An approach to

finite-dimensional realizations of twisted K-theory

Kiyonori Gomi
The University of Tokyo
Japan

Realize twisted K-theory generally by means of finite dimensional geometric objects.

> Main theorem
> We can define a group by means of "twisted \mathbb{Z}_{2}-graded Hermitian general vector bundles", into which there exists a monomorphism from twisted K-theory.

Plan
§1 Twisted K-theory
§2 Hermitian general vector bundle

§1 Twisted K-theory

Origin
P. Donovan and M. Karoubi (1970)
J. Rosenberg (1989)

Application
D-brane charge
[Witten, Kapustin, ...]

The Verlinde algebra
[Freed-Hopkins-Teleman]

The quantum Hall effect
[Carey-Hannabuss-Mathai-McCann]

K-theory $\quad X$: compact
$\operatorname{Vect}(X)=$ the isomorphism classes of finite dimensional vector bundles over X

Definition

$$
\begin{aligned}
K(X) & =K(\operatorname{Vect}(X)) \\
& =\operatorname{Vect}(X) \times \operatorname{Vect}(X) / \Delta(\operatorname{Vect}(X))
\end{aligned}
$$

Fredholm operators

\mathcal{H} : separable Hilbert space $(\operatorname{dim} \mathcal{H}=\infty)$

A Fredholm operator $A: \mathcal{H} \rightarrow \mathcal{H}$
$\stackrel{\text { def }}{\Longleftrightarrow}\left\{\begin{array}{l}\text { bounded linear, } \\ \text { Image }(A) \subset \mathcal{H}: \text { closed },\end{array}\right.$ $\operatorname{dimKer}(A), \operatorname{dim} \operatorname{Coker}(A)<\infty$.
$\mathcal{F}(\mathcal{H})=\{$ Fredholm operators $A: \mathcal{H} \rightarrow \mathcal{H}\}$

Fact [Atiyah, Jänich]
X : compact

$$
C(X, \mathcal{F}(\mathcal{H})) / \text { htpy } \xrightarrow{\text { iso }} K(X)
$$

Twisted K-theory

$$
P U(\mathcal{H})=U(\mathcal{H}) / U(1) \stackrel{A d}{\curvearrowright} \mathcal{F}(\mathcal{H})
$$

Definition
$P \rightarrow X$: principal $P U(\mathcal{H})$-bundle

$$
K(X ; P)=\Gamma\left(X, P \times_{A d} \mathcal{F}(\mathcal{H})\right) / \text { htpy }
$$

- $P \cong X \times P U(\mathcal{H}) \Rightarrow K(X ; P) \cong K(X)$.
- Principal $P U(\mathcal{H})$-bundles P are classified by their Dixmier-Douady classes:

$$
\delta(P) \in H^{3}(X ; \mathbb{Z})
$$

$C(X) \quad C(X, \mathcal{F}(\mathcal{H})) / \simeq$

$\Gamma\left(P \times_{A d} \mathcal{K}(\mathcal{H})\right)$
$\Gamma\left(P \times_{A d} \mathcal{F}(\mathcal{H})\right) / \simeq$

Realize twisted K-theory $K(X ; P)$ generally by means of finite dimensional geometric objects.
$\delta(P)$: finite order $\Rightarrow{ }^{\exists}$ answer

Fact
$\begin{cases}X & : \text { compact manifold } \\ P & : \delta(P) \text { is finite order }\end{cases}$
We can define a group by means of "twisted vector bundles", to which there exists an isomorphism from $K(X ; P)$.

$$
\begin{gathered}
K(X ; P) \\
\mid \text { iso } \\
K(\{\text { twisted vector bundles }\} / \cong)
\end{gathered}
$$

Twisted vector bundle

$$
\left.\left.\begin{array}{c}
\left(\mathcal{U}, E_{\alpha}, \phi_{\alpha \beta}\right) \\
\left\{\begin{array}{l}
\mathcal{U}=\left\{U_{\alpha}\right\} \quad \text { open cover of } X ; \\
E_{\alpha} \rightarrow U_{\alpha} \quad \text { finite rank vector bundle; } \\
\phi_{\alpha \beta}:\left.\left.E_{\beta}\right|_{U_{\alpha \beta}} \rightarrow E_{\alpha}\right|_{U_{\alpha \beta}} \text { isomorphism; }
\end{array}\right. \\
\phi_{\alpha \beta} \phi_{\beta \gamma}=c_{\alpha \beta \gamma} \phi_{\alpha \gamma} .
\end{array}\right\} \begin{array}{l}
\left(c_{\alpha \beta \gamma}\right) \in \check{Z}^{2}(\mathcal{U} ; \underline{U(1)}) \\
\delta(P) \in H^{2}(X ; \underline{U(1)}) \cong H^{3}(X ; \mathbb{Z})
\end{array}\right) .
$$

Remark $\left(\mathcal{U}, E_{\alpha}, \phi_{\alpha \beta}\right)$: rank $r \Rightarrow r \cdot \delta(P)=0$.
$\left(\operatorname{det} \phi_{\alpha \beta}\right)\left(\operatorname{det} \phi_{\beta \gamma}\right)=\left(c_{\alpha \beta \gamma}\right)^{r}\left(\operatorname{det} \phi_{\alpha \gamma}\right)$

§2 Hermitian general vector bundle

M. Furuta, "Index theorem, II" . (Japanese) Iwanami Series in Modern Mathematics. Iwanami Shoten, Publishers, Tokyo, 2002.

- to define $K(X)$;

Theorem[Furuta]
X : compact
We can define a group by means of $\mathbb{Z}_{2^{-}}$ graded Hermitian general vector bundles, which is isomorphic to $K(X)$.

- to approximate Dirac-type operators.
a linear version of the finite dimensional approximation of the Seiberg-Witten equations

Hermitian general vector bundle on X

$$
\left(\mathcal{U},\left(E_{\alpha}, h_{\alpha}\right), \phi_{\alpha \beta}\right)
$$

$\left\{\mathcal{U}=\left\{U_{\alpha}\right\}\right.$ open cover of X; $E_{\alpha} \rightarrow U_{\alpha} \quad \mathbb{Z}_{2^{-}}$gr. Hermitian vector bundle; $h_{\alpha}: E_{\alpha} \rightarrow E_{\alpha} \quad$ Hermitian map of degree 1; $\phi_{\alpha \beta}:\left.\left.E_{\beta}\right|_{U_{\alpha \beta}} \rightarrow E_{\alpha}\right|_{U_{\alpha \beta}} \quad$ map of degree 0 s.t. $h_{\alpha} \phi_{\alpha \beta}=\phi_{\alpha \beta} h_{\beta}$;

1. " $\phi_{\alpha \beta} \phi_{\beta \alpha}=1$ ",

$$
\left(\begin{array}{c}
{ }^{\forall} x \in U_{\alpha \beta} ;\left\{\begin{array}{l}
x \in{ }^{\exists} V \subset U_{\alpha \beta}, \\
\exists \mu>0,
\end{array}\right. \\
\left\{\begin{array}{l}
{ }^{\forall} y \in V, \\
{ }_{y} \in \in \underset{\lambda<\mu}{\bigoplus}\left\{v \in\left(E_{\alpha}\right)_{y} \mid h_{\alpha}^{2} v=\lambda v\right\}, \\
\phi_{\alpha \beta} \phi_{\beta \alpha}(v)=v .
\end{array}\right)
\end{array}\right.
$$

2. " $\phi_{\alpha \beta} \phi_{\beta \gamma}=\phi_{\alpha \gamma}$ ".

Fredholm operator $A: \mathcal{H} \rightarrow \mathcal{H}$

 approximate (E, h) $\left\{\begin{array}{cl}E=E^{0} \oplus E^{1} & \mathbb{Z}_{2} \text {-gr. Herm. vector space } \\ h: E \rightarrow E & \text { Hermitian map of degree } 1\end{array}\right.$Step 1 $\left\{\begin{array}{cl}\hat{\mathcal{H}}=\mathcal{H} \oplus \mathcal{H} & \mathbb{Z}_{2} \text {-graded } \\ \hat{A}=\left(\begin{array}{cc}0 & A^{*} \\ A & 0\end{array}\right) & \text { self-adjoint, degree } 1\end{array}\right.$

Step $2 \sigma\left(\widehat{A}^{2}\right) \ni 0$: discrete $\Rightarrow^{\exists} \mu>0$ s.t.

- $\mu \notin \sigma\left(\widehat{A}^{2}\right)$;
- $\sigma\left(\widehat{A}^{2}\right) \cap[0, \mu)$ consists of a finite number of eigenvalues: $0=\lambda_{1}<\lambda_{2}<\cdots<\lambda_{n}<\mu$;
- $(\mathcal{H}, \widehat{A})_{\lambda_{i}}=\left\{v \in \widehat{\mathcal{H}} \mid \widehat{A}^{2} v=\lambda_{i} v\right\}$: finite dim.

$$
\left((\mathcal{H}, \widehat{A})_{0}=\operatorname{Ker} \widehat{A}^{2} \cong \operatorname{Ker} A \oplus \operatorname{Coker} A\right)
$$

Step 3 Put $\left\{\begin{array}{l}E=\oplus_{\lambda<\mu}(\hat{\mathcal{H}}, \widehat{A})_{\lambda}, \\ h=\left.\widehat{A}\right|_{E} .\end{array}\right.$
Remark family $\left\{A_{x}: \mathcal{H} \rightarrow \mathcal{H}\right\}_{x \in X}$ vector bundle over X

Main theorem
$\{X:$ compact manifold
$\{P: P U(\mathcal{H})$-bundle
We can define a group by means of twisted \mathbb{Z}_{2}-graded Hermitian general vector bundles, into which there exists a monomorphism from $K(X ; P)=\Gamma\left(P \times_{A d} \mathcal{F}(\mathcal{H})\right) / \simeq$.

- twisting $\Leftarrow " \phi_{\alpha \beta} \phi_{\beta \gamma}=c_{\alpha \beta \gamma} \phi_{\alpha \gamma}{ }^{\prime}$

finite dimensional approximation

