,,
denoted by v 11, and a right-handed section of S ® 5, denoted by v¥*. Both J, and
¥y . .
Jy are given by Lagrangian densities: W '_r D~ 0 lQNV\pt-C Q’\M

Jo 1 ¥ (04 'i“l'y(w“))'lp"“ + Eb 0+ i'lq(wb))z;‘)",
(V) k Q’ —_ : B . ~ {é\&
iwkewa - g 1 U¢¥K1+¢JN%M’fff>,,f/mas;i5L3 @
We can now make the point concerning this example b): modulo a few nuances that

we shall deal with, the five terms of our action

Li+L+ L+ Jy+ i

are the five terms of the Glashow—Weinberg-Salam unification of electromagnetic and
weak forces for N generations of leptons (where N = N, = N}, is the dimension of §,,
and 9a4).

Let us describe for instance, from [197], and using the conventional notation of physics,
the five constituents of the G.W.S. Lagrangian, which we write directly in the Euclidean
(i.e., imaginary time) framework. For each constituent, we give the corresponding fields
and Lagrangian:

£=E(;+Ef+£¢+£}-'+£v,

where
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3. PRODUCT OF THE CONTINUUM BY THE DISCRETE AND SYMMETRY BREAKING 590
1) L¢: The pure gauge boson part is just
1 1
Lg= Z(G/waGgu) rE Z(FquW)a

where Go = 0,Wya — O Wya + geascWW,c and F,, = 8,B, — 0, B,, are the
field strength tensors of an SU(2) gauge field W,, and a U(1) gauge field B,,.
(Einstein summation over repeated indices is used here.)

2) Ly: The fermion kinetic term has the form
- . Ta 3 YL = i YR
Lj=-— Z [fL’Y“ (0,, + ngWpa + zg'?B,,) fo+ fr?* ((’)p + zg'?B,,) fR_] .

where the f;, (resp. fr) are the left-handed (resp. right-handed) fermion fields,
which for leptons and for each generation are given by a pair, i.e., an isodou-

vy,

blet, of left-handed spinors (such as : ]), and a singlet (eg), i.e., a right-
L

handed spinor.

We shall return later to the hypercharges Y, and Yg, which for leptons are given by
Y, =-1,Yr=-2

3) Lo: The kinetic terms for the Higgs fields are
2

. Ta g
Lo=—||0,+ zg;W}w + ZEB,, i)

_|®
where ® = [ &,

hypercharge Yy = 1.

] is an SU(2) doublet of complex scalar fields ®; and ®, with

4) Ly: The Yukawa coupling of Higgs fields with fermions is
Ly == [Hp(Fr-®)fr+ HipFr(®" - fu)],
where Hyy is a general coupling matrix in the space of different families.

5) Ly: The Higgs self-interaction is the potential
Ly = p2(3+) %,\(qﬁcp)?,
where A > 0 and p? > 0 are scalars.

All of these terms are deeply rooted in both experimental and theoretical physics,
but we postpone an elaboration of this point to the complete model invoking quarks
and strong interactions as well. For the moment we shall establish a dictionary, or
change-of-variables, between our action and the Glashow—Weinberg-Salam action.

The first obvious nuance between the two actions is that our action involves a U(1) and
a U(2) gauge field while the G.W.S. action involves a U(1) and an SU(2) gauge field
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3. PRODUCT OF THE CONTINUUM BY THE DISCRETE AND SYMMETRY BREAKING 591

(however, cf. [579] for an interesting perspective on this point). We shall thus, in an
artificial manner, reduce our theory to U(1) x SU(2) by imposing on the connections
V¢ =d+ w* and V* = d + w” the following condition:

Ad hoc condition: tr(w®) = w®.

Let us now spell out the dictionary.

Noncommutative geometry Classical field theory
vector Y € E Q@4 H, 7Y =7 chiral fermion f
differential components of pure gauge bosons W, B
connection w?, w’
finite-difference component Higgs field ®
of connection (1 + ), 6
I, L
I Ly
Iy Ly
Jo Ly
J 1 EY

It is moreover straightforward, using the above “ad hoc condition”, to work out the
change of variables from our fields v, w. d to the fields f. W, B, ® which gives the equality

g 2YM(V) + (&, Dy¥)) = L(f, W, B, ®),

where the right-hand side is a special case of the G.W.S. Lagrangian, with a few
constraints. These relations are of limited use for three reasons. The first is that the
model incorporates neither the quarks nor the strong interaction, the second is the
artificial nature of the “ad hoc condition”, and the third and most important is that,
due to renormalization, the coupling constants such as g, ¢, pt, A, Hyp that appear in
the G.W.S. model are all functions of an effective energy A to which, for the moment,
we can give no preferred value.

In Section 5 we shall remove the first two defects by explaining how to incorporate
quarks and strong interactions, as well as how the hypercharges of physics occur, from
a conceptual point of view.
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5. THE STANDARD U(1) x SU(2) x SU(3) MODEL 609

5. The Standard U(1) x SU(2) x SU(3) Model

In this section, we shall start from the main point of the computation of our Yang—
Mills functional in Example b) of Section 3 (referred to briefly as Example 3b)), i.e.,
in the case of the product of a continuum by a discrete 2-point space. The point
is that we recovered the Glashow Weinberg-Salam model for leptons, with the five
different pieces of its Lagrangian, from this simple modification of the (4-dimensional)
continuum. The question we shall answer in the present section is the following: Can
one, by a similar procedure. incorporate the quarks as well as strong interactions?

Before embarking on this problem, some preparation is required to explain better what
our aim is. First, there is at present (1993) no question that the standard model of
electro-weak and strong interactions is a remarkably successful phenomenological model
of particle physics. Since I did not take any part in its elaboration, I shall refrain from
a survey of the experimental roots of this model or of the long history of its elaboration.
I refer the reader to the beautiful book of A. Pais [429] or to the more technical papers
[197]. This seems an important prerequisite for a mathematician reader of the present
section, who might otherwise underestimate the depth of the physical roots of the
model.

Next, by the work of 't Hooft [284] this model is renormalizable ([57], [213]), a nec-
essary requirement for applving the only known perturbative recipe for quantizing the
theory. It nevertheless has problems, such as the naturalness problem [197], which
make specialists doubt that it is really of fundamental significance, thus leading them
to look for alternative routes, grand unification, technicolor. .. These alternate routes
all share a common feature: they deny any fundamental significance to the Higgs boson.

Our contribution does not throw any new light on the above theoretical problems of
the standard model, since it is limited to the classical level. However, it specifies very
precisely which modification of the continuum, in fact its replacement by a product with
a finite space, entails that the Lagrangian of quantum electrodynamics becomes the
Lagrangian of the standard model. As we shall see, the geometry of the finite set will
be, as advocated above, specified by its Dirac operator, and this will be an operator in
a finite-dimensional Hilbert space encoding both the masses of the elementary particles
and the Kobayashi-Maskawa mixing parameters.

Once the structure of this finite space F is given, we merely apply our general action
to the space (continuum) x F' to get the standard model action. In many ways, our
contribution should be regarded as an interpretation, of a geometric nature, of all the
intricacies of the most accurate phenomenological model of high-energy physics; if it
makes the model more intelligible to a mathematical audience, then our purpose will in
some small measure be achieved. It does undoubtedly confirm that high-energy (i.e.,
small-distance) physics is in fact unveiling the fine structure of space-time. Finally, it

gives a status to the Higgs boson as just another gauge field, but corresponding to a
finite difference rather than a differential.
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( 5.3 The standard model.) Just as for the Glashow—Weinberg-Salam model for
leptons;The Lagrangian of the standard model contains five different terms,
£=£(;+£f+£¢+£y+£v,

which we now describe together with the field content of the theory. (As before, we
shall use the Einstein convention of summation over repeated indices. )

1) The pure gauge boson part L UL AN 03
Suey ) 4 ) ol
Lo = 7(CuaGy’) + 7 (Fuw F™) + 7 (Hun HY”),

where G, is the field strength tensor of an SU(2) gauge field W,,, F), is the field
strength tensor of a U(1) gauge field B, and H,,, is the field strength tensor of an
SU(3) gauge field V,,,. This last gauge field, the gluon field, is the carrier of the strong
force; the gauge group SU(3) is the color group, and is thus the essential new ingredient.
The respective coupling constants for the fields W, B, and V' will be denoted ¢, ¢’, and
g", consistent with the previous notation.
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2) The fermion kinetic term Ly 6 ( Z

To the leptonic terms
7 - Ta . /Y - - ,Y
- Z[f[,"fp(au i ZQEI'VIM +19 éB#)fL + FrY"(0u +ig ?RB#)fR]f
!
one adds the following similar terms involving the quarks:

T - Ta > . Y .
= E [Fir*@n + 195”",m =+ 19'?LBF + 19"\ Vi) fL
f
F o e e
+ frY*(0u+1ig 73,1 + 19" Vi) fr)-

For each of the three generations of quarks [Z], [:] and |:It):| one has a left-handed
uR

dr

quark field appears in 3 colors so that, for instance, there are three up fields: u}, u},

ub,. All of these quark fields are thus in the fundamental representation 3 of SU(3).

isodoublet (such as [Zl‘] ), two right-handed SU(2) singlets (such as ), and each
L

The hypercharges Y;, and Yy are identical for different generations and are given by
the following table:

CLT VeaVivy et dqs;b

Y, -1 -1 B B

Y =2

R
Wi

These numbers are not explained by theory but are set by hand so as to get the correct
electromagnetic charges Qen, from the formulas

2Qu =Y +2I3; 2Qem = Yr,

where I3 is the third generator of the weak isospin group SU(2).

3) The kinetic terms for the Higgs fields

/ 2
(a,, +igEW,, + i%Bﬂ) )

L= 5

where w= Y1 is an SU(2) doublet of COII]plCX scalar fields with hyperchargc Yir=11s
P2
Y

This term is ezactly the same as in the G.W.S. model for leptons.
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5. THE STANDARD U(1) x SU(2) x SU(3) MODEL 613

4) The Yukawa coupling of Higgs fields with fermions

Ly == [Hyp Fr ¢ fa+ HipTale" - f),
£
where Hy is a general coupling matrix in the space of different fermions, about which
we must now be more explicit. First, there is no Hyy # 0 between leptons and quarks,
so that Ly is a sum of a leptonic and a quark part. Since there is no right-handed
neutrino in this model, the leptonic part can always be put into the form

EY.lepton = —Ge(ze i 99)61{ . Gp (fp 5 lP)ﬂR — G-,-(z-,- # ’,O)TR + h.C.7

Ve L
€r,
pling constants G, G, and G, provide the lepton masses through the Higgs vacuum
contribution.

where L, is the isodoublet , and similarly for the other generations. The cou-

The quark Yukawa coupling is more complicated owing to new terms which provide
the masses of the up particles, and to the mixing angles. We have three new terms.
The first is of the form

(*) GLug®,

ur

where the isodoublet L = is obtained from a left-handed up quark and a mixing

qr of left-handed down quarks (taken from the three families); the two others have
a similar structure but with the up quark replaced by the charm and top quarks
respectively. Also, ¢ needs to have the same isospin but opposite hypercharge to the
Higgs doublet ¢ and is given by

(%) g=Jy*, J= [_01 (1)] ;
We refer to [197] for more details on this point, to which we shall return later.
5) The Higgs self-interaction
Ly = pPptp— %f\(vo“v)z
has exactly the same form as in the previous case.

Thus, we see that there are, essentially, three novel features of the complete standard
model with respect to the leptonic case:

A) The new gauge symmetry: color, with gluons responsible for the strong inter-
action.
4

B) The new values % = —% of the hypercharge for quarks.

C) The new Yukawa coupling terms (x).
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5. THE STANDARD U(1) x SU(2) x SU(3) MODEL 614

We shall now briefly explain how these new features motivate a corresponding modifi-
cation of Example 3b), which led us above to the G.W.S. model for leptons. First, our
model will still be a product of an ordinary Euclidean continuum by a finite space.

In Example 3b), for the algebra A of functions on the finite space, we took the algebra
C, ® C,. But since we then considered a bundle on {a,b} with fiber C? over a and C
over b, we could have in an equivalent fashion taken A = M,(C) @ C and then dealt
with vector potentials, instead of connections on vector bundles. Let us see how C)
leads to replacing A = M>(C) & C by A = H® C, where H is the Hamiltonian algebra
of quaternions. The point is simply that the equation (*) which relates ¢ and ¢ is the
same as the unitary equivalence 2 ~ 2 of the fundamental representation 2 of SU(2)
with the complex-conjugate or contragradient representation 2, i.e., we have

geUR), JgJ'=3 & geSU(2).

Let us simply remark that z € M5(C), JzJ~! = T defines an algebra, the quaternion
algebra H.

Next, let us see how A) leads us to the formalism of bimodules and Poincaré duality
of Section 4. Indeed, let us look at any isodoublet of the form [le:] of left-handed

quarks. It appears in 3 colors,

r Y b
U’L UL uL

dy dj dj

which makes it clear that the corresponding representation of SU(2) x SU(3) is the
external tensor product 2gy(2) @ 3sp(3) of their fundamental representations. It is easy
to convince oneself that even if one neglects the nuance between U(n) and SU(n) in
general, there is no way to obtain such groups and representations from a single algebra
and its unitary group. The solution that we found, namely to take (.4, B)-bimodules,
with B = C @& M;3(C) (and A = C @ H as above) is in fact already suggested by
the following picture in a paper of J. Ellis [197], very close to that of the diagonal
A C X x X in Poincaré duality:

The apparent “generation” or “family” structure of fundamental fermions.

We just refine it by taking algebras—C & H for the y-axis, C @& M3(C) for the z-axis—
instead of groups, which allows us to account better for the leptons (by using the C of

C @ M;3(C)).

Finally, we shall get a conceptual understanding of the numbers B) from a general
unimodularity condition that makes sense in noncommutative geometry, but we need
not anticipate that point.
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FIGURE 5. The apparent “generation” or “family” structure of funda-
mental fermions. The horizontal axis corresponds to SU(3) color prop-
erties, the vertical axis to SU(2)xU (1) representation contents

We are now ready to describe in detail the geometric structure of the finite space F
which, once crossed by R?*, gives the standard model.

5.7 Geometric structure of the finite space F. This structure is given by
an (A, B)-module (£, D,~), where A is the %-algebra C @ H while B is the *-algebra
C@ M;(C). Unlike B, the algebra A is only an algebra over R. The #-representations 7
of A on a finite-dimensional Hilbert space are characterized (up to unitary equivalence)
by three multiplicities: n,, n_, and m, where §, = C™ & C"- @ C*™; if a = (), q) €
A = C @ H, then 7(a) is the block diagonal matrix

m(a) = (A®idy+) & A ®id,-) ® ([_O—j g] ® idm) L

where the quaternion ¢ is ¢ = a + 3j with a,3 € C C H. The representation of the
complex #-algebra B on $) gives a decomposition
H=5H5d(H:eC?

in which B acts by 7(b) = by® (1®b,) for b = (bg, by) € C® M;3(C); thus the commuting
representation of A is given by a pair m, m of representations on ), and £;. The
(A, B)-bimodule $) is thus completely described by six multiplicities: (ng, n? mo) for

7 and (nk,n’,m') for m;. We shall take these to be of the form

(n%,n%,m°% = N(1,0,1), (n},nl,m') = N(1,1,1)
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(where N will eventually be the number of generations N = 3). We shall take the
Z/2-grading v in §) to be given, as in Example 3b), by the element v = (1, —1) of the
center of A. Finally, we shall take for D the most general selfadjoint operator in £
that anticommutes with v (Dy = —yD) and commutes with C ® B, where C C A is
the diagonal subalgebra {(A, A); A € C}. (As we shall see, D encodes both the masses
of the fermions and the Kobayashi-Maskawa mixing parameters.) It follows that the
action of A and the operator D in $), (resp. $;) have the following general form (with
qg=a+Fj€H):

Since  is a degenerate case (M, = 0) of 7y, we just restrict to 7, in order to determine
Qp(A).

A straightforward computation gives m () a;da}) with a;,a; € A, a; = (Aj,q;), ¢; =
a; + B4, q; = af + Bj; we have

m()  a;dd)) = [)0/ )0(] ;

where X and Y are the matrices

Lok o
AIJ‘PI M*¢ A[d(rol A-[u(t??

X= Mz M|t Y T |
uP2 w1 _1‘4d99/2 1‘/[1199’1

o1 = D M(ai—X), p2=) B,
o1 = D aiN—a)) + BB, ¢h=) —aibi+ BN - af).
It follows that Q}(A) = H & H with the A-bimodule structure given by

A )(q1,02) = (A1, q92) Va1, 2 € H,
(11,0)(X0) = (019,422) VAEC, g€ H,
and the differential d again being the finite difference:

dAg=(@-IMr—qgecHeH

with

(just set g1 = @1 + Vai, 2 = ¥ + V)i with the above ¢’s).
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Finally, the involution * on Qh(A) is given by

(q1,92)" = (42, Q1) Vg; € H.

The space U of vector potentials is thus naturally isomorphic to H, and a similar
computation shows that Q%(A) = H& H with the A-bimodule structure

(X )(q1, @) (X', ¢) = (A1 X', qq20) VAN € C, ¢,¢' € H;
the product Q} x QL — Q2 is given by
(01, 92) A (41, 45) = (9102, 424))
and the differential d : Q}, — Q% by
d(q1,92) = (@1 + @2, 1 + ¢2).
Thus, the curvature 0 of a vector potential V' = (¢,q) is
0=aV+V?=(g+¢" +90".9+4" +q'9) = (1 +4q* - 1)(1, 1),
where ¢ — |¢| denotes the norm of quaternions.

We thus see that the action YM(V) = Trace(7(6)2)_(we are in the 0-dimensional case)
is the same symmetry-breaking quartic potential for a pair of complex numbers as in
Example 3b).

The detailed expression for the Hilbert space norm on Q%(A) = H & H is given, for
w = (q1,92), ¢ = a; + B3], by
lwll® = Mlar* + pa|Bif* + Aa(lg2l),
where
A = Trace(|M,|*) + 3Trace(|Ma|* + | M.|*),
= 6Trace(|My|*|M,|?),
1
A = §Trace(|]tfe|4 + 3(|Ma|* + | M |* + 2| Myl M, |?)).
Finally, we shall investigate what freedom we have in the choice of the selfadjoint
operators Dy, D; on $),, $; in the above example. Two pairs (£,,D;) and (ﬁ;D;)
give identical results if there exist unitaries U; : §; — $ such that:
a) U;D;Ur = D; (j =1,2),
B) Ujmj(a)Ur = mj(a) Va € A, j=1,2.
Making use of this freedom, we can assume that Dy is diagonal in £, and has positive

eigenvalues e, es, es. Thus, the situation for Dy is described by these 3 positive
numbers.
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For §),, a general element of the commutant of m,(A) is of the form

Vi 0 0 0
0% 0 0
Ui=10 0 w ol
00 0 Vi

where the V; are unitary operators when U, is unitary.
Conjugating D; by U; replaces My and M, respectively, by
M) =ViMVy, M, = VoM, V5.

We thus see that we can assume that both M, and M, are positive matrices and that
one of them, say M,, is diagonal.

The invariants are thus the eigenvalues of M, and My, i.e., a total of 6 positive num-
bers, and the pair of maximal abelian subalgebras generated by M, and My. Since
any pair A;, A, of maximal abelian subalgebras of M3(C) are conjugate by a uni-
tary W, WA, W* = A,, which is given modulo the unitary groups U(.A;), there remain
4 parameters with which to specify W so that WMy;W* is also diagonal. Such a W
corresponds to the Kobayashi-Maskawa mixing matrix in the standard model.

\:ﬁe etric structure of the standard model. We shall show in this sec-

t1 the standard model is obtained from the product geometry of the usual
4-dimensional continuum by the above finite geometry F. Thus, we let V be a 4-
dimensional spin manifold and (L?, dy,s) its Dirac K-cycle. The product geometry
is, according to the general rule for forming products, described by the algebras

A=C>(V)® (CaH), B=C>(V)® (Ca M;(C)).
The Hilbert space H = L*(V, S) ® Hr, where Hp is described in 7) above, i.e., Hpr =
$Ho @ (H ® C?). There is a corresponding decomposition H = Hy & (H, ® C?), with

corresponding representations 7; of A on H;.

Then D = 0y ® 1 + 75 ® Dp, where Dp is as above. This gives a decomposition
D = Dy & (D, ® 1), where, according to 7), we take M,, M, and My, to be positive

fodinde.
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matrices: Nw oy 4 Vo oo 200
[0y ®1 M. 0 \(
Dy = |509M. v®1 0 — Lk" o
| m 0 ol
Oy @1 0 v5 @ My 0 ] k
~
0 w1l 0 oM e
Dl = /
Vs @ My 0 oy ®1 0
. W s ® M, 0 dy®1 |

We shall first restrict attention to the algebra A, the case of B being easier.

Note that

A = C>(V,C) & C>(V,H), so that every a € A is given by a pair (f, q) consisting of

a C-valued function f on V and an H-valued function ¢ on V.

Let us first compute Q},(A). Given p = Y a.da’, € Q'(A), with a,,a, € A, we have

as = (fs,qs), a = (f..q.), where fs, f. are complex-valued functions on V/
are H-valued functions on V', of the form

and g, ¢,

Gs=as+ 0, d,=a,+ B —e  — QU (.c)">

Then

———— _

C T4 ®1 0 0175 @ My Pays ® My

) _
g U 0 iy(A)®1 \ -P @M, Py @M,
CBOMy @M, [iTy(W) @1 iy(W,)®1

.
BrEOMs P ®@M, | ivWr)®1l iy (W) ®1]

%SU(Q)

where A = )" fidf! is a C-valued 1-form on V, and Wy + Wyj = W = )" ¢.dq. is an

H-valued 1-form on V' (cf. [20]).

Also, p; and ¢ are complex-valued functions on V' given by the same formulas as

above for the finite geometry, namely,
o1=)_ fald, = £), p2=)_ fuB5,
Z (QS(f: i a;) St 591)- 9"‘12 . Z (.{js(f_; . o‘_{;) - as'g;)~

/
#1
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