以下, $S^n = \{(x_1, \dots, x_{n+1}) \in \mathbb{R}^{n+1} | x_1^2 + \dots + x_{n+1}^2 = 1 \}$ とする.

問題 1. 位相空間の間のホモトピー同値が、同値関係であることを証明せよ.

問題 2. 以下の部分空間 $A\subset X$ が強変形レトラクトであることを, レトラクションを構成して示せ.

- (1) $A = \{(0, \dots, 0)\}, \qquad X = \mathbb{R}^n.$
- (2) $A = \mathbb{R}^n \times \{0\}, \qquad X = \mathbb{R}^n \times \mathbb{R}.$
- (3) $A = \{\pm 1\},$ $X = \mathbb{R} \{0\}.$
- (4) $A = S^n$, $X = \mathbb{R}^{n+1} \{(0, \dots, 0)\}.$
- (5) $A = \mathbb{R} \times \{0\}/\sim, \qquad X = \mathbb{R} \times [-1,1]/\sim.$

ただし、(5) における同値関係 ~ は以下で定義する:

$$(x,y) \sim (x',y') \Leftrightarrow \left\{ \begin{array}{l} x'-x \in \mathbb{Z}, \\ y' = (-1)^{x'-x}y. \end{array} \right.$$

問題 $3.\ Y$ を \mathbb{R}^n の部分空間とし, $f,g:X\to Y$ を連続写像とする.

- (a) 各点 $x \in X$ に対して, f(x) と g(x) を結ぶ線分が Y に含まれるとする. この とき, f と g はホモトピックであることを示せ.
- (b) 任意の連続写像 $f,g:X\to\mathbb{R}^n$ はホモトピックであることを示せ.

問題 4. X を任意の位相空間とし、連続写像 $f,g:X\to S^n$ は、任意の $x\in X$ に対して $f(x)\neq -g(x)$ を満たすとする.

(a) 任意の $x\in X$ と $t\in [0,1]$ に対し、 $\|(1-t)f(x)+tg(x)\|\neq 0$ を示せ. ただし、 $v=(v_1,\ldots,v_{n+1})\in\mathbb{R}^{n+1}$ に対して、 $\|v\|$ は次で定める.

$$||v|| = \sqrt{v_1^2 + \dots + v_{n+1}^2}$$

(ヒント: 任意の $v,w\in\mathbb{R}^{n+1}$ に対し $\|v-w\|\geq |\|v\|-\|w\||$ が成り立つ.)

(b) $f \ge g$ はホモトピックであることを示せ.

以上.

http://math.shinshu-u.ac.jp/~kgomi/class/index.html.

解答例

2

問題 2. 包含写像を $i:A\to X$ とする. レトラクション $r:X\to A$ と, $i\circ r\simeq_A \mathrm{id}_X$ を与えるホモトピー $H:X\times[0,1]\to X$ の例は以下のとおりである.

(1)
$$r(x_1, \dots, x_n) = (0, \dots, 0),$$
 $H(x_1, \dots, x_n, t) = (tx_1, \dots, tx_n).$

(2)
$$r(x_1, \ldots, x_{n+1}) = (x_1, \ldots, x_n), \quad H(x_1, \ldots, x_{n+1}, t) = (x_1, \ldots, x_n, tx_{n+1}).$$

(3)
$$r(x) = \frac{x}{|x|}$$
, $H(x,t) = \frac{x}{|x|^t}$.

(4)
$$r(x) = \frac{x}{\|x\|}$$
, $H(x,t) = \frac{x}{\|x\|^t}$.

(5)
$$r([x,y]) = [x,0],$$
 $H([x,y],t) = [x,ty].$

問題 3.

(a) f(x) と g(x) を結ぶ線分が Y に含まれるということは,任意の $x\in X$ と $t\in [0,1]$ に対して, $(1-t)f(x)+tg(x)\in Y$ となることである.従って,次の連続写像が矛盾なく定義される.

$$H: X \times [0,1] \to Y,$$
 $H(x,t) = (1-t)f(x) + tg(x).$

この H は f から g へのホモトピーである.

(b) $Y=\mathbb{R}^n$ とすると、任意の $f,g:X\to Y=\mathbb{R}^n$ に対して (a) の条件が成立する. 従って、 f と g はホモトピックである.

問題 4.

(a) $\|$ $\|$ の性質と, $\|f(x)\| = \|g(x)\| = 1$ より次を得る:

$$||(1-t)f(x) + tg(x)|| \ge ||(1-t)f(x)|| - ||tg(x)|||$$

$$= |(1-t)||f(x)|| - t||g(x)||| = |(1-t) - t| = |1-2t|.$$

従って, $t \neq 1/2$ であれば, $||(1-t)f(x) + tg(x)|| \neq 0$ である. t = 1/2 のとき,

$$\|(1-t)f(x) + tg(x)\| = \frac{1}{2}\|f(x) + g(x)\|$$

となるので、問題の仮定より、これも 0 ではない。 (一般に $\|v\|=0$ となるのは v=0 のときに限る。)

(b) $S^n \subset \mathbb{R}^{n+1}$ に注意すると, f と g の間のホモトピーを以下で与えることができる:

$$H: X \times [0,1] \to S^n,$$

$$H(x,t) = \frac{(1-t)f(x) + tg(x)}{\|(1-t)f(x) + tg(x)\|}$$