Multiplication in differential cohomology and cohomology operation

Kiyonori GOMI

Kyoto University

Feb 17, 2009

Introduction		Definition and Property	Physics	ordinary cohomology	$oldsymbol{K}$ -cohomology
	T 11				
	Talk a	bout			
	a relat	ionship between			

- multiplications in differential cohomology theories
- classical cohomology operations

- Introduction
- **2** Definition of differential cohomology
- **O Differential cohomology in physics**
- **O Case of ordinary cohomology**
- **6** Case of *K*-cohomology

 In general, a differential cohomology is a refinment of a generalized cohomology theory involving information of differential forms on smooth manifolds.

 $egin{array}{cc} {
m ordinary\ cohomology\ }
ightarrow {
m differential\ ordinary\ cohomology\ } K\mbox{-cohomology\ }
ightarrow {
m differential\ } K\mbox{-cohomology\ } K\mbox{-cohomology\ }
ightarrow {
m differential\ } K\mbox{-cohomology\ } K\mbox{-cohom$

:

:

- A differential cohomology theory is also called a "smooth cohomology theory".
- For the ordinary cohomology, its differential version (differential ordinary cohomology) has been known as:
 - the group of Cheeger-Simons' differential characters
 - the smooth Deligne cohomology
- The differential version of any generalized cohomology was introduced in a work of Hopkins and Singer [JDG, math/0211216].

Introduction

• For some generalized cohomology theory h^* , its differential version \check{h}^* admits a multiplication:

$$\cup: \check{h}^m(X)\otimes\check{h}^n(X)\longrightarrow\check{h}^{m+n}(X)$$

compatible with the multiplication in the underlying cohomology theory h^* . (e.g. \check{H}^* and \check{K}^*)

• If the multiplication in \check{h}^* is graded-commutative, then the squaring map on odd classes

$$egin{array}{rcl} \check{q}:&\check{h}^{2k+1}(X)&\longrightarrow&\check{h}^{4k+2}(X)\ &x&\mapsto&x^2 \end{array}$$

is a homomorphism.

$$\check{q}(x+y) = x^2 + xy + yx + y^2 = \check{q}(x) + \check{q}(y)$$

• Moreover, the map reduces to a homomorphism

$$\check{q}:\;h^{2k+1}(X)\longrightarrow h^{4k+1}(X;\mathbb{R}/\mathbb{Z}).$$

"Main Theorem"

In the case of \check{H}^* and \check{K}^* , the homomorphisms \check{q} are related to the Steenrod operations and the Adams operations.

- The map \check{q} appeas in two contexts of physics
 - Chern-Simons theory in 5-dimensions [Witten]
 - Hamiltonian quantization of self-dual generalized abelian gauge fields [Freed-Moore-Segal]

Introduction	Definition and Property	Physics	ordinary cohomology	$oldsymbol{K}$ -cohomology
		Index		

Introduction

(almost done)

② Definition of differential cohomology

(definitions and properties of \check{H}^* and \check{K}^*)

O I Differential cohomology in physics

(relation to the two contexts of physics)

- Case of ordinary cohomology
- **6** Case of *K*-cohomology

Definition of differential cohomology

Definition of differential ordinary cohomology

- The differential ordinary cohomology $\check{H}^n(X)$ of a smooth manifold X consists of the equivalence classes of differential cocycles of degree n.
- A differential cocycle of degree n is a triple:

$$egin{aligned} &(c,h,\omega)\in C^n(X;\mathbb{Z}) imes C^{n-1}(X;\mathbb{R}) imes \Omega^n(X)\ &\delta c=0,\ \ d\omega=0,\ \ \omega=c+\delta h. \end{aligned}$$

• (c,h,ω) and (c',h',ω') are equivalent if:

$$\exists (b,k)\in C^{n-1}(X;\mathbb{Z}) imes C^{n-2}(X;\mathbb{R})\ c'-c=\delta b, \ \ \omega'=\omega, \ \ h-h'=b+\delta k.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆□

Physics

Examples

$\check{H}^0(X) = \{(c,\omega) \in C^0_{\mathbb{Z}} imes \Omega^0 | \ \delta c = 0, d\omega = 0, c = \omega \} \ \cong H^0(X; \mathbb{Z})$

$\check{H}^1(X) \cong C^\infty(X, U(1))$

 $\check{H}^2(X) \cong \{U(1) \text{-bundle with connection}/X\}/\text{isom}$

 $\check{H}^3(X) \cong \{ \text{abelian gerbe with connection} / X \} / \text{isom}$

Addition and Multiplication

• The differential cohomology $\check{H}^*(X)$ is an additive group:

$$(c,h,\omega)+(c',h',\omega')=(c+c',h+h',\omega+\omega').$$

• $\check{H}^*(X)$ is a graded-commutative ring:

$$egin{aligned} & (c,h,\omega)\cup(c',h',\omega')\ &=(c\cup c',(-1)^{|c|}c\cup h'+h\cup\omega'+B(\omega\otimes\omega'),\omega\wedge\omega'), \end{aligned}$$

where $B:\Omega^*(X)\otimes\Omega^*(X)\to C^*(X;\mathbb{R})$ is a functorial homomorphism satisfying

$$\omega\wedge\omega'-\omega\cup\omega'=Bd(\omega\otimes\omega')-\delta B(\omega\otimes\omega').$$

Example

$$\cup: \check{H}^1(S^1) imes \check{H}^1(S^1) \longrightarrow \check{H}^2(S^1)$$

$$\left\{ egin{array}{l} \check{H}^1(S^1) = C^\infty(S^1,U(1)) \; (= LU(1)) \ \check{H}^2(S^1) = \mathbb{R}/\mathbb{Z} \; (= ext{holonomy around} \; S^1) \end{array}
ight.$$

$$f:S^1 o U(1) \Rightarrow \left\{egin{array}{cc} F:S^1 o \mathbb{R} & ext{ lift of } f \ \Delta_f = F(heta+2\pi) - F(heta) & ext{ winding $$\sharp$} \end{array}
ight.$$

$$f\cup g=\Delta_f G(0)-\int_0^{2\pi}Frac{dG}{d heta}d heta\mod\mathbb{Z}$$

.

Example

$$\cup: \check{H}^1(S^1) imes \check{H}^1(S^1) \longrightarrow \check{H}^2(S^1)$$

$$\left\{ egin{array}{l} \check{H}^1(S^1) = C^\infty(S^1,U(1)) \ (= LU(1)) \ \check{H}^2(S^1) = \mathbb{R}/\mathbb{Z} \ (= ext{ holonomy around } S^1) \end{array}
ight.$$

$$f:S^1 o U(1) \Rightarrow \left\{egin{array}{cc} F:S^1 o \mathbb{R} & ext{ lift of } f \ \Delta_f = F(heta+2\pi) - F(heta) & ext{ winding } \sharp \end{array}
ight.$$

$$f\cup g=\Delta_f G(0)-\int_0^{2\pi}Frac{dG}{d heta}d heta\mod\mathbb{Z}$$

<u>Remark</u> $c(f,g) = \exp 2\pi \sqrt{-1}(f \cup g)$ gives a 2-cocycle defining the cetral extension of LU(1) of level 2.

The 1st exact sequence

$$0{
ightarrow}\Omega^{n-1}(X)/\Omega^{n-1}_{\mathbb{Z}}(X){
ightarrow} \check{H}^n(X){
ightarrow} H^n(X;\mathbb{Z}){
ightarrow} 0,\ (c,h,\omega)\mapsto c$$

where $\Omega^p_{\mathbb{Z}}(X)$ means the group of closed integral *p*-forms.

Example

 $\check{H}^2(X) \cong \{U(1)\text{-bundle with connection}/X\}/ ext{isom}$ $\chi[(P,A)] = ext{Chern class of } P$ $\Omega^1(X)/\Omega^1_{\mathbb{Z}}(X) = \{ ext{connection on } P\}/ ext{gauge equivalence}$

The 2nd exact sequence

$$0{
ightarrow} H^{n-1}(X;\mathbb{R}/\mathbb{Z}){
ightarrow}\check{H}^n(X){
ightarrow} \check{O}^n_{\mathbb{Z}}(X){
ightarrow} 0. \ (c,h,\omega){\mapsto} \quad \omega$$

Example

 $\check{H}^2(X)\cong \{U(1) ext{-bundles with connection}/X\}/ ext{isom}$ $\delta[(P,A)]=rac{-1}{2\pi\sqrt{-1}}F(A)$ $H^2(X;\mathbb{R}/\mathbb{Z})=\{ ext{flat }U(1) ext{-bundle}/X\}/ ext{isom}$

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

The multiplication is compatible with the exact sequences

$$egin{aligned} 0 &\longrightarrow & \Omega^{n-1}(X) / \Omega^{n-1}_{\mathbb{Z}}(X) \stackrel{i}{\longrightarrow} \check{H}^n(X) \stackrel{\chi}{\longrightarrow} H^n(X;\mathbb{Z}) \longrightarrow 0, \ 0 &\longrightarrow & H^{n-1}(X;\mathbb{R}/\mathbb{Z}) \longrightarrow \check{H}^n(X) \stackrel{\delta}{\longrightarrow} & \Omega^n_{\mathbb{Z}}(X) \longrightarrow 0. \end{aligned}$$

- The cup product in $H^*(X;\mathbb{Z})$;
- The wedge product in $\Omega^*_{\mathbb{Z}}(X)$;
- The product in $\Omega^*(X)/\Omega^*_{\mathbb{Z}}(X).$

$$egin{array}{rcl} \Omega^{m-1}/\Omega^{m-1}_{\mathbb{Z}}\otimes\Omega^{n-1}/\Omega^{n-1}_{\mathbb{Z}}&\longrightarrow&\Omega^{m+n-1}/\Omega^{m+n-1}_{\mathbb{Z}}\ \eta\otimes\eta'&\mapsto&\eta\wedge d\eta' \end{array}$$

Preliminary to the definition of differential K-cohomology

• For $n\in\mathbb{Z}$, define $C^{|n|}(X;\mathbb{R})$ and $\Omega^{|n|}(X)$ by

$$C^{|n|}(X;\mathbb{R}) = \left\{ egin{array}{ll} \prod_{m\geq 0} C^{2m}(X;\mathbb{R}), & (n: {
m even})\ \prod_{m\geq 0} C^{2m+1}(X;\mathbb{R}). & (n: {
m odd}) \end{array}
ight. \ \Omega^{|n|}(X) = \left\{ egin{array}{ll} \prod_{m\geq 0} \Omega^{2m}(X), & (n: {
m even})\ \prod_{m\geq 0} \Omega^{2m+1}(X). & (n: {
m odd}) \end{array}
ight.$$

- Let Kⁿ be the classifying space of Kⁿ.
 (i.e. Kⁿ(X) = [X, Kⁿ] for any CW complex.)
- Let ι_n ∈ C^{|n|}(Kⁿ; R) be a cocycle representing the universal Chern character class.
 (i.e. ch([c]) = [c^{*}ι_n] for any c : X → Kⁿ.)

The definition of differential K-cohomology

- The differential *K*-cohomology $\check{K}^n(X)$ of a smooth manifold *X* consists of the equivalence classes of differential *K*-cocycles of degree *n*.
- A differential *K*-cocycle of degree *n* is a triple:

 $(c,h,\omega)\in \operatorname{Map}(X,\mathbb{K}^n) imes C^{|n-1|}(X;\mathbb{R}) imes \Omega^{|n|}(X) \ d\omega=0, \ \ \omega=c^*\iota_n+\delta h.$

• $x = (c, h, \omega)$ and $x' = (c', h', \omega')$ are equivalent if there is a differentila *K*-cocycle $\tilde{x} = (\tilde{c}, \tilde{h}, \tilde{\omega})$ on $X \times I$ s.t.

$$ilde{x}|_{t=0}=x, \;\; ilde{x}|_{t=1}=x', \;\; ilde{\omega}(rac{\partial}{\partial t})=0.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

Property of the differential *K*-cohomology

- $\check{K}^*(X)$ gives rise to a graded-commutative ring.
- $\check{K}^n(X)$ fits into the natural exact sequences:

$$egin{aligned} 0 &\longrightarrow & \Omega^{|n-1|}(X) / \Omega_K^{|n-1|}(X) \longrightarrow & \check{K}^n(X) \longrightarrow & K^n(X) \longrightarrow 0, \ 0 &\longrightarrow & K^{n-1}(X; \mathbb{R}/\mathbb{Z}) \longrightarrow & \check{K}^n(X) \longrightarrow & \Omega_K^{|n|}(X) \longrightarrow 0, \end{aligned}$$

where $\Omega_K^{[n]}(X)$ is the group of closed forms representing the image of the Chern character $ch: K^n(X) \to H^{[n]}(X;\mathbb{R})$.

• The multiplication is compatible with these sequences.

Comments on the general case

- For any generalized cohomology theory h^* , its differential version \check{h}^* is defined in a way similar to the case of the *K*-cohomology, by using classifying spaces.
- \check{h}^* also fits into two natural exact sequences.
- It is unclear whether the differential cohomology of a multiplicative cohomology theory admits a compatible multiplication.

(All the cohomology theories obtained by the Landweber exact functor theorem have compatible multiplications. [Bunke-Schick-Schröder-Wiethaup])

Differential cohomology in Physics

- Relationship between \check{q} and:
 - Chern-Simons theory in 5-dimensions
 - Hamiltonian quantization of self-dual abelian generalized gauge fields

• The key is interpretation of differential cocycles.

Interpretation of differential cocycles

• Differential (ordinary) cocycles are abelian gauge fields and their generalization.

 $\check{H}^1(X) \cong C^\infty(X, U(1))$

 $\check{H}^2(X) \cong \{U(1)\text{-bundle with connection}/X\}/\text{isom}$

 $\check{H}^3(X)\cong \{ ext{abelian gerbe with connection}/X \}/ ext{isom}$

Interpretation of differential cocycles

• Differential (ordinary) cocycles are abelian gauge fields and their generalization.

 $\check{H}^1(X) \cong C^{\infty}(X, U(1))$

periodic scalar field

 $\check{H}^2(X)\cong \{U(1) ext{-bundle with connection}/X\}/ ext{isom}$ $U(1) ext{-gauge field}$

 $\check{H}^3(X) \cong \{ abelian gerbe with connection/X \} / isom$ *B*-field (2-form gauge field)

Interpretation of differential cocycles

• Differential (ordinary) cocycles are abelian gauge fields and their generalization.

 $\check{H}^1(X) \cong C^{\infty}(X, U(1))$

periodic scalar field

- $\check{H}^2(X)\cong \{U(1) ext{-bundle with connection}/X\}/ ext{isom}$ $U(1) ext{-gauge field}$
- $\check{H}^3(X) \cong \{ abelian gerbe with connection/X \} / isom$ *B*-field (2-form gauge field)
- Differential K-cocycles can be thought of as Ramond-Ramond fields in type II string theory. (degree 0 for IIA, and degree 1 for IIB)

Witten's 5-dimensional Chern-Simons theory

- X : closed oriented 5-dimensional manifold
- the space of fields (modulo gauge transformation)

$${\cal B}_{
m RR} imes {\cal B}_{
m NS} = \check{H}^3(X) imes \check{H}^3(X)$$

• the action functional $I_{\mathrm{CS}}:\mathcal{B}_{\mathrm{RR}} imes\mathcal{B}_{\mathrm{NS}} o\mathbb{R}/\mathbb{Z}$

$$I_{\mathrm{CS}}(B_{\mathrm{RR}},B_{\mathrm{NS}}) = \int_X^{\check{H}} B_{\mathrm{RR}} \cup B_{\mathrm{NS}},$$

where $\int_X^{\check{H}}$ is the integration in \check{H}^* :

$$\int_X^{\check{H}}:\;\check{H}^6(X)\stackrel{\cong}{\longrightarrow}\check{H}^1(\mathrm{pt})\cong\mathbb{R}/\mathbb{Z}.$$

• On $\mathcal{B}_{\mathrm{RR}} imes \mathcal{B}_{\mathrm{NS}}$, $SL(2,\mathbb{Z})$ acts:

$$(B_{
m RR},B_{
m NS})\left(egin{array}{c} a & b \ c & d \end{array}
ight)=(aB_{
m RR}{+}cB_{
m NS},bB_{
m RR}{+}dB_{
m NS})$$

• On $\mathcal{B}_{\mathrm{RR}} imes \mathcal{B}_{\mathrm{NS}}$, $SL(2,\mathbb{Z})$ acts:

$$(B_{
m RR},B_{
m NS})\left(egin{array}{c} a & b \ c & d \end{array}
ight)=(aB_{
m RR}+cB_{
m NS},bB_{
m RR}+dB_{
m NS})$$

• But, $I_{\rm CS}$ is not generally invariant under the action:

• On $\mathcal{B}_{\mathrm{RR}} imes \mathcal{B}_{\mathrm{NS}}$, $SL(2,\mathbb{Z})$ acts:

$$(B_{
m RR},B_{
m NS})\left(egin{array}{c} a & b \ c & d \end{array}
ight)=(aB_{
m RR}+cB_{
m NS},bB_{
m RR}+dB_{
m NS})$$

• But, $I_{\rm CS}$ is not generally invariant under the action:

$$\left(\begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array}\right) \\ \left(\begin{array}{cc} 1 & 1 \\ 0 & 1 \end{array}\right)$$

• On $\mathcal{B}_{\mathrm{RR}} imes \mathcal{B}_{\mathrm{NS}}$, $SL(2,\mathbb{Z})$ acts:

$$(B_{
m RR},B_{
m NS})\left(egin{array}{c} a & b \ c & d \end{array}
ight)=(aB_{
m RR}+cB_{
m NS},bB_{
m RR}+dB_{
m NS})$$

• But, $I_{\rm CS}$ is not generally invariant under the action:

$$egin{aligned} I_{
m CS}((B_{
m RR},B_{
m NS}) \left(egin{array}{cc} 0 & -1 \ 1 & 0 \ \end{array}
ight)) &= I_{
m CS}(B_{
m RR},B_{
m NS}), \ & \left(egin{array}{cc} 1 & 1 \ 0 & 1 \ \end{array}
ight) \end{aligned}$$

• On $\mathcal{B}_{\mathrm{RR}} imes \mathcal{B}_{\mathrm{NS}}$, $SL(2,\mathbb{Z})$ acts:

$$(B_{\mathrm{RR}}, B_{\mathrm{NS}}) \left(egin{array}{c} a & b \ c & d \end{array}
ight) = (a B_{\mathrm{RR}} + c B_{\mathrm{NS}}, b B_{\mathrm{RR}} + d B_{\mathrm{NS}})$$

 \bullet But, $I_{\rm CS}$ is not generally invariant under the action:

$$egin{aligned} I_{ ext{CS}}((B_{ ext{RR}},B_{ ext{NS}}) \left(egin{aligned} 0 & -1 \ 1 & 0 \end{array}
ight)) &= I_{ ext{CS}}(B_{ ext{RR}},B_{ ext{NS}}), \ I_{ ext{CS}}((B_{ ext{RR}},B_{ ext{NS}}) \left(egin{aligned} 1 & 1 \ 0 & 1 \end{array}
ight)) &= I_{ ext{CS}}(B_{ ext{RR}},B_{ ext{NS}}) \ &+ \int_X^{\check{H}} B_{ ext{RR}} \cup B_{ ext{RR}}. \end{aligned}$$

- $\check{q}:\check{H}^3(X)\to\check{H}^6(X)$ is the obstruction to the $SL(2,\mathbb{Z})$ -invariance of I_{CS} .
- In the case that X = 4-dimensional spin manifold $\times S^1$, Witten showed the $SL(2,\mathbb{Z})$ -invariance on a subgroup in $\mathcal{B}_{\mathrm{RR}} \times \mathcal{B}_{\mathrm{NS}}$.
- Main result implies that $I_{\rm CS}$ is generally $SL(2,\mathbb{Z})$ -invariant for any 5-dimensional spin manifold.

Hamiltonian quantization of Freed-Moore-Segal

- Freed-Moore-Segal studied Hamiltonian quantization of self-dual generalized abelian gauge theories.
- In particular, they defined the quantum Hilbert space to be a unique representation space of a central extension of an abelian group A.

() self-dual 2k-form fields in (4k + 2)-dimensions:

$$A = \check{H}^{2k+1}(X), \quad \dim X = 4k+1$$

(k = 0 : theory of chiral scalar fields or U(1) WZW) **2** RR fields in type II string:

$$A = \check{K}^n(X), \quad \dim X = 9$$

• In the construction of \hat{A} , the squaring map \check{q} appears.

Classification of central extensions

A: an abelian group with a resonable condition.

 $iggl\{ ext{central extension } \hat{A} ext{ of } A ext{ by } U(1) iggr\} / ext{isom}$ $\cong H^2_{ ext{group}}(A; \mathbb{R}/\mathbb{Z})$ $= \{ c : A imes A o \mathbb{R}/\mathbb{Z} | ext{ cocycle condition} \} / ext{coboundary}$

 $(a,z)\cdot(a',z')=(a+a',zz'\exp 2\pi\sqrt{-1}c(a,a'))$

Introduction

Physics

central extension
$$\hat{A}$$
 of A by $U(1)$ /isom
 $\cong \{c : A \times A \to \mathbb{R}/\mathbb{Z} | \text{ cocycle condition} \}$ /coboundary
 $\cong \{s : A \times A \to \mathbb{R}/\mathbb{Z} | \text{ biadditive, skew, alternating} \}$

$$\begin{array}{ll} \mbox{biadditive} & : & \left\{ \begin{array}{l} s(a+a',b)=s(a,b)+s(a',b)\\ s(a,b+b')=s(a,b)+s(a,b') \end{array} \right.\\ \mbox{skew} & : & s(a,b)=-s(b,a)\\ \mbox{alternating} & : & s(a,a)=0 \end{array} \right. \end{array}$$

$$c(a,b) \mapsto s(a,b) = c(a,b) - c(b,a)$$

coboundary $\mapsto 0$

• Apply the classification to:

$$A = \check{H}^{2k+1}(X), \qquad \dim X = 4k+1.$$

To specify a central extension of A, it suffices to choose $s: A \times A \to \mathbb{R}/\mathbb{Z}$ which is biadditive, skew and alternating.

• A naive construction:

$$s_{ ext{trial}}(x,y) = \int_X^{\check{H}} x \cup y.$$

This is biadditive and skew, but not alternating:

$$s_{ ext{trial}}(x,x) = \int_X^{\check{H}} \check{q}(x) \stackrel{?}{=} 0$$

• Freed-Moore-Segal:

$$s(x,y) = \int_X^{\check{H}} x \cup y - rac{1}{2} \epsilon(x) \epsilon(y),$$

$$\epsilon(x) = \left\{egin{array}{cc} 0, & (\check{q}(x)=0\in\mathbb{R}/\mathbb{Z})\ 1. & (\check{q}(x)=1/2\in\mathbb{R}/\mathbb{Z}) \end{array}
ight.$$

This is biadditive, skew and alternating. $(\Rightarrow \hat{A})$

• In the case that k = 0 and $X = S^1$, the resulting central extension \hat{A} is the basic central extension $\widetilde{LU(1)}$ of $A = \check{H}^1(S^1) = C^{\infty}(S^1, U(1)) = LU(1)$.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Main result in the case of oridnary cohomology

Lemma

The squaring map $\check{q}: \check{H}^{2k+1}(X) \to \check{H}^{4k+2}(X)$ reduces to a homomorphism $\check{q}: H^{2k+1}(X; \mathbb{Z}) \to H^{4k+1}(X; \mathbb{R}/\mathbb{Z}).$

<u>Proof</u>

$$egin{aligned} \Omega^{2k}(X)/\Omega^{2k}_{\mathbb{Z}}(X) & \stackrel{i}{\longrightarrow} \check{H}^{2k+1}(X) & \longrightarrow H^{2k+1}(X;\mathbb{Z}) \ & \downarrow \ & \downarrow \ & H^{4k+1}(X;\mathbb{R}/\mathbb{Z}) & \longrightarrow \check{H}^{4k+2}(X) & \stackrel{\delta}{\longrightarrow} \Omega^{4k+2}(X)_{\mathbb{Z}} \end{aligned}$$

•
$$\delta(\check{x}\cup\check{x})=(\mathsf{odd}\;\mathsf{form})^2=0$$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Main result in the case of oridnary cohomology

Lemma

The squaring map $\check{q}: \check{H}^{2k+1}(X) \to \check{H}^{4k+2}(X)$ reduces to a homomorphism $\check{q}: H^{2k+1}(X; \mathbb{Z}) \to H^{4k+1}(X; \mathbb{R}/\mathbb{Z}).$

Proof

$$\Omega^{2k}(X)/\Omega^{2k}_{\mathbb{Z}}(X) \xrightarrow{i} \check{H}^{2k+1}(X) \longrightarrow H^{2k+1}(X;\mathbb{Z})$$

 \downarrow
 $H^{4k+1}(X;\mathbb{R}/\mathbb{Z}) \longrightarrow \check{H}^{4k+2}(X) \xrightarrow{\delta} \Omega^{4k+2}(X)_{\mathbb{Z}}$

•
$$\delta(\check{x} \cup \check{x}) = (\mathsf{odd} \; \mathsf{form})^2 = 0$$

Main result in the case of oridnary cohomology

Lemma

The squaring map $\check{q}: \check{H}^{2k+1}(X) \to \check{H}^{4k+2}(X)$ reduces to a homomorphism $\check{q}: H^{2k+1}(X; \mathbb{Z}) \to H^{4k+1}(X; \mathbb{R}/\mathbb{Z}).$

<u>Proof</u>

$$\Omega^{2k}(X)/\Omega^{2k}_{\mathbb{Z}}(X) \xrightarrow{i} \check{H}^{2k+1}(X) \longrightarrow H^{2k+1}(X;\mathbb{Z})$$
 $H^{4k+1}(X;\mathbb{R}/\mathbb{Z}) \longrightarrow \check{H}^{4k+2}(X) \xrightarrow{\delta} \Omega^{4k+2}(X)_{\mathbb{Z}}$

•
$$\delta(\check{x}\cup\check{x})=(\mathsf{odd}\;\mathsf{form})^2=0$$

• $i([\eta]) \cup i([\eta]) = i([\eta \land d\eta]) = i([\frac{1}{2}d(\eta^2)]) = 0$

Main result in the case of oridnary cohomology

Lemma

The squaring map $\check{q}: \check{H}^{2k+1}(X) \to \check{H}^{4k+2}(X)$ reduces to a homomorphism $\check{q}: H^{2k+1}(X;\mathbb{Z}) \to H^{4k+1}(X;\mathbb{R}/\mathbb{Z}).$

<u>Proof</u>

$$\Omega^{2k}(X)/\Omega^{2k}_{\mathbb{Z}}(X) \xrightarrow{i} \check{H}^{2k+1}(X) \longrightarrow H^{2k+1}(X;\mathbb{Z})$$

$$H^{4k+1}(X;\mathbb{R}/\mathbb{Z}) \xrightarrow{\check{H}^{4k+2}} \check{H}^{4k+2}(X) \xrightarrow{\delta} \Omega^{4k+2}(X)_{\mathbb{Z}}$$

•
$$\delta(\check{x}\cup\check{x})=(\mathsf{odd}\;\mathsf{form})^2=0$$

• $i([\eta]) \cup i([\eta]) = i([\eta \land d\eta]) = i([\frac{1}{2}d(\eta^2)]) = 0$

Theorem (case of ordinary cohomology)

The homomorphism $\check{q} : H^{2k+1}(X;\mathbb{Z}) \to H^{4k+1}(X;\mathbb{R}/\mathbb{Z})$ factors through the Steenrod squaring operation Sq^{2k} :

$$egin{aligned} H^{2k+1}(X;\mathbb{Z}) & \stackrel{
ho}{\longrightarrow} H^{2k+1}(X;\mathbb{Z}/2) \ & & & & & \ & & & \ & & & \ & \ &$$

<u>**Proof**</u> The theorem follows from a description of Sq^{2k} .

Introduction	Definition and Property	Physics	ordinary cohomology	$oldsymbol{K}$ -cohomology

Cororally

- For any closed 5-dimensional spin manifold X, the map $\check{q}:\check{H}^3(X)\to\check{H}^5(X)$ is trivial: $\check{q}=0.$
- Thus, $I_{\mathrm{CS}}:\mathcal{B}_{\mathrm{RR}}\times\mathcal{B}_{\mathrm{NS}}\to\mathbb{R}/\mathbb{Z}$ is $SL(2,\mathbb{Z})$ -invariant.

$$\mathrm{Sq}^2(c)=w_2(X)\cup c, \quad c\in H^2(X;\mathbb{Z}/2)$$

Main result in the case of K-cohomology

Lemma

The map \check{q} is compatible with the Bott periodicity:

Consider the case that k = 0 only.

Lemma

The map \check{q} reduces to $\check{q}: K^1(X) \to K^1(X; \mathbb{R}/\mathbb{Z})$.

The proof is the same as that in the ordinary case.

Proposition

The map $\check{q}: K^1(X) \to K^1(X; \mathbb{R}/\mathbb{Z})$ factors as follows:

$$K^1(X) \overset{q}{\longrightarrow} K^1(X; \mathbb{Z}/2) \overset{q}{\longrightarrow} K^1(X; \mathbb{R}/\mathbb{Z}).$$

The map q is a lift of the squaring in K^* , induced from the graded-commutativity of the multiplication in K^* :

Comments

• $\operatorname{Sq}^{2k} \circ \rho$ has the same property as q in K^* :

• It is unclear whether q in K^* factors through ρ :

(Reasonable multiplications in $K^*(X; \mathbb{Z}/2)$ are not graded-commutative. [Araki-Toda])

Theorem (case of *K*-cohomology)

The map $q : \tilde{K}^1(X) \to \tilde{K}^1(X; \mathbb{Z}/2)$ is the delooping of the composition of the Adams operation ψ^2 and the mod 2 reduction ρ :

$$egin{array}{cccc} ilde{K}^0(X) & \stackrel{\psi^2}{\longrightarrow} ilde{K}^0(X) & \stackrel{
ho}{\longrightarrow} ilde{K}^0(X; \mathbb{Z}/2) \ &\cong & & & \downarrow \cong \ ilde{K}^1(S^1 \wedge X) & \stackrel{q}{\longrightarrow} ilde{K}^1(S^1 \wedge X; \mathbb{Z}/2) \end{array}$$

Proof Theorem follows from:

$$egin{aligned} q(xy) &= q(x) \cup
ho(y^2), & (x \in K^1(X), y \in K^0(X)) \
ho(y^2) &=
ho(\psi^2(y)), & (y \in K^0(X)) \ q(x) &=
ho(x). & (x \in K^1(S^1)). \end{aligned}$$

Computation of $q: K^1(S^1) o K^1(S^1; \mathbb{Z}/2)$

- Realize $1 \in K^1(S^1) = \mathbb{Z}$ by a family of self-adjoint Fredholm operators parametrized by $(I, \partial I)$.
- **2** Rewrite q(1) through:

$$egin{aligned} &K^1(I,\partial I;\mathbb{Z}/2)\ &\cong K^{-1}(I,\partial I;\mathbb{Z}/2)\ &\cong K^{-1}(I,\partial I)/2K^{-1}(I,\partial I)\ &(ilde K^0(S^1)=0)\ &= K^0(I^2,\partial I^2)/2K^0(I^2,\partial I^2)\ & ext{ (definition)} \end{aligned}$$

- **③** Formulations of $K^0(D^2, S^1) = \mathbb{Z}$: ∞ -dim \rightarrow finite-dim
- **③** Compute a winding number to conclude $q(1) \neq 0$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• As a simple corollary, we can compute

$$q:K^1(X) o K^1(X;\mathbb{Z}/2)$$

in the case of $X = S^{2m+1}$.

 $egin{array}{ll} m=0 & q:\mathbb{Z}
ightarrow \mathbb{Z}/2 ext{ is non-trivial.}\ m>0 & q:\mathbb{Z}
ightarrow \mathbb{Z}/2 ext{ is trivial.} \end{array}$

Problem/Conjecture [Freed]

The map q factors as follows:

$$\begin{array}{c} K^{1}(X) \\ \Sigma^{-1}\psi^{2} \\ q \\ \ddots \\ \hline \\ 2(\cdot) \end{array} \tilde{K}^{1}(X) \xrightarrow{\rho} \tilde{K}^{1}(X; \mathbb{Z}/2) \xrightarrow{\mathrm{Square}} \tilde{K}^{2}(X) \xrightarrow{2(\cdot)} \\ \vdots \\ \end{array}$$

where $\Sigma^{-1}\psi^2$ is a delooping of the Adams square ψ^2 defined by Freed-Hopkins:

$$egin{array}{ccc} ilde{K}^0(X) & \stackrel{\psi^2}{\longrightarrow} ilde{K}^0(X) \ \cong & & & & \downarrow \cong \ ilde{K}^1(S^1 \wedge X) \stackrel{\Sigma^{-1} \psi^2}{\longrightarrow} ilde{K}^1(S^1 \wedge X). \end{array}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Problem/Conjecture [Freed]

The map q factors as follows:

$$K^1(X)$$

 $\Sigma^{-1}\psi^2$ q $square$
 q \tilde{Square}
 $\tilde{K}^1(X) \xrightarrow{\rho} \tilde{K}^1(X; \mathbb{Z}/2) \xrightarrow{\mathbb{Bock}} \tilde{K}^2(X) \xrightarrow{2(\cdot)} \cdots,$

where $\Sigma^{-1}\psi^2$ is a delooping of the Adams square ψ^2 defined by Freed-Hopkins:

$$egin{array}{ccc} ilde{K}^0(X) & \longrightarrow & ilde{K}^0(X) \ \cong & & & & \downarrow \cong \ ilde{K}^1(S^1 \wedge X) & \longrightarrow & ilde{K}^1(S^1 \wedge X). \end{array}$$

<u>Remark</u> $x^2 = 0$ for $\forall x \in K^1(X)$. ($K^*(U_\infty)$ is torsion free.)