K-theory of the torus equivariant under the 2-dimensional crystallographic point groups

Kiyonori Gomi

Oct 21, 2015

The theme of my talk

The equivariant K-theory of the torus acted by

the point group of each 2-dimensional space groups, or equivalently the finite subgroups of the mapping class group $GL(2,\mathbb{Z}).$

My talk is based on joint works with Ken Shiozaki and Masatoshi Sato.

- Our computational result will be the main theorem.
- The computation is motivated by the classification of 3-dimensional topological crystalline insulators.

Main theorem

- **②** Gapped system and *K*-theory
- **O Equivariant twist**

The space group

• As is well-known, the group of isometries of \mathbb{R}^d is the semi-direct product of O(d) and \mathbb{R}^d :

$$1 o \mathbb{R}^d o O(d) \ltimes \mathbb{R}^d o O(d) o 1.$$

• A *d*-dimensional space group (crystallographic group) is a subgroup *S*,

such that

- S contains a rank d lattice $\Pi \cong \mathbb{Z}^d$ of translations,
- the point group $P = S/\Pi$ is a finite subgroup of O(d).

The space group

• S is not necessarily a semi-direct product of P and Π .

- S is called symmorphic if it is a semi-direct product.
- S is called nonsymmorphic if not.
- In the nonsymmorphic case, S contains for example a glide, which is a translation along a line ℓ followed by a mirror reflection with respect to ℓ.

The space group

- The space groups are identified if they are conjugate under the affine group $\mathbb{R}^d \ltimes GL^+(d, \mathbb{R})$.
 - $d = 2 \Rightarrow 17$ classes.
 - $d = 3 \Rightarrow 230$ classes.

• • • •

- In the case of d = 2, the space group is also called the plane symmetry group, the wallpaper group, etc.
- To denote the 17 classes of space groups, I will follow: D. Schattschneider, The plane symmetry groups: their recognition and their notation. American Mathematical Monthly 85 (1978), no.6 439–450.

The 2-dimensional space groups (1/2)

label	P	symmorphic?	$P \subset SO(2)?$
p1	1	yes	yes
p2	\mathbb{Z}_2	yes	yes
р3	\mathbb{Z}_3	yes	yes
р4	\mathbb{Z}_4	yes	yes
рб	\mathbb{Z}_6	yes	yes

- These point groups are generated by rotations of \mathbb{R}^2 .
- The other points groups are the dihedral group D_n of degree n and order 2n:

$$D_n = \langle C, \sigma | C^n, \sigma^2, C \sigma C \sigma \rangle.$$

(For example, $D_1 \cong \mathbb{Z}_2$, $D_2 \cong \mathbb{Z}_2 \times \mathbb{Z}_2$, $D_3 = S_3$.)

The 2-dimensional space groups (2/2)

label	P	symmorphic?	$P \subset SO(2)?$
pm	D_1	yes	no
pg	D_1	no	no
cm	D_1	yes	no
pmm	D_2	yes	no
pmg	D_2	no	no
pgg	D_2	no	no
cmm	D_2	yes	no
p3m1	D_3	yes	no
p31m	D_3	yes	no
p4m	D_4	yes	no
p4g	D_4	no	no
рбт	D_6	yes	no

The point group acts on T^2

- Naturally, the point group $P = S/\Pi$ acts on the 2-dimensional torus $T^2 = \mathbb{R}^2/\Pi$.
- By this construction, we get all the 13 classes of finite subgroups in the mapping class group GL(2, ℤ) of T².
- In the case of p1-p6, the cyclic group $\mathbb{Z}_n = \langle C_n | \ C_n^n \rangle$ (n = 1, 2, 3, 4, 6) is embedded into $SL(2, \mathbb{Z})$ through:

$$egin{aligned} C_1 &= C_6^6 &= C_4^4 &= 1, \ C_2 &= C_6^3 &= C_4^2 &= -1, \ C_4 &= \left(egin{aligned} 0 & -1 \ 1 & 0 \end{array}
ight), \ C_3 &= C_6^2, \ C_6 &= \left(egin{aligned} 0 & -1 \ 1 & 1 \end{array}
ight). \end{aligned}$$

The point group acts on T^2

• The groups $D_n = \langle C, \sigma | C^n, \sigma^2, C\sigma C\sigma \rangle$ (n = 1, 2, 4)are generated by the following matrices in $GL(2, \mathbb{Z})$:

label	Р	C	σ
pm/pg	$D_1=\mathbb{Z}_2$	$C_1 = 1$	σ_x
cm	$D_1=\mathbb{Z}_2$	$C_1 = 1$	σ_d
pmm/pmg/pgg	$D_2 = \mathbb{Z}_2 imes \mathbb{Z}_2$	$C_2 = -1$	σ_x
cmm	$D_2 = \mathbb{Z}_2 imes \mathbb{Z}_2$	$C_2 = -1$	σ_d
p4m/p4g	D_4	C_4	σ_x

$$C_4=\left(egin{array}{cc} 0 & -1\ 1 & 0 \end{array}
ight), \ \ \sigma_x=\left(egin{array}{cc} -1 & 0\ 0 & 1 \end{array}
ight), \ \ \sigma_d=\left(egin{array}{cc} 0 & 1\ 1 & 0 \end{array}
ight).$$

The point group acts on T^2

• The groups $D_n = \langle C, \sigma | C^n, \sigma^2, C\sigma C\sigma \rangle$ (n = 3, 6) are generated by the following matrices in $GL(2, \mathbb{Z})$:

label	P	C	σ
p3m1	D_3	$C_3 = C_6^2$	σ_x
p31m	D_3	$C_{3} = C_{6}^{2}$	σ_y
рбт	D_6	C_6	σ_y

$$C_6=\left(egin{array}{cc} 0&-1\ 1&1\end{array}
ight), \ \ \sigma_x=\left(egin{array}{cc} -1&-1\ 0&1\end{array}
ight), \ \ \sigma_y=\left(egin{array}{cc} 1&1\ 0&-1\end{array}
ight).$$

Nonsymmorphic space group and twist

- It happens that a symmorphic group and a nonsymmorphic group share the same point group *P*.
- If a space group is nonsymmorphic, then there is an associated group 2-cocycle with values in the group $C(T^2, U(1))$ of U(1)-valued functions, which is regarded as a right module over the point group P.
- Such group cocycles provide equivariant twists, namely the data playing roles of local systems for equivariant K-theory, classified by $F^2H_P^3(T^2;\mathbb{Z}) \subset H_P^3(T^2;\mathbb{Z})$. (This classification of twists will be reviewed later.)

label	P	ori	$F^2 H_P^3(T^2)$	basis
p1	1	+	0	
p2	\mathbb{Z}_2	+	0	
p3	\mathbb{Z}_3	+	0	
p4	\mathbb{Z}_4	+	0	
рб	\mathbb{Z}_6	+	0	
pm/pg	D_1	—	\mathbb{Z}_2	$ au_{ m pg}$
cm	D_1	—	0	
pmm/pmg/pgg	D_2	—	$\mathbb{Z}_{2}^{\oplus 3}$	$ au_{pmg}, au_{pgg}, c$
cmm	D_2	—	\mathbb{Z}_2	c
p3m1	D_3	—	0	
p31m	D_3	—	0	
p4m/p4g	D_4	_	$\mathbb{Z}_2^{\oplus 2}$	$ au_{p4g}, c$
рбт	D_6	_	\mathbb{Z}_2	c

Main result

- Associated to an action of a finite group P on T^2 and an equivariant twist τ on T^2 , we have the P-equivariant τ -twisted K-theory $K_P^{\tau+n}(T^2) \cong K_P^{\tau+n+2}(T^2)$.
- The equivariant twisted K-theory is a module over the representation ring $R(P) = K_P^0(\text{pt})$.

Our main result is the determination of the R(P)-module structure of $K_P^{\tau+n}(T^2)\text{, where}$

- n = 0, 1,
- P ranges the point groups of the 2d space groups,
- au ranges twists classified by $F^2 H^3_P(T^2;\mathbb{Z})$.
- In the following, the module structure will be omitted.

Equivariant twist

Theorem [Shiozaki–Sato–G] (1/3)

label	P	au	$K_P^{ au+0}(T^2)$	$K_P^{ au+1}(T^2)$
p1	1	0	$\mathbb{Z}^{\oplus 2}$	$\mathbb{Z}^{\oplus 2}$
p2	\mathbb{Z}_2	0	ℤ⊕6	0
р3	\mathbb{Z}_3	0	Z⊕8	0
p4	\mathbb{Z}_4	0	Z⊕9	0
рб	\mathbb{Z}_6	0	$\mathbb{Z}^{\oplus 10}$	0
pm	D_1	0	$\mathbb{Z}^{\oplus 3}$	$\mathbb{Z}^{\oplus 3}$
pg	D_1	$ au_{ m pg}$	\mathbb{Z}	$\mathbb{Z} \oplus \mathbb{Z}_2$
cm	D_1	0	$\mathbb{Z}^{\oplus 2}$	$\mathbb{Z}^{\oplus 2}$

Gapped system and $\boldsymbol{K}\text{-theory}$

Equivariant twist

Theorem [Shiozaki–Sato–G] (2/3)

label	P	au	$K_P^{ au+0}(T^2)$	$K_P^{ au+1}(T^2)$
pmm	D_2	0	$\mathbb{Z}^{\oplus 9}$	0
pmm	D_2	С	\mathbb{Z}	$\mathbb{Z}^{\oplus 4}$
pmg	D_2	$\left\{egin{array}{l} au_{pmg}, au_{pmg} + c \ au_{pmg} + au_{pgg}, \ au_{pmg} + au_{pgg} + c \ au_{pmg} + au_{pgg} + c \end{array} ight.$	$\mathbb{Z}^{\oplus 4}$	Z
pgg	D_2	$ au_{ t pgg}, au_{ t pgg} + c$	$\mathbb{Z}^{\oplus 3}$	\mathbb{Z}_2
cmm	D_2	0	$\mathbb{Z}^{\oplus 6}$	0
cmm	D_2	С	$\mathbb{Z}^{\oplus 2}$	$\mathbb{Z}^{\oplus 2}$

Equivariant twist

Theorem [Shiozaki–Sato–G] (3/3)

label	P	au	$K_P^{ au+0}(T^2)$	$K_P^{ au+1}(T^2)$
p3m1	D_3	0	$\mathbb{Z}^{\oplus 5}$	\mathbb{Z}
p31m	D_3	0	$\mathbb{Z}^{\oplus 5}$	Z
p4m	D_4	0	$\mathbb{Z}^{\oplus 9}$	0
p4m	D_4	с	$\mathbb{Z}^{\oplus 3}$	$\mathbb{Z}^{\oplus 3}$
p4g	D_4	$ au_{ m p4g}$	$\mathbb{Z}^{\oplus 6}$	0
p4g	D_4	$ au_{ extsf{p4g}}+c$	$\mathbb{Z}^{\oplus 4}$	\mathbb{Z}
рбт	D_6	0	Z⊕ 8	0
рбт	D_6	c	$\mathbb{Z}^{\oplus 4}$	$\mathbb{Z}^{\oplus 2}$

Examples of module structures

- I only show the module structures of $K_P^{\tau+n}(T^2)$ in the case of p3m1 and p31m.
- The point group is $D_3 \cong S_3$, and

$$R(D_3) = \mathbb{Z}[A,E]/(1-A^2,E-AE,1+A+E-E^2),$$

where

- A is the sign representation,
- E is the unique 2-dimensional irreducible representation.

label	$K^0_{D_3}(T^2)$	$K^1_{D_3}(T^2)$
p3m1	$R(D_3)\oplus (1+A-E)^{\oplus 2}=\mathbb{Z}^{\oplus 5}$	$(1-A)=\mathbb{Z}$
p31m	$R(D_3)\oplus (R(D_3)/(E))^{\oplus 2}=\mathbb{Z}^{\oplus 5}$	$(1-A)=\mathbb{Z}$

Some comments: proceeding works

• In the papers:

1 W. Lück and R. Stamm,

Computations of K- and L-theory of cocomapct planar groups.

K-theory 21 249-292, 2000,

Ø M. Yang,

Crossed products by finite groups acting on low dimensional complexes and applications. PhD Thesis, University of Saskatchewan, Saskatoon, 1997.

the K-theory $K_n(C_r^*(S_{\lambda}))$ is determined as an abelian group for each 2d space group S_{λ} , which agrees with our result about $K_{P_{\lambda}}^{\tau_{\lambda}+n}(T^2)$.

Some comments: twists

- There are twists which cannot be realized as group cocycles. The equivariant *K*-theories twisted by such twists are not completely computed yet.
- The role of such a twist in condensed matter seems to be open.

Some comments : \mathbb{Z}_2

• Recall that there appeared \mathbb{Z}_2 -summands:

label	P	au	$K_P^{ au+0}(T^2)$	$K_P^{ au+1}(T^2)$
pg	D_1	$ au_{ m pg}$	\mathbb{Z}	$\mathbb{Z} \oplus \mathbb{Z}_2$
pgg	D_2	$ au_{ t pgg}, au_{ t pgg} + c$	$\mathbb{Z}^{\oplus 3}$	\mathbb{Z}_2

- A consequence is that these \mathbb{Z}_2 -summands imply a 'new' class of topological insulators which are:
 - classified by \mathbb{Z}_2 ,

(The well-known topological insulators classified by \mathbb{Z}_2 correspond to $KR^{-1}(\text{pt}) = \mathbb{Z}_2$ or $KR^{-2}(\text{pt}) = \mathbb{Z}_2$, and are realized with TRS or PHS.)

This is detailed in PRB B91, 155120 (2015).

Main theorem

② Gapped system and *K*-theory

- \cdots How twisted K-theory arises?
- **Sequivariant twist**
 - ··· a review of twists and their classification

Gapped system and K-theory

- Here I would like to explain how a "gapped system with symmetry" leads to an element of *K*-theory.
- If we consider a nonsymmorphic space group as a symmetry, then we get a twisted equivariant *K*-class.

Step 1	:	Setting
Step 2	:	Bloch bundle
Step 3	:	Symmetry

Step 1 : Setting

- Let us consider the following mathematical setting:
 - **1** A lattice $\Pi \subset \Pi \otimes_{\mathbb{Z}} \mathbb{R} = \mathbb{R}^d$ of rank d.
 - ② A symmetric bilinear form (,) : Π × Π → Z whose induced bilinear form on ℝ^d is positive definite.
 - **4** Space group S:

such that P preserves the bilinear form on Π .

4 A unitary representation $U : P \to U(V)$ of P on a Hermitian vector space V of finite rank.

Quantum system with symmetry

- We then consider the following quantum system on \mathbb{R}^d :
 - **1** The quantum Hilbert space: $L^2(\mathbb{R}^d, V)$.
 - ② The symmetry: $S \cap L^2(\mathbb{R}^d, V)$.

$$\psi(x) \stackrel{g}{\mapsto} (\rho(g)\psi)(x) = U(\pi(g))\psi(g^{-1}x).$$

③ The Hamiltonian: a self-adjoint operator H on $L^2(\mathbb{R}^d, V)$ such that $H \circ \rho(g) = \rho(g) \circ H$.

Quantum system with symmetry

- We then consider the following quantum system on \mathbb{R}^d :
 - **1** The quantum Hilbert space: $L^2(\mathbb{R}^d, V)$.
 - ② The symmetry: $S \curvearrowright L^2(\mathbb{R}^d,V).$

$$\psi(x) \stackrel{g}{\mapsto} (
ho(g)\psi)(x) = U(\pi(g))\psi(g^{-1}x).$$

- **③** The Hamiltonian: a self-adjoint operator H on $L^2(\mathbb{R}^d, V)$ such that $H \circ \rho(g) = \rho(g) \circ H$.
- I will not specify whether H is bounded or not.
- But, I will assume *H* is 'gapped' in the sequel. (This is a property of a topological insulator.)

Step 2: Bloch bundle

- To carry out the 'Bloch transformation', let us denote the Pontryagin dual of Π by $\hat{\Pi} = \text{Hom}(\Pi, U(1))$.
- $\hat{\Pi}$ is identified with the torus \mathbb{R}^d/Π .

$$k\in \mathbb{R}^d/\Pi \leftrightarrow [m\mapsto e^{2\pi i \langle m,k
angle}]\in \hat{\Pi}.$$

• Then, define $L^2_{\Pi}(\hat{\Pi} \times \mathbb{R}^d, V) \subset L^2(\hat{\Pi} \times \mathbb{R}^d, V)$ to be the subspace of L^2 -functions $\hat{\psi}(k, x)$ which are quasi-periodic in the second variable:

$$\hat{\psi}(k, x+m) = e^{2\pi i \langle m, k \rangle} \hat{\psi}(k, x) \quad (m \in \Pi)$$

Gapped system and $\boldsymbol{K}\text{-theory}$

Bloch transformation

$$egin{aligned} \hat{\psi}(k,x) \in L^2_{\Pi}(\hat{\Pi} imes \mathbb{R}^d,V) \subset L^2(\hat{\Pi} imes \mathbb{R}^d,V) \ &\Leftrightarrow \hat{\psi}(k,x+m) = e^{2\pi i \langle m,k
angle} \hat{\psi}(k,x) \ \ (m\in\Pi) \end{aligned}$$

• The Bloch transformation is defined as follows:

$$egin{aligned} \hat{\mathcal{B}}: \ L^2(\mathbb{R}^d,V) &
ightarrow L^2_\Pi(\hat{\Pi} imes \mathbb{R}^d,V), \ (\hat{\mathcal{B}}\psi)(k,x) &= \sum_{n\in\Pi} e^{-2\pi i \langle n,k
angle}\psi(x+n). \end{aligned}$$

• The following gives the inverse transformation:

$$egin{aligned} \mathcal{B}: \ L^2_{\Pi}(\hat{\Pi} imes \mathbb{R}^d,V) &
ightarrow L^2(\mathbb{R}^d,V), \ (\mathcal{B}\hat{\psi})(x) &= \int_{k\in\hat{\Pi}} \hat{\psi}(k,x) dk. \end{aligned}$$

The Poincaré line bundle

• As a result, we get the identification of Hilbert spaces:

$$L^2(\mathbb{R}^d, V) \cong L^2_{\Pi}(\hat{\Pi} \times \mathbb{R}^d, V).$$

- To get a further identification, let us introduce the Poincaré line bundle $L \to \hat{\Pi} \times \mathbb{R}^d / \Pi$.
- This is the quotient of the product line bundle

$$\hat{\Pi} imes \mathbb{R}^d imes \mathbb{C} o \hat{\Pi} imes \mathbb{R}^d$$

under the free action of $m\in\Pi$ given by

$$egin{array}{ccc} \hat{\Pi} imes \mathbb{R}^d imes \mathbb{C} & \stackrel{m}{\longrightarrow} & \hat{\Pi} imes \mathbb{R}^d imes \mathbb{C}.\ (k,x,z) & \mapsto & (k,x+m,e^{2\pi i \langle m,k
angle}z) \end{array}$$

Further identification

• From $L \to \hat{\Pi} \times \mathbb{R}^d / \Pi$, we can construct an infinite dimensional vector bundle $\mathcal{E} \to \hat{\Pi}$:

$$\mathcal{E} = igcup_{k\in\hat{\Pi}} L^2(\mathbb{R}^d/\Pi,L|_{\{k\} imes\mathbb{R}^d/\Pi}).$$

• Then, the Hilbert space $L^2_{\Pi}(\hat{\Pi} \times \mathbb{R}^d, V)$ can be identified with the space of L^2 -sections of $\mathcal{E} \otimes V \to \hat{\Pi}$.

$$L^2_{\Pi}(\hat{\Pi} imes \mathbb{R}^d, V) \cong L^2(\hat{\Pi}, \mathcal{E} \otimes V).$$

• In sum, we have the identifications of Hilbert spaces:

$$L^2(\mathbb{R}^d, V) \cong L^2_{\Pi}(\hat{\Pi} \times \mathbb{R}^d, V) \cong L^2(\hat{\Pi}, \mathcal{E} \otimes V).$$

Gapped condition and the Bloch bundle

$$L^2(\mathbb{R}^d,V)\cong L^2_\Pi(\hat\Pi imes\mathbb{R}^d,V)\cong L^2(\hat\Pi,\mathcal{E}\otimes V).$$

- By the assumption that the Hamiltonian H on $L^2(\mathbb{R}^d, V)$ commutes with the action of $\Pi \subset S$, the induced Hamiltonian \hat{H} on $L^2(\hat{\Pi}, \mathcal{E} \otimes V)$ is induced from a self-adjoint vector bundle map $\hat{\mathcal{H}}$ on $\mathcal{E} \otimes V$.
- As the 'gapped condition', let us assume that a finite number of spectra of $\hat{\mathcal{H}}_k$ on the fiber $\mathcal{E}|_k \otimes V$ is confined in a closed interval as $k \in \hat{\Pi}$ varies.
- Then, by the spectral projection, we get a finite rank vector bundle $E \rightarrow \hat{\Pi}$, called the Bloch bundle.
- Its K-class $[E] \in K^0(\hat{\Pi})$ is an invariant of the gapped quantum system we considered.

Step 3 : Symmetry

- Finally, I take the symmetry into account, to make the Bloch bundle into an equivariant vector bundle.
- If the space group is nonsymmorphic, then the resulting equivariant vector bundle will be twisted.
- Let us recall the diagram:

• Let us define a map $a: P \to \mathbb{R}^d$ by expressing the composition $P \to O(d) \to O(d) \ltimes \mathbb{R}^d$ as $p \mapsto (p, a_p)$.

Group cocycles

• The nonsymmorphic nature of S is measured by the group cocycle with values in the left P-module Π :

$$u \in Z^2(P,\Pi)$$

defined by $u(p_1, p_2) = a_{p_1} + p_1 a_{p_2} - a_{p_1 p_2}.$

• Then, we get an induced group 2-cocycle with values in the right *P*-module $C(\hat{\Pi}, U(1))$:

 $\tau \in Z^2(P, C(\hat{\Pi}, U(1)))$

by $\tau(p_1, p_2; k) = \exp 2\pi i \langle \nu(p_1^{-1}, p_2^{-1}), k \rangle.$

• The cocycle condition for τ :

 $au(p_1, p_2p_3; k) au(p_2, p_3; k) = au(p_1, p_2p_3; k) au(p_1, p_2; p_3k).$

Twisted group action

- For $p\in P$, we define $ho(p):L^2(\mathbb{R}^d,V) o L^2(\mathbb{R}^d,V)$ by $\psi(x)\mapsto (
 ho(p)\psi)(x)=U(p)\psi(p^{-1}x+a_{p^{-1}}).$
- Then the map on $L^2(\hat{\Pi}, \mathcal{E} \otimes V)$ corresponding to $\rho(p)$ is identified with the map induced from a map:

where $p: \hat{\Pi} \to \hat{\Pi}$ is $k \mapsto pk$.

• This is a τ -twisted action, in the sense that

 $ho(p_1;p_2k)
ho(p_2;k)\xi= au(p_1,p_2;k)
ho(p_1p_2;k)\xi$ holds for all $\xi\in \mathcal{E}|_k\otimes V$ and $k\in \hat{\Pi}$.

Twisted vector bundle

- Under the gapped condition, the Bloch bundle
 E ⊂ *E* ⊗ *V* inherits a *τ*-twisted action from *E* ⊗ *V*.
- The τ -twisted vector bundle $E \to \hat{\Pi}$ defines a *K*-class $[E] \in K_P^{\tau+0}(\hat{\Pi})$, which is an invariant of the gapped system with symmetry we considered.

Some comments

• A result of Freed–Moore says that: if a finite group G acts on a 'nice' space X and $\tau \in Z^2(G; C(X, U(1)))$, then $K_G^{\tau+0}(X)$ can be realized as the Grothendieck group of the isomorphism classes of finite rank τ -twisted G-equivariant vector bundles on X.

Some comments

- A result of Freed–Moore says that: if a finite group G acts on a 'nice' space X and $\tau \in Z^2(G; C(X, U(1)))$, then $K_G^{\tau+0}(X)$ can be realized as the Grothendieck group of the isomorphism classes of finite rank τ -twisted G-equivariant vector bundles on X.
- Recall that, in the first setting, we considered a unitary representation $U: P \to U(V)$ of P.
- We can assume this to be a c-projective representation, where $c \in Z^2(P, U(1))$ is the group cocycle with values in the trivial P-module U(1).
- In this case, the resulting Bloch bundle E defines a twisted K-class $[E] \in K_P^{\tau+c+0}(\hat{\Pi})$.

Some comments

- The construction of a twisted vector bundle so far is a version of the 'Macky machine'.
- Let us assume that there is an extension of a finite group P by a finite abelian group Π:

$$1 o \Pi o S \stackrel{\pi}{ o} P o 1.$$

• A choice of a map $\sigma: P \to S$ such that $\pi \circ \sigma = 1$ defines a 2-cocycle $\tau \in Z^2(P, C(\hat{\Pi}, U(1)))$,

$$\tau(p_1, p_2; \lambda) = \lambda(\sigma(p_1 p_2)^{-1} \sigma(p_1) \sigma(p_2)).$$

Some comments

$$1 \to \Pi \to S \xrightarrow{\pi} P \to 1.$$

 Π finite abelian, P finite.

• Then there is an isomorphism of groups:

$$K^0_S(\mathrm{pt}) \cong K^{ au+0}_P(\hat{\Pi}).$$
 $E = \bigoplus_{\lambda \in \hat{\Pi}} \mathbb{C}_\lambda \otimes \operatorname{Hom}_{\Pi}(\mathbb{C}_\lambda, E) \mapsto \bigcup_{\lambda \in \hat{\Pi}} \operatorname{Hom}_{\Pi}(\mathbb{C}_\lambda, E).$

 In order to justify these machinery in the case where S is a space group, a C*-algebraic approach is useful, as discussed by G. C. Thiang.

Main theorem

- **2** Gapped system and *K*-theory
- **O** Equivariant twist
 - ··· a review of twists and their classification (results from arXiv:1509.09194)

Equivariant twist

A G-equivariant twist τ (or equivalently a G-equivariant gerbe) on a space X is a datum playing a role of a local system for equivariant K-theory.

$$K^n_G(X) \rightsquigarrow K^{{m au}+n}_G(X).$$

• They are classified by the third Borel equivariant cohomology with integer coefficients:

$$[au]\in H^3_G(X;\mathbb{Z}).$$

• There are four types of equivariant twists corresponding to the filtration:

$$H^3_G(X) \supset F^1H^3_G(X) \supset F^2H^3_G(X) \supset F^3H^3_G(X)$$

computing the Leray-Serre spectral sequence.

Four types of twists

$$H^3_G(X) \supset F^1H^3_G(X) \supset F^2H^3_G(X) \supset F^3H^3_G(X)$$

- If G fixes at least one point $pt \in X$, then the four types of twists admit the following interpretation:
 - Twists realized by group cocycles $\tau \in Z^2(G; U(1))$, classified by $F^3H^3_G(X) = H^3_G(\mathrm{pt})$.
 - **2** Twists realized by group cocycles $\tau \in Z^2(G; C(X, U(1)))$, classified by $F^2H^3_G(X)$.
 - Twists realized by central extensions of the groupoid X//G associated to the G-action on X, classified by F¹H³_G(X).
 - Twists which cannot be realized by central extensions of X//G.

Central extension of X//G with G finite

Definition

A central extension (L, τ) of X//G consists of:

- complex line bundles $L_g o X$, $(g \in G)$
- isomorphisms of line bundles $au_{g,h}(x): L_g|_{hx} \otimes L_h|_x \to L_{gh}|_x$, $(g, h \in G)$ making the following diagram commutative:

$$egin{aligned} &L_g|_{hkx}\otimes L_h|_{kx}\otimes L_k|_x & \xrightarrow{1\otimes au_{h,k}(x)} &L_g|_{hkx}\otimes L_{hk}|_x \ && & & & \downarrow au_{g,h}(kx)\otimes 1 \ && & & \downarrow au_{g,hk}(x) \ && & & & L_{ghk}|_x \end{aligned}$$

• A group 2-cocycle $\tau \in Z^2(G; C(X, U(1)))$ is a special example of a central extension such that L_g is trivial.

$$H^3_G(X) \supset F^1H^3_G(X) \supset F^2H^3_G(X) \supset F^3H^3_G(X)$$

- Because $F^1H^3_G(X) = \text{Ker}[H^3_G(X) \to H^3(X)]$, all the twists on $X = T^2$ can be realized by central extensions.
- As is seen, the group cocycles associated to nonsymmorphic space groups and the 'constant' group cocycles are relevant to topological insulators.
- As twists, they are classified by $F^2H^3_G(X)$.
- Now, there arises mathematically natural questions:

Questions

• Let us consider the case where the point group P of a 2d space group acts on T^2 .

Questions

- Are there group 2-cocycles other than combinations of group cocycles associated to nonsymmorphic space groups and the 'constant' group cocycles?
- Are there twists (or central extensions) which cannot be realized by group 2-cocycles?

 $H^3_P(T^2) = F^1 H^3_P(T^2) \supset F^2 H^3_P(T^2) \supset F^3 H^3_P(T^2)$

Questions

• Let us consider the case where the point group P of a 2d space group acts on T^2 .

Questions

- Are there group 2-cocycles other than combinations of group cocycles associated to nonsymmorphic space groups and the 'constant' group cocycles? No!
- Are there twists (or central extensions) which cannot be realized by group 2-cocycles? Yes!

 $H^3_P(T^2) = F^1 H^3_P(T^2) \supset F^2 H^3_P(T^2) \supset F^3 H^3_P(T^2)$

Questions

• Let us consider the case where the point group P of a 2d space group acts on T^2 .

Questions

- Are there group 2-cocycles other than combinations of group cocycles associated to nonsymmorphic space groups and the 'constant' group cocycles? No!
- Are there twists (or central extensions) which cannot be realized by group 2-cocycles? Yes!

 $H^3_P(T^2) = F^1 H^3_P(T^2) \supset F^2 H^3_P(T^2) \supset F^3 H^3_P(T^2)$

• Our computations of $K_P^{\tau+n}(T^2)$ cover all the twists classified by $F^2H_P^3(T^2)$ but not all the twists on T^2 .

Proposition(answer to the 1st question)

label	P	ori	$F^2 H_P^3(T^2)$	basis
p1	1	+	0	
p2	\mathbb{Z}_2	+	0	
p3	\mathbb{Z}_3	+	0	
p4	\mathbb{Z}_4	+	0	
рб	\mathbb{Z}_6	+	0	
pm/pg	D_1	_	\mathbb{Z}_2	$ au_{ m pg}$
cm	D_1	_	0	
pmm/pmg/pgg	D_2	—	$\mathbb{Z}_2^{igoplus 3}$	$ au_{pmg}, au_{pgg}, c$
cmm	D_2	_	\mathbb{Z}_2	c
p3m1	D_3	—	0	
p31m	D_3	_	0	
p4m/p4g	D_4	_	$\mathbb{Z}_2^{\oplus 2}$	$ au_{p4g}, c$
рбт	D_6	_	\mathbb{Z}_2	с

Proposition(answer to the 2nd question)

label	P	ori	$H_P^3(T^2)$	H^3/F^2H^3
p1	1	+	0	0
p2	\mathbb{Z}_2	+	0	0
p3	\mathbb{Z}_3	+	0	0
p4	\mathbb{Z}_4	+	0	0
рб	\mathbb{Z}_6	+	0	0
pm/pg	D_1	—	$\mathbb{Z}_2^{\oplus 2}$	\mathbb{Z}_2
cm	D_1	_	\mathbb{Z}_2	\mathbb{Z}_2
pmm/pmg/pgg	D_2	—	$\frac{\mathbb{Z}_2^{\oplus 4}}{\mathbb{Z}_2^{\oplus 2}}$	\mathbb{Z}_2
cmm	D_2	—	$\mathbb{Z}_2^{igoplus 2}$	\mathbb{Z}_2
p3m1	D_3	—	\mathbb{Z}_2	\mathbb{Z}_2
p31m	D_3	_	\mathbb{Z}_2	\mathbb{Z}_2
p4m/p4g	D_4	_	$\mathbb{Z}_2^{\oplus 3}$	\mathbb{Z}_2
рбт	D_6	_	$\mathbb{Z}_2^{\oplus 2}$	\mathbb{Z}_2

Equivariant cohomology degree up to 3

label	P	$H^1_P(T^2)$	$H_P^2(T^2)$	$H_P^3(T^2)$
p1	1	$\mathbb{Z}^{\oplus 2}$	Z	0
p2	\mathbb{Z}_2	0	$\mathbb{Z} \oplus \mathbb{Z}_2^{\oplus 3}$	0
р3	\mathbb{Z}_3	0	$\mathbb{Z}\oplus\mathbb{Z}_3^{\oplus 2}$	0
p4	\mathbb{Z}_4	0	$\mathbb{Z} \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_4$	0
рб	\mathbb{Z}_6	0	$\mathbb{Z}\oplus\mathbb{Z}_6$	0
pm/pg	D_1	Z	$\mathbb{Z}_2^{\oplus 2}$	$\mathbb{Z}_2^{\oplus 2}$
cm	D_1	Z	\mathbb{Z}_2	\mathbb{Z}_2
pmm/pmg/pgg	D_2	0	$\mathbb{Z}_2^{\oplus 4}$	$\mathbb{Z}_2^{\oplus 4}$
cmm	D_2	0	$\mathbb{Z}_2^{\oplus 3}$	$\mathbb{Z}_2^{\oplus 2}$
p3m1	D_3	0	\mathbb{Z}_2	\mathbb{Z}_2
p31m	D_3	0	$\mathbb{Z}_3\oplus\mathbb{Z}_2$	\mathbb{Z}_2
p4m/p4g	D_4	0	$\mathbb{Z}_2^{\oplus 3}$	$\mathbb{Z}_2^{\oplus 3}$
рбт	D_6	0	$\mathbb{Z}_2^{\oplus 2}$	$\mathbb{Z}_2^{\oplus 2}$