K-theory of the torus equivariant under the 2-dimensional crystallographic point groups

Kiyonori Gomi

Oct 21, 2015

The theme of my talk
The equivariant K-theory of the torus acted by
the point group of each 2-dimensional space groups, or equivalently
the finite subgroups of the mapping class group $G L(2, \mathbb{Z})$.

> My talk is based on joint works with Ken Shiozaki and Masatoshi Sato.

- Our computational result will be the main theorem.
- The computation is motivated by the classification of 3-dimensional topological crystalline insulators.
(1) Main theorem
(2) Gapped system and K-theory
(3) Equivariant twist

The space group

- As is well-known, the group of isometries of \mathbb{R}^{d} is the semi-direct product of $O(d)$ and \mathbb{R}^{d} :

$$
1 \rightarrow \mathbb{R}^{d} \rightarrow O(d) \ltimes \mathbb{R}^{d} \rightarrow O(d) \rightarrow 1
$$

- A d-dimensional space group (crystallographic group) is a subgroup S,

such that
- S contains a rank d lattice $\Pi \cong \mathbb{Z}^{d}$ of translations,
- the point group $P=S / \Pi$ is a finite subgroup of $O(d)$.

The space group

- S is not necessarily a semi-direct product of P and Π. - S is called symmorphic if it is a semi-direct product.
- S is called nonsymmorphic if not.
- In the nonsymmorphic case, S contains for example a glide, which is a translation along a line ℓ followed by a mirror reflection with respect to ℓ.

The space group

- The space groups are identified if they are conjugate under the affine group $\mathbb{R}^{d} \ltimes G L^{+}(d, \mathbb{R})$.
- $d=2 \Rightarrow 17$ classes.
- $d=3 \Rightarrow 230$ classes.
- ...
- In the case of $d=2$, the space group is also called the plane symmetry group, the wallpaper group, etc.
- To denote the 17 classes of space groups, I will follow: D. Schattschneider,

The plane symmetry groups: their recognition and their notation.
American Mathematical Monthly 85 (1978), no. 6 439-450.

The 2-dimensional space groups (1/2)

label	P	symmorphic?	$P \subset S O(2) ?$
p1	1	yes	yes
p2	\mathbb{Z}_{2}	yes	yes
p3	\mathbb{Z}_{3}	yes	yes
p4	\mathbb{Z}_{4}	yes	yes
p6	\mathbb{Z}_{6}	yes	yes

- These point groups are generated by rotations of \mathbb{R}^{2}.
- The other points groups are the dihedral group D_{n} of degree n and order $2 n$:

$$
D_{n}=\left\langle C, \sigma \mid C^{n}, \sigma^{2}, C \sigma C \sigma\right\rangle .
$$

(For example, $D_{1} \cong \mathbb{Z}_{2}, D_{2} \cong \mathbb{Z}_{2} \times \mathbb{Z}_{2}, D_{3}=S_{3}$.)

The 2-dimensional space groups (2/2)

label	P	symmorphic?	$P \subset S O(2) ?$
pm	D_{1}	yes	no
pg	D_{1}	no	no
$\mathbf{c m}$	D_{1}	yes	no
$\mathbf{p m m}$	D_{2}	yes	no
pmg	D_{2}	no	no
pgg	D_{2}	no	no
$\mathbf{c m m}$	D_{2}	yes	no
p3m1	D_{3}	yes	no
p31m	D_{3}	yes	no
p4m	D_{4}	yes	no
p4g	D_{4}	no	no
p6m	D_{6}	yes	no

The point group acts on T^{2}

- Naturally, the point group $P=S / \Pi$ acts on the 2-dimensional torus $T^{2}=\mathbb{R}^{2} / \Pi$.
- By this construction, we get all the 13 classes of finite subgroups in the mapping class group $G L(2, \mathbb{Z})$ of T^{2}.
- In the case of $\mathbf{p 1} \mathbf{- p 6}$, the cyclic group $\mathbb{Z}_{\boldsymbol{n}}=\left\langle C_{n} \mid C_{n}^{n}\right\rangle$ ($n=1,2,3,4,6$) is embedded into $S L(2, \mathbb{Z})$ through:

$$
\begin{array}{ll}
C_{1}=C_{6}^{6}=C_{4}^{4}=1, & \\
C_{2}=C_{6}^{3}=C_{4}^{2}=-1, & C_{4}=\left(\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right), \\
C_{3}=C_{6}^{2}, & C_{6}=\left(\begin{array}{rr}
0 & -1 \\
1 & 1
\end{array}\right) .
\end{array}
$$

The point group acts on T^{2}

- The groups $D_{n}=\left\langle C, \sigma \mid C^{n}, \sigma^{2}, C \sigma C \sigma\right\rangle(n=1,2,4)$ are generated by the following matrices in $G L(2, \mathbb{Z})$:

label	P	C	σ
$\mathrm{pm} / \mathrm{pg}$	$D_{1}=\mathbb{Z}_{2}$	$C_{1}=1$	σ_{x}
cm	$D_{1}=\mathbb{Z}_{2}$	$C_{1}=1$	σ_{d}
$\mathrm{pmm} / \mathrm{pmg} / \mathrm{pgg}$	$D_{2}=\mathbb{Z}_{2} \times \mathbb{Z}_{2}$	$C_{2}=-1$	σ_{x}
cmm	$D_{2}=\mathbb{Z}_{2} \times \mathbb{Z}_{2}$	$C_{2}=-1$	σ_{d}
$\mathrm{p} 4 \mathrm{~m} / \mathrm{p} 4 \mathrm{~g}$	D_{4}	C_{4}	σ_{x}

$$
C_{4}=\left(\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right), \quad \sigma_{x}=\left(\begin{array}{rr}
-1 & 0 \\
0 & 1
\end{array}\right), \quad \sigma_{d}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

The point group acts on T^{2}

- The groups $D_{n}=\left\langle C, \sigma \mid C^{n}, \sigma^{2}, C \sigma C \sigma\right\rangle(n=3,6)$ are generated by the following matrices in $G L(2, \mathbb{Z})$:

label	P	C	σ
p 3 m 1	D_{3}	$C_{3}=C_{6}^{2}$	σ_{x}
p 31 m	D_{3}	$C_{3}=C_{6}^{2}$	σ_{y}
p 6 m	D_{6}	C_{6}	σ_{y}

$$
C_{6}=\left(\begin{array}{rr}
0 & -1 \\
1 & 1
\end{array}\right), \quad \sigma_{x}=\left(\begin{array}{rr}
-1 & -1 \\
0 & 1
\end{array}\right), \quad \sigma_{y}=\left(\begin{array}{rr}
1 & 1 \\
0 & -1
\end{array}\right)
$$

Nonsymmorphic space group and twist

- It happens that a symmorphic group and a nonsymmorphic group share the same point group P.
- If a space group is nonsymmorphic, then there is an associated group 2-cocycle with values in the group $C\left(T^{2}, U(1)\right)$ of $U(1)$-valued functions, which is regarded as a right module over the point group P.
- Such group cocycles provide equivariant twists, namely the data playing roles of local systems for equivariant K-theory, classified by $F^{2} H_{P}^{3}\left(T^{2} ; \mathbb{Z}\right) \subset H_{P}^{3}\left(T^{2} ; \mathbb{Z}\right)$. (This classification of twists will be reviewed later.)

label	P	ori	$F^{2} H_{P}^{3}\left(T^{2}\right)$	basis
p1	1	+	0	
p2	\mathbb{Z}_{2}	+	0	
p3	\mathbb{Z}_{3}	+	0	
p4	\mathbb{Z}_{4}	+	0	
p6	\mathbb{Z}_{6}	+	0	
pm/pg	D_{1}	-	\mathbb{Z}_{2}	$\tau_{\text {pg }}$
cm	D_{1}	-	0	
pmm/pmg/pgg	D_{2}	-	$\mathbb{Z}_{2}^{\oplus}{ }^{\text {²}}$	$\tau_{\text {pmg }}, \tau_{\text {pgg }}, c$
cmm	D_{2}	-	\mathbb{Z}_{2}	c
p3m1	D_{3}	-	0	
p31m	D_{3}	-	0	
p4m/p4g	D_{4}	-	$\mathbb{Z}_{2}^{\oplus{ }^{2}}$	$\tau_{\mathrm{p} 4 \mathrm{~g}}, c$
p6m	D_{6}	-	\mathbb{Z}_{2}	c

Main result

- Associated to an action of a finite group P on T^{2} and an equivariant twist τ on T^{2}, we have the P-equivariant τ-twisted K-theory $K_{P}^{\tau+n}\left(T^{2}\right) \cong K_{P}^{\tau+n+2}\left(T^{2}\right)$.
- The equivariant twisted K-theory is a module over the representation ring $R(P)=K_{P}^{0}(\mathrm{pt})$.

Our main result is the determination of the $R(P)$-module structure of $K_{P}^{\tau+n}\left(T^{2}\right)$, where

- $n=0,1$,
- P ranges the point groups of the 2 d space groups,
- τ ranges twists classified by $F^{2} H_{P}^{3}\left(T^{2} ; \mathbb{Z}\right)$.
- In the following, the module structure will be omitted.

Theorem [Shiozaki-Sato-G] (1/3)

label	P	τ	$K_{P}^{\tau+0}\left(T^{2}\right)$	$K_{P}^{\tau+1}\left(T^{2}\right)$
p1	1	0	$\mathbb{Z}^{\oplus 2}$	$\mathbb{Z}^{\oplus 2}$
p2	\mathbb{Z}_{2}	0	$\mathbb{Z}^{\oplus 6}$	0
p3	\mathbb{Z}_{3}	0	$\mathbb{Z}^{\oplus 8}$	0
p4	\mathbb{Z}_{4}	0	$\mathbb{Z}^{\oplus 9}$	0
p6	\mathbb{Z}_{6}	0	$\mathbb{Z}^{\oplus 10}$	0
pm	D_{1}	0	$\mathbb{Z}^{\oplus 3}$	$\mathbb{Z}^{\oplus 3}$
pg	D_{1}	$\tau_{\mathbf{p g}}$	\mathbb{Z}	$\mathbb{Z} \oplus \mathbb{Z}_{2}$
cm	D_{1}	0	$\mathbb{Z}^{\oplus 2}$	$\mathbb{Z}^{\oplus 2}$

Theorem [Shiozaki-Sato-G] (2/3)

label	P	τ	$K_{P}^{\tau+0}\left(T^{2}\right)$	$K_{P}^{\tau+1}\left(T^{2}\right)$
pmm	D_{2}	0	$\mathbb{Z}^{\oplus 9}$	0
pmm	D_{2}	c	\mathbb{Z}	$\mathbb{Z} \mathbb{Z}^{\oplus 4}$
pmg	D_{2}	$\left\{\begin{array}{l}\tau_{\text {pmg }}, \tau_{\text {pmg }}+c \\ \tau_{\text {pmg }}+\tau_{\text {pgg }}, \\ \tau_{\text {pmg }}+\tau_{\text {pgg }}+c \\ \text { pgg }\end{array}\right.$	D_{2}	$\mathbb{Z}_{\text {pgg }}, \tau_{\text {pgg }}+c$
$\mathbf{c m m}$	D_{2}	0	\mathbb{Z}	
$\mathbf{c m m}$	D_{2}	c	$\mathbb{Z}^{\oplus 3}$	\mathbb{Z}_{2}

Theorem [Shiozaki-Sato-G] (3/3)

label	P	τ	$K_{P}^{\tau+0}\left(T^{2}\right)$	$K_{P}^{\tau+1}\left(T^{2}\right)$
p3m1	D_{3}	0	$\mathbb{Z}^{\oplus 5}$	\mathbb{Z}
p31m	D_{3}	0	$\mathbb{Z}^{\oplus 5}$	\mathbb{Z}
p4m	D_{4}	0	$\mathbb{Z}^{\oplus 9}$	0
p4m	D_{4}	c	$\mathbb{Z}^{\oplus 3}$	$\mathbb{Z}^{\oplus 3}$
p4g	D_{4}	$\tau_{\text {p4g }}$	$\mathbb{Z}^{\oplus 6}$	0
p4g	D_{4}	$\tau_{\text {p4g }}+c$	$\mathbb{Z}^{\oplus 4}$	\mathbb{Z}
p6m	D_{6}	0	$\mathbb{Z}^{\oplus 8}$	0
p6m	D_{6}	c	$\mathbb{Z}^{\oplus 4}$	$\mathbb{Z}^{\oplus 2}$

Examples of module structures

- I only show the module structures of $K_{P}^{\tau+n}\left(T^{2}\right)$ in the case of p3m1 and p31m.
- The point group is $D_{3} \cong S_{3}$, and

$$
R\left(D_{3}\right)=\mathbb{Z}[A, E] /\left(1-A^{2}, E-A E, 1+A+E-E^{2}\right)
$$

where

- A is the sign representation,
- E is the unique 2 -dimensional irreducible representation.

label	$K_{D_{3}}^{\mathbf{0}}\left(T^{\mathbf{2}}\right)$	$K_{D_{3}}^{1}\left(T^{2}\right)$
p3m1	$R\left(D_{3}\right) \oplus(1+A-E)^{\oplus 2}=\mathbb{Z}^{\oplus 5}$	$(1-A)=\mathbb{Z}$
p31m	$R\left(D_{3}\right) \oplus\left(R\left(D_{3}\right) /(E)\right)^{\oplus 2}=\mathbb{Z}^{\oplus 5}$	$(1-A)=\mathbb{Z}$

Some comments: proceeding works

- In the papers:
(1) W. Lück and R. Stamm,

Computations of K - and L-theory of cocomapct planar groups.
K-theory 21 249-292, 2000,
(2) M. Yang,

Crossed products by finite groups acting on low dimensional complexes and applications.
PhD Thesis, University of Saskatchewan, Saskatoon, 1997.
the K-theory $K_{n}\left(C_{r}^{*}\left(S_{\lambda}\right)\right)$ is determined as an abelian group for each 2 d space group S_{λ}, which agrees with our result about $K_{P_{\lambda}}^{\tau_{\lambda}+n}\left(T^{2}\right)$.

Some comments: twists

- There are twists which cannot be realized as group cocycles. The equivariant K-theories twisted by such twists are not completely computed yet.
- The role of such a twist in condensed matter seems to be open.

Some comments: \mathbb{Z}_{2}

- Recall that there appeared \mathbb{Z}_{2}-summands:

label	P	τ	$K_{P}^{\tau+0}\left(T^{\mathbf{2}}\right)$	$K_{P}^{\tau+1}\left(T^{\mathbf{2}}\right)$
pg	D_{1}	$\tau_{\text {pg }}$	\mathbb{Z}	$\mathbb{Z} \oplus \mathbb{Z}_{\mathbf{2}}$
pgg	$D_{\mathbf{2}}$	$\tau_{\text {pgg }}, \tau_{\text {pgg }}+c$	$\mathbb{Z}^{\oplus 3}$	$\mathbb{Z}_{\mathbf{2}}$

- A consequence is that these \mathbb{Z}_{2}-summands imply a 'new' class of topological insulators which are:
- classified by \mathbb{Z}_{2},
- realized without the $\left\{\begin{array}{l}\text { time-reversal } \\ \text { particle-hole }\end{array}\right.$ symmetries.
(The well-known topological insulators classified by \mathbb{Z}_{2} correspond to $K R^{-1}(\mathrm{pt})=\mathbb{Z}_{2}$ or $K R^{-2}(\mathrm{pt})=\mathbb{Z}_{2}$, and are realized with TRS or PHS.)
- This is detailed in PRB B91, 155120 (2015).
(1) Main theorem
(2) Gapped system and K-theory
... How twisted K-theory arises?
(3) Equivariant twist
... a review of twists and their classification

Gapped system and K-theory

- Here I would like to explain how a "gapped system with symmetry" leads to an element of \boldsymbol{K}-theory.
- If we consider a nonsymmorphic space group as a symmetry, then we get a twisted equivariant K-class.

Step 1 : Setting
Step 2 : Bloch bundle
Step 3 : Symmetry

Step 1 : Setting

- Let us consider the following mathematical setting:
(1) A lattice $\Pi \subset \Pi \otimes_{\mathbb{Z}} \mathbb{R}=\mathbb{R}^{d}$ of rank d.
(2) A symmetric bilinear form $\langle\rangle:, \Pi \times \Pi \rightarrow \mathbb{Z}$ whose induced bilinear form on \mathbb{R}^{d} is positive definite.
(3) A space group S :

such that P preserves the bilinear form on Π.
(4) A unitary representation $U: P \rightarrow U(V)$ of P on a Hermitian vector space V of finite rank.

Quantum system with symmetry

- We then consider the following quantum system on \mathbb{R}^{d} :
(1) The quantum Hilbert space: $L^{2}\left(\mathbb{R}^{d}, V\right)$.
(2) The symmetry: $S \curvearrowright L^{2}\left(\mathbb{R}^{d}, V\right)$.

$$
\psi(x) \stackrel{g}{\mapsto}(\rho(g) \psi)(x)=U(\pi(g)) \psi\left(g^{-1} x\right) .
$$

(3) The Hamiltonian: a self-adjoint operator H on $L^{2}\left(\mathbb{R}^{d}, V\right)$ such that $H \circ \rho(g)=\rho(g) \circ H$.

Quantum system with symmetry

- We then consider the following quantum system on \mathbb{R}^{d} :
(1) The quantum Hilbert space: $L^{2}\left(\mathbb{R}^{d}, V\right)$.
(2) The symmetry: $S \curvearrowright L^{2}\left(\mathbb{R}^{d}, V\right)$.

$$
\psi(x) \stackrel{g}{\mapsto}(\rho(g) \psi)(x)=U(\pi(g)) \psi\left(g^{-1} x\right) .
$$

(3) The Hamiltonian: a self-adjoint operator H on $L^{2}\left(\mathbb{R}^{d}, V\right)$ such that $H \circ \rho(g)=\rho(g) \circ H$.

- I will not specify whether H is bounded or not.
- But, I will assume H is 'gapped' in the sequel. (This is a property of a topological insulator.)

Step 2: Bloch bundle

- To carry out the 'Bloch transformation', let us denote the Pontryagin dual of Π by $\hat{\Pi}=\operatorname{Hom}(\Pi, U(1))$.
- $\hat{\Pi}$ is identified with the torus \mathbb{R}^{d} / Π.

$$
k \in \mathbb{R}^{d} / \Pi \leftrightarrow\left[m \mapsto e^{2 \pi i\langle m, k\rangle}\right] \in \hat{\Pi} .
$$

- Then, define $L_{\Pi}^{2}\left(\hat{\Pi} \times \mathbb{R}^{d}, V\right) \subset L^{2}\left(\hat{\Pi} \times \mathbb{R}^{d}, V\right)$ to be the subspace of L^{2}-functions $\hat{\psi}(k, x)$ which are quasi-periodic in the second variable:

$$
\hat{\psi}(k, x+m)=e^{2 \pi i\langle m, k\rangle} \hat{\psi}(k, x) \quad(m \in \Pi)
$$

Bloch transformation

$$
\begin{aligned}
\hat{\psi}(k, x) & \in L_{\Pi}^{2}\left(\hat{\Pi} \times \mathbb{R}^{d}, V\right) \subset L^{2}\left(\hat{\Pi} \times \mathbb{R}^{d}, V\right) \\
& \Leftrightarrow \hat{\psi}(k, x+m)=e^{2 \pi i\langle m, k\rangle} \hat{\psi}(k, x) \quad(m \in \Pi)
\end{aligned}
$$

- The Bloch transformation is defined as follows:

$$
\begin{gathered}
\hat{\mathcal{B}}: L^{2}\left(\mathbb{R}^{d}, V\right) \rightarrow L_{\Pi}^{2}\left(\hat{\Pi} \times \mathbb{R}^{d}, V\right) \\
(\hat{\mathcal{B}} \psi)(k, x)=\sum_{n \in \Pi} e^{-2 \pi i\langle n, k\rangle} \psi(x+n)
\end{gathered}
$$

- The following gives the inverse transformation:

$$
\begin{gathered}
\mathcal{B}: \quad L_{\Pi}^{2}\left(\hat{\Pi} \times \mathbb{R}^{d}, V\right) \rightarrow L^{2}\left(\mathbb{R}^{d}, V\right) \\
(\mathcal{B} \hat{\psi})(x)=\int_{k \in \hat{\Pi}} \hat{\psi}(k, x) d k
\end{gathered}
$$

The Poincaré line bundle

- As a result, we get the identification of Hilbert spaces:

$$
L^{2}\left(\mathbb{R}^{d}, V\right) \cong L_{\Pi}^{2}\left(\hat{\Pi} \times \mathbb{R}^{d}, V\right)
$$

- To get a further identification, let us introduce the Poincaré line bundle $L \rightarrow \hat{\Pi} \times \mathbb{R}^{d} / \Pi$.
- This is the quotient of the product line bundle

$$
\hat{\Pi} \times \mathbb{R}^{d} \times \mathbb{C} \rightarrow \hat{\Pi} \times \mathbb{R}^{d}
$$

under the free action of $m \in \Pi$ given by

$$
\begin{array}{clc}
\hat{\Pi} \times \mathbb{R}^{d} \times \mathbb{C} & \xrightarrow{m} & \hat{\Pi} \times \mathbb{R}^{d} \times \mathbb{C} . \\
(k, x, z) & \mapsto & \left(k, x+m, e^{2 \pi i\langle m, k\rangle} z\right)
\end{array}
$$

Further identification

- From $L \rightarrow \hat{\Pi} \times \mathbb{R}^{d} / \Pi$, we can construct an infinite dimensional vector bundle $\mathcal{E} \rightarrow \hat{\Pi}$:

$$
\mathcal{E}=\bigcup_{k \in \hat{\Pi}} L^{2}\left(\mathbb{R}^{d} / \Pi,\left.L\right|_{\{k\} \times \mathbb{R}^{d} / \Pi}\right)
$$

- Then, the Hilbert space $L_{\Pi}^{2}\left(\hat{\Pi} \times \mathbb{R}^{d}, V\right)$ can be identified with the space of L^{2}-sections of $\mathcal{E} \otimes V \rightarrow \hat{\Pi}$.

$$
L_{\Pi}^{2}\left(\hat{\Pi} \times \mathbb{R}^{d}, V\right) \cong L^{2}(\hat{\Pi}, \mathcal{E} \otimes V)
$$

- In sum, we have the identifications of Hilbert spaces:

$$
L^{2}\left(\mathbb{R}^{d}, V\right) \cong L_{\Pi}^{2}\left(\hat{\Pi} \times \mathbb{R}^{d}, V\right) \cong L^{2}(\hat{\Pi}, \mathcal{E} \otimes V)
$$

Gapped condition and the Bloch bundle

$$
L^{2}\left(\mathbb{R}^{d}, V\right) \cong L_{\Pi}^{2}\left(\hat{\Pi} \times \mathbb{R}^{d}, V\right) \cong L^{2}(\hat{\Pi}, \mathcal{E} \otimes V)
$$

- By the assumption that the Hamiltonian H on $L^{2}\left(\mathbb{R}^{d}, V\right)$ commutes with the action of $\Pi \subset S$, the induced Hamiltonian \hat{H} on $L^{2}(\hat{\Pi}, \mathcal{E} \otimes V)$ is induced from a self-adjoint vector bundle map $\hat{\mathcal{H}}$ on $\mathcal{E} \otimes V$.
- As the 'gapped condition', let us assume that a finite number of spectra of $\hat{\mathcal{H}}_{k}$ on the fiber $\left.\mathcal{E}\right|_{k} \otimes V$ is confined in a closed interval as $k \in \hat{\Pi}$ varies.
- Then, by the spectral projection, we get a finite rank vector bundle $E \rightarrow \hat{\Pi}$, called the Bloch bundle.
- Its K-class $[E] \in K^{0}(\hat{\Pi})$ is an invariant of the gapped quantum system we considered.

Step 3 : Symmetry

- Finally, I take the symmetry into account, to make the Bloch bundle into an equivariant vector bundle.
- If the space group is nonsymmorphic, then the resulting equivariant vector bundle will be twisted.
- Let us recall the diagram:

- Let us define a map $a: P \rightarrow \mathbb{R}^{d}$ by expressing the composition $P \rightarrow O(d) \rightarrow O(d) \ltimes \mathbb{R}^{d}$ as $p \mapsto\left(p, a_{p}\right)$.

Group cocycles

- The nonsymmorphic nature of S is measured by the group cocycle with values in the left P-module Π :

$$
\nu \in Z^{2}(P, \Pi)
$$

defined by $\nu\left(p_{1}, p_{2}\right)=a_{p_{1}}+p_{1} a_{p_{2}}-a_{p_{1} p_{2}}$.

- Then, we get an induced group 2-cocycle with values in the right P-module $C(\hat{\Pi}, U(1))$:

$$
\tau \in Z^{2}(P, C(\hat{\Pi}, U(1)))
$$

by $\tau\left(p_{1}, p_{2} ; k\right)=\exp 2 \pi i\left\langle\nu\left(p_{1}^{-1}, p_{2}^{-1}\right), k\right\rangle$.

- The cocycle condition for τ :
$\tau\left(p_{1}, p_{2} p_{3} ; k\right) \tau\left(p_{2}, p_{3} ; k\right)=\tau\left(p_{1}, p_{2} p_{3} ; k\right) \tau\left(p_{1}, p_{2} ; p_{3} k\right)$.

Twisted group action

- For $p \in P$, we define $\rho(p): L^{2}\left(\mathbb{R}^{d}, V\right) \rightarrow L^{2}\left(\mathbb{R}^{d}, V\right)$ by

$$
\psi(x) \mapsto(\rho(p) \psi)(x)=U(p) \psi\left(p^{-1} x+a_{p^{-1}}\right)
$$

- Then the map on $L^{2}(\hat{\Pi}, \mathcal{E} \otimes V)$ corresponding to $\rho(p)$ is identified with the map induced from a map:

$$
\begin{array}{ccc}
\mathcal{E} \otimes V & \xrightarrow{\rho_{\mathcal{E} \otimes V}(p)} & \mathcal{E} \otimes V \\
\downarrow & & \downarrow \\
\hat{\Pi} & \xrightarrow{p} & \hat{\Pi},
\end{array}
$$

where $p: \hat{\Pi} \rightarrow \hat{\Pi}$ is $k \mapsto p k$.

- This is a τ-twisted action, in the sense that

$$
\rho\left(p_{1} ; p_{2} k\right) \rho\left(p_{2} ; k\right) \xi=\tau\left(p_{1}, p_{2} ; k\right) \rho\left(p_{1} p_{2} ; k\right) \xi
$$

holds for all $\left.\xi \in \mathcal{E}\right|_{k} \otimes V$ and $k \in \hat{\Pi}$.

Twisted vector bundle

$$
\begin{aligned}
\mathcal{E} \otimes V & \xrightarrow{\rho(p)} \mathcal{E} \otimes V \\
\hat{\Pi} & \xrightarrow{p} \quad \hat{\Pi}, \\
\rho\left(p_{1} ; p_{2} k\right) \rho\left(p_{2} ; k\right) & =\tau\left(p_{1}, p_{2} ; k\right) \rho\left(p_{1} p_{2} ; k\right) .
\end{aligned}
$$

- Under the gapped condition, the Bloch bundle $\boldsymbol{E} \subset \mathcal{E} \otimes V$ inherits a $\boldsymbol{\tau}$-twisted action from $\mathcal{E} \otimes V$.
- The τ-twisted vector bundle $E \rightarrow \hat{\Pi}$ defines a K-class $[E] \in K_{P}^{\tau+0}(\hat{\Pi})$, which is an invariant of the gapped system with symmetry we considered.

Some comments

- A result of Freed-Moore says that: if a finite group G acts on a 'nice' space X and $\tau \in Z^{2}(G ; C(X, U(1)))$, then $K_{G}^{\tau+0}(X)$ can be realized as the Grothendieck group of the isomorphism classes of finite rank τ-twisted G-equivariant vector bundles on X.

Some comments

- A result of Freed-Moore says that: if a finite group G acts on a 'nice' space X and $\tau \in Z^{2}(G ; C(X, U(1)))$, then $K_{G}^{\tau+0}(X)$ can be realized as the Grothendieck group of the isomorphism classes of finite rank τ-twisted G-equivariant vector bundles on X.
- Recall that, in the first setting, we considered a unitary representation $U: P \rightarrow U(V)$ of P.
- We can assume this to be a c-projective representation, where $c \in Z^{2}(P, U(1))$ is the group cocycle with values in the trivial P-module $U(1)$.
- In this case, the resulting Bloch bundle E defines a twisted K-class $[E] \in K_{P}^{\tau+c+0}(\hat{\Pi})$.

Some comments

- The construction of a twisted vector bundle so far is a version of the 'Macky machine'.
- Let us assume that there is an extension of a finite group P by a finite abelian group Π :

$$
1 \rightarrow \Pi \rightarrow S \xrightarrow{\pi} P \rightarrow 1
$$

- A choice of a map $\sigma: P \rightarrow S$ such that $\pi \circ \sigma=1$ defines a 2-cocycle $\tau \in Z^{2}(P, C(\hat{\Pi}, U(1)))$,

$$
\tau\left(p_{1}, p_{2} ; \lambda\right)=\lambda\left(\sigma\left(p_{1} p_{2}\right)^{-1} \sigma\left(p_{1}\right) \sigma\left(p_{2}\right)\right)
$$

Some comments

$$
1 \rightarrow \Pi \rightarrow S \xrightarrow{\pi} P \rightarrow 1 .
$$

Π finite abelian, P finite.

- Then there is an isomorphism of groups:

$$
\begin{gathered}
K_{S}^{\mathbf{0}}(\mathbf{p t}) \cong K_{P}^{\boldsymbol{\tau + 0}}(\hat{\Pi}) . \\
E=\bigoplus_{\lambda \in \hat{\Pi}} \mathbb{C}_{\lambda} \otimes \operatorname{Hom}_{\Pi}\left(\mathbb{C}_{\lambda}, E\right) \mapsto \bigcup_{\lambda \in \hat{\Pi}} \operatorname{Hom}_{\Pi}\left(\mathbb{C}_{\lambda}, E\right)
\end{gathered}
$$

- In order to justify these machinery in the case where S is a space group, a C^{*}-algebraic approach is useful, as discussed by G. C. Thiang.
(1) Main theorem
(2) Gapped system and K-theory
(3) Equivariant twist
... a review of twists and their classification
(results from arXiv:1509.09194)

Equivariant twist

- A G-equivariant twist τ (or equivalently a G-equivariant gerbe) on a space X is a datum playing a role of a local system for equivariant K-theory.

$$
K_{G}^{n}(X) \rightsquigarrow K_{G}^{\tau+n}(X) .
$$

- They are classified by the third Borel equivariant cohomology with integer coefficients:

$$
[\tau] \in H_{G}^{3}(X ; \mathbb{Z})
$$

- There are four types of equivariant twists corresponding to the filtration:

$$
H_{G}^{3}(X) \supset F^{1} H_{G}^{3}(X) \supset F^{2} H_{G}^{3}(X) \supset F^{3} H_{G}^{3}(X)
$$

computing the Leray-Serre spectral sequence.

Four types of twists

$$
H_{G}^{3}(X) \supset F^{1} H_{G}^{3}(X) \supset F^{2} H_{G}^{3}(X) \supset F^{3} H_{G}^{3}(X)
$$

- If G fixes at least one point $\mathrm{pt} \in X$, then the four types of twists admit the following interpretation:
(1) Twists realized by group cocycles $\tau \in Z^{2}(G ; U(1))$, classified by $F^{3} H_{G}^{3}(X)=H_{G}^{3}(\mathrm{pt})$.
(2) Twists realized by group cocycles $\tau \in Z^{2}(G ; C(X, U(1)))$, classified by $F^{2} H_{G}^{3}(X)$.
(3) Twists realized by central extensions of the groupoid $X / / G$ associated to the G-action on X, classified by $F^{1} H_{G}^{3}(X)$.
(9) Twists which cannot be realized by central extensions of $X / / G$.

Central extension of $X / / G$ with G finite

Definition

A central extension (L, τ) of $X / / G$ consists of:

- complex line bundles $L_{g} \rightarrow X,(g \in G)$
- isomorphisms of line bundles
$\tau_{g, h}(x):\left.\left.\left.L_{g}\right|_{h x} \otimes L_{h}\right|_{x} \rightarrow L_{g h}\right|_{x},(g, h \in G)$ making the following diagram commutative:

$$
\begin{array}{rr}
\left.\left.\left.L_{g}\right|_{h k x} \otimes L_{h}\right|_{k x} \otimes L_{k}\right|_{x} & \xrightarrow{1 \otimes \tau_{h, k}(x)} \\
\left.\left.L_{g}\right|_{h k x} \otimes L_{h k}\right|_{x} \\
\tau_{g, h}(k x) \otimes 1 \\
\left.\left.L_{g h}\right|_{k x} \otimes L_{k}\right|_{x} & \xrightarrow{\tau_{g h, k}(x)}
\end{array}
$$

- A group 2-cocycle $\tau \in Z^{2}(G ; C(X, U(1)))$ is a special example of a central extension such that L_{g} is trivial.

$$
H_{G}^{3}(X) \supset F^{1} H_{G}^{3}(X) \supset F^{2} H_{G}^{3}(X) \supset F^{3} H_{G}^{3}(X)
$$

- Because $F^{1} H_{G}^{3}(X)=\operatorname{Ker}\left[H_{G}^{3}(X) \rightarrow H^{3}(X)\right]$, all the twists on $X=T^{2}$ can be realized by central extensions.
- As is seen, the group cocycles associated to nonsymmorphic space groups and the 'constant' group cocycles are relevant to topological insulators.
- As twists, they are classified by $F^{2} H_{G}^{3}(X)$.
- Now, there arises mathematically natural questions:

Questions

- Let us consider the case where the point group P of a 2d space group acts on T^{2}.

Questions

(1) Are there group 2-cocycles other than combinations of group cocycles associated to nonsymmorphic space groups and the 'constant' group cocycles?
(2) Are there twists (or central extensions) which cannot be realized by group 2-cocycles?

$$
H_{P}^{3}\left(T^{2}\right)=F^{1} H_{P}^{3}\left(T^{2}\right) \supset F^{2} H_{P}^{3}\left(T^{2}\right) \supset F^{3} H_{P}^{3}\left(T^{2}\right)
$$

Questions

- Let us consider the case where the point group P of a 2d space group acts on T^{2}.

Questions

(1) Are there group 2-cocycles other than combinations of group cocycles associated to nonsymmorphic space groups and the 'constant' group cocycles? No!
(2) Are there twists (or central extensions) which cannot be realized by group 2-cocycles? Yes!

$$
H_{P}^{3}\left(T^{2}\right)=F^{1} H_{P}^{3}\left(T^{2}\right) \supset F^{2} H_{P}^{3}\left(T^{2}\right) \supset F^{3} H_{P}^{3}\left(T^{2}\right)
$$

Questions

- Let us consider the case where the point group P of a 2d space group acts on T^{2}.

Questions

(1) Are there group 2-cocycles other than combinations of group cocycles associated to nonsymmorphic space groups and the 'constant' group cocycles? No!
(2) Are there twists (or central extensions) which cannot be realized by group 2-cocycles? Yes!

$$
H_{P}^{3}\left(T^{2}\right)=F^{1} H_{P}^{3}\left(T^{2}\right) \supset F^{2} H_{P}^{3}\left(T^{2}\right) \supset F^{3} H_{P}^{3}\left(T^{2}\right)
$$

- Our computations of $K_{P}^{\tau+n}\left(T^{2}\right)$ cover all the twists classified by $F^{2} H_{P}^{3}\left(T^{2}\right)$ but not all the twists on T^{2}.

Proposition(answer to the 1st question)

label	P	ori	$F^{2} H_{P}^{3}\left(T^{2}\right)$	basis
p1	1	+	0	
p2	\mathbb{Z}_{2}	+	0	
p3	\mathbb{Z}_{3}	+	0	
p4	\mathbb{Z}_{4}	+	0	
p6	\mathbb{Z}_{6}	+	0	
pm/pg	D_{1}	-	\mathbb{Z}_{2}	$\tau_{\text {pg }}$
cm	D_{1}	-	0	
pmm/pmg/pgg	D_{2}	-	$\mathbb{Z}_{2}^{\oplus+}$	$\tau_{\text {pmg }}, \tau_{\text {pgg }}, c$
cmm	D_{2}	-	\mathbb{Z}_{2}	c
p3m1	D_{3}	-	0	
p31m	D_{3}	-	0	
p4m/p4g	D_{4}	-	$\mathbb{Z}_{2}^{\oplus{ }^{\text {2 }}}$	$\tau_{\mathrm{p} 4 \mathrm{~g}}, c$
p6m	D_{6}	-	\mathbb{Z}_{2}	c

Proposition(answer to the 2nd question)

label	P	ori	$H_{P}^{3}\left(T^{2}\right)$	$H^{3} / F^{2} H^{\mathbf{3}}$
p1	1	+	0	0
p2	\mathbb{Z}_{2}	+	0	0
p3	\mathbb{Z}_{3}	+	0	0
p4	\mathbb{Z}_{4}	+	0	0
p6	\mathbb{Z}_{6}	+	0	0
pm/pg	D_{1}	-	$\mathbb{Z}_{2}^{\oplus 2}$	\mathbb{Z}_{2}
$\mathbf{c m}$	D_{1}	-	\mathbb{Z}_{2}	\mathbb{Z}_{2}
pmm/pmg/pgg	D_{2}	-	$\mathbb{Z}_{2}^{\oplus 4}$	\mathbb{Z}_{2}
$\mathbf{c m m}$	D_{2}	-	$\mathbb{Z}_{2}^{\oplus 2}$	\mathbb{Z}_{2}
p3m1	D_{3}	-	\mathbb{Z}_{2}	\mathbb{Z}_{2}
$\mathbf{p 3 1 m}$	D_{3}	-	\mathbb{Z}_{2}	\mathbb{Z}_{2}
$\mathbf{p 4 m / p 4 g}$	D_{4}	-	$\mathbb{Z}_{2}^{\oplus 3}$	\mathbb{Z}_{2}
$\mathbf{p 6 m}$	D_{6}	-	$\mathbb{Z}_{2}^{\oplus 2}$	\mathbb{Z}_{2}

Equivariant cohomology degree up to 3

label	P	$H_{P}^{1}\left(T^{2}\right)$	$H_{P}^{2}\left(T^{2}\right)$	$H_{P}^{3}\left(T^{2}\right)$
p1	1	$\mathbb{Z}^{\oplus{ }^{\text {a }}}$	\mathbb{Z}	0
p2	\mathbb{Z}_{2}	0	$\mathbb{Z} \oplus \mathbb{Z}_{2}^{\oplus 3}$	0
p3	\mathbb{Z}_{3}	0	$\mathbb{Z} \oplus \mathbb{Z}_{3}^{\oplus{ }^{2}}$	0
p4	\mathbb{Z}_{4}	0	$\mathbb{Z} \oplus \mathbb{Z}_{\mathbf{2}} \oplus \mathbb{Z}_{4}$	0
p6	\mathbb{Z}_{6}	0	$\mathbb{Z} \oplus \mathbb{Z}_{6}$	0
pm/pg	D_{1}	\mathbb{Z}	$\mathbb{Z}_{2}^{\oplus{ }^{\text {2 }}}$	$\mathbb{Z}_{2}^{\oplus{ }^{+}}$
cm	D_{1}	\mathbb{Z}	\mathbb{Z}_{2}	\mathbb{Z}_{2}
pmm/pmg/pgg	D_{2}	0	$\mathbb{Z}_{2}^{\oplus 4}$	$\mathbb{Z}_{2}^{\oplus 4}$
cmm	D_{2}	0	$\mathbb{Z}_{2}^{\oplus{ }^{\text {3 }}}$	$\mathbb{Z}_{2}^{\oplus{ }^{+}}$
p3m1	D_{3}	0	\mathbb{Z}_{2}	\mathbb{Z}_{2}
p31m	D_{3}	0	$\mathbb{Z}_{3} \oplus \mathbb{Z}_{2}$	\mathbb{Z}_{2}
p4m/p4g	D_{4}	0	$\mathbb{Z}_{2}^{\oplus{ }^{3}}$	$\mathbb{Z}_{2}^{\oplus 3}$
p6m	D_{6}	0	$\mathbb{Z}_{2}^{\oplus{ }^{\text {2 }}}$	$\mathbb{Z}_{2}^{\oplus{ }^{\text {2 }}}$

