Multiplication in differential cohomology and cohomology operation

Kiyonori GOMI

Kyoto University
Feb 17, 2009

Talk about
a relationship between

- multiplications in differential cohomology theories
- classical cohomology operations
(1) Introduction
(2) Definition of differential cohomology
(3) Differential cohomology in physics
(1) Case of ordinary cohomology
(5) Case of K-cohomology

Introduction

- In general, a differential cohomology is a refinment of a generalized cohomology theory involving information of differential forms on smooth manifolds.
ordinary cohomology \rightarrow differential ordinary cohomology
K-cohomology $\quad \rightarrow \quad$ differential \boldsymbol{K}-cohomology

:

:

- A differential cohomology theory is also called a "smooth cohomology theory".
- For the ordinary cohomology, its differential version (differential ordinary cohomology) has been known as:
- the group of Cheeger-Simons' differential characters
- the smooth Deligne cohomology
- The differential version of any generalized cohomology was introduced in a work of Hopkins and Singer [JDG, math/0211216].
- For some generalized cohomology theory h^{*}, its differential version \check{h}^{*} admits a multiplication:

$$
\cup: \check{h}^{m}(X) \otimes \check{h}^{n}(X) \longrightarrow \check{h}^{m+n}(X)
$$

compatible with the multiplication in the underlying cohomology theory h^{*}. (e.g. \check{H}^{*} and \check{K}^{*})

- If the multiplication in \check{h}^{*} is graded-commutative, then the squaring map on odd classes

$$
\begin{array}{cccc}
\check{q}: \quad \check{h}^{2 k+1}(X) & \longrightarrow & \check{h}^{4 k+2}(X) \\
x & \longmapsto & x^{2}
\end{array}
$$

is a homomorphism.

$$
\check{q}(x+y)=x^{2}+x y+y x+y^{2}=\check{q}(x)+\check{q}(y)
$$

- Moreover, the map reduces to a homomorphism

$$
\check{q}: h^{2 k+1}(X) \longrightarrow h^{4 k+1}(X ; \mathbb{R} / \mathbb{Z})
$$

"Main Theorem"
In the case of \check{H}^{*} and \check{K}^{*}, the homomorphisms \check{q} are related to the Steenrod operations and the Adams operations.

- The map \check{q} appeas in two contexts of physics
- Chern-Simons theory in 5-dimensions [Witten]
- Hamiltonian quantization of self-dual generalized abelian gauge fields [Freed-Moore-Segal]

Index

(1) Introduction (almost done)
(2) Definition of differential cohomology (definitions and properties of \check{H}^{*} and \check{K}^{*})
(3) Differential cohomology in physics (relation to the two contexts of physics)
(9) Case of ordinary cohomology
(6) Case of K-cohomology

Definition of differential cohomology

Definition of differential ordinary cohomology

- The differential ordinary cohomology $\breve{H}^{n}(X)$ of a smooth manifold X consists of the equivalence classes of differential cocycles of degree n.
- A differential cocycle of degree n is a triple:

$$
\begin{gathered}
(c, h, \omega) \in C^{n}(X ; \mathbb{Z}) \times C^{n-1}(X ; \mathbb{R}) \times \Omega^{n}(X) \\
\delta c=0, \quad d \omega=0, \quad \omega=c+\delta h .
\end{gathered}
$$

- (c, h, ω) and $\left(c^{\prime}, h^{\prime}, \omega^{\prime}\right)$ are equivalent if:

$$
\begin{gathered}
\exists(b, k) \in C^{n-1}(X ; \mathbb{Z}) \times C^{n-2}(X ; \mathbb{R}) \\
c^{\prime}-c=\delta b, \quad \omega^{\prime}=\omega, \quad h-h^{\prime}=b+\delta k .
\end{gathered}
$$

Examples

$$
\begin{aligned}
\check{H}^{0}(X) & =\left\{(c, \omega) \in C_{\mathbb{Z}}^{0} \times \Omega^{0} \mid \delta c=0, d \omega=0, c=\omega\right\} \\
& \cong H^{0}(X ; \mathbb{Z}) \\
\check{H}^{1}(X) & \cong C^{\infty}(X, U(1))
\end{aligned}
$$

$\check{H}^{2}(X) \cong\{U(1)$-bundle with connection/X $\} /$ isom
$\check{H}^{3}(X) \cong\{$ abelian gerbe with connection/X\}/isom

Addition and Multiplication

- The differential cohomology $\check{H}^{*}(X)$ is an additive group:

$$
(c, h, \omega)+\left(c^{\prime}, h^{\prime}, \omega^{\prime}\right)=\left(c+c^{\prime}, h+h^{\prime}, \omega+\omega^{\prime}\right)
$$

- $\check{H}^{*}(X)$ is a graded-commutative ring:

$$
\begin{aligned}
& (c, h, \omega) \cup\left(c^{\prime}, h^{\prime}, \omega^{\prime}\right) \\
= & \left(c \cup c^{\prime},(-1)^{|c|} c \cup h^{\prime}+h \cup \omega^{\prime}+B\left(\omega \otimes \omega^{\prime}\right), \omega \wedge \omega^{\prime}\right),
\end{aligned}
$$

where $B: \Omega^{*}(X) \otimes \Omega^{*}(X) \rightarrow C^{*}(X ; \mathbb{R})$ is a functorial homomorphism satisfying

$$
\omega \wedge \omega^{\prime}-\omega \cup \omega^{\prime}=B d\left(\omega \otimes \omega^{\prime}\right)-\delta B\left(\omega \otimes \omega^{\prime}\right)
$$

Example

$$
\begin{gathered}
\cup: \check{H}^{1}\left(S^{1}\right) \times \check{H}^{1}\left(S^{1}\right) \longrightarrow \check{H}^{2}\left(S^{1}\right) \\
\left\{\begin{array}{c}
\check{H}^{1}\left(S^{1}\right)=C^{\infty}\left(S^{1}, U(1)\right)(=L U(1)) \\
\check{H}^{2}\left(S^{1}\right)=\mathbb{R} / \mathbb{Z}\left(=\text { holonomy around } S^{1}\right)
\end{array}\right. \\
f: S^{1} \rightarrow U(1) \Rightarrow\left\{\begin{array}{cc}
F: S^{1} \rightarrow \mathbb{R} & \text { lift of } f \\
\Delta_{f}=F(\theta+2 \pi)-F(\theta) & \text { winding } \sharp
\end{array}\right. \\
\qquad f \cup g=\Delta_{f} G(0)-\int_{0}^{2 \pi} F \frac{d G}{d \theta} d \theta \bmod \mathbb{Z}
\end{gathered}
$$

Example

$$
\begin{gathered}
\cup: \check{H}^{1}\left(S^{1}\right) \times \check{H}^{1}\left(S^{1}\right) \longrightarrow \check{H}^{2}\left(S^{1}\right) \\
\left\{\begin{array}{c}
\check{H}^{1}\left(S^{1}\right)=C^{\infty}\left(S^{1}, U(1)\right)(=L U(1)) \\
\check{H}^{2}\left(S^{1}\right)=\mathbb{R} / \mathbb{Z}\left(=\text { holonomy around } S^{1}\right)
\end{array}\right. \\
f: S^{1} \rightarrow U(1) \Rightarrow\left\{\begin{array}{cc}
F: S^{1} \rightarrow \mathbb{R} & \text { lift of } f \\
\Delta_{f}=F(\theta+2 \pi)-F(\theta) & \text { winding } \sharp
\end{array}\right. \\
\qquad f \cup g=\Delta_{f} G(0)-\int_{0}^{2 \pi} F \frac{d G}{d \theta} d \theta \bmod \mathbb{Z}
\end{gathered}
$$

Remark $c(f, g)=\exp 2 \pi \sqrt{-1}(f \cup g)$ gives a 2-cocycle defining the cetral extension of $L U(1)$ of level 2 .

The 1st exact sequence

$$
\begin{array}{r}
\mathbf{0} \rightarrow \boldsymbol{\Omega}^{n-\mathbf{1}}(X) / \boldsymbol{\Omega}_{\mathbb{Z}}^{n-1}(X) \xrightarrow{i} \check{\boldsymbol{H}}^{n}(X) \xrightarrow{\chi} \boldsymbol{H}^{n}(X ; \mathbb{Z}) \rightarrow \mathbf{0}, \\
(c, h, \omega) \longmapsto \quad c
\end{array}
$$

where $\Omega_{\mathbb{Z}}^{p}(X)$ means the group of closed integral p-forms.
Example
$\check{H}^{2}(X) \cong\{U(1)$-bundle with connection/ $X\} /$ isom
$\chi[(P, A)]=$ Chern class of P
$\Omega^{1}(X) / \Omega_{\mathbb{Z}}^{1}(X)=\{$ connection on $P\} /$ gauge equivalence

The 2nd exact sequence

$$
\begin{aligned}
\mathbf{0} \rightarrow \boldsymbol{H}^{n-1}(X ; \mathbb{R} / \mathbb{Z}) \rightarrow & \check{\boldsymbol{H}}^{n}(\boldsymbol{X}) \xrightarrow{\boldsymbol{\delta}} \boldsymbol{\Omega}_{\mathbb{Z}}^{n}(\boldsymbol{X}) \rightarrow \mathbf{0} . \\
& (c, h, \omega) \mapsto \omega
\end{aligned}
$$

Example

$$
\begin{aligned}
\check{H}^{2}(X) & \cong\{U(1) \text {-bundles with connection } / X\} / \text { isom } \\
\delta[(P, A)] & =\frac{-1}{2 \pi \sqrt{-1}} F(A) \\
H^{2}(X ; \mathbb{R} / \mathbb{Z}) & =\{\text { flat } U(1) \text {-bundle } / X\} / \text { isom }
\end{aligned}
$$

The multiplication is compatible with the exact sequences

$$
\begin{aligned}
& 0 \longrightarrow \Omega^{n-1}(X) / \Omega_{\mathbb{Z}}^{n-1}(X) \xrightarrow{i} \check{H}^{n}(X) \xrightarrow{\chi} H^{n}(X ; \mathbb{Z}) \longrightarrow 0, \\
& 0 \longrightarrow H^{n-1}(X ; \mathbb{R} / \mathbb{Z}) \longrightarrow \check{H}^{n}(X) \xrightarrow{\delta} \Omega_{\mathbb{Z}}^{n}(X) \longrightarrow 0 .
\end{aligned}
$$

- The cup product in $H^{*}(X ; \mathbb{Z})$;
- The wedge product in $\Omega_{\mathbb{Z}}^{*}(X)$;
- The product in $\Omega^{*}(X) / \Omega_{\mathbb{Z}}^{*}(X)$.

$$
\begin{array}{ccc}
\Omega^{m-1} / \Omega_{\mathbb{Z}}^{m-1} \otimes \Omega^{n-1} / \Omega_{\mathbb{Z}}^{n-1} & \longrightarrow & \Omega^{m+n-1} / \Omega_{\mathbb{Z}}^{m+n-1} \\
\eta \otimes \eta^{\prime} & \mapsto & \eta \wedge d \eta^{\prime}
\end{array}
$$

Preliminary to the definition of differential \boldsymbol{K}-cohomology

- For $n \in \mathbb{Z}$, define $C^{|n|}(X ; \mathbb{R})$ and $\Omega^{|n|}(X)$ by

$$
\begin{aligned}
C^{|n|}(X ; \mathbb{R}) & = \begin{cases}\prod_{m \geq 0} C^{2 m}(X ; \mathbb{R}), & (n: \text { even }) \\
\prod_{m \geq 0} C^{2 m+1}(X ; \mathbb{R}) . & (n: \text { odd })\end{cases} \\
\Omega^{|n|}(X) & = \begin{cases}\prod_{m \geq 0} \Omega^{2 m}(X), & (n: \text { even }) \\
\prod_{m \geq 0} \Omega^{2 m+1}(X) . & (n: \text { odd })\end{cases}
\end{aligned}
$$

- Let \mathbb{K}^{n} be the classifying space of K^{n}. (i.e. $K^{n}(X)=\left[X, \mathbb{K}^{n}\right]$ for any CW complex.)
- Let $\iota_{n} \in C^{|n|}\left(\mathbb{K}^{n} ; \mathbb{R}\right)$ be a cocycle representing the universal Chern character class.
(i.e. $\operatorname{ch}([c])=\left[c^{*} \iota_{n}\right]$ for any $c: X \rightarrow \mathbb{K}^{n}$.)

The definition of differential \boldsymbol{K}-cohomology

- The differential K-cohomology $\check{K}^{n}(X)$ of a smooth manifold X consists of the equivalence classes of differential \boldsymbol{K}-cocycles of degree \boldsymbol{n}.
- A differential K-cocycle of degree n is a triple:

$$
\begin{gathered}
(c, h, \omega) \in \operatorname{Map}\left(X, \mathbb{K}^{n}\right) \times C^{|n-1|}(X ; \mathbb{R}) \times \Omega^{|n|}(X) \\
d \omega=0, \quad \omega=c^{*} \iota_{n}+\delta h .
\end{gathered}
$$

- $x=(c, h, \omega)$ and $x^{\prime}=\left(c^{\prime}, h^{\prime}, \omega^{\prime}\right)$ are equivalent if there is a differentila K-cocycle $\tilde{\boldsymbol{x}}=(\tilde{c}, \tilde{h}, \tilde{\boldsymbol{\omega}})$ on $X \times I$ s.t.

$$
\left.\tilde{x}\right|_{t=0}=x,\left.\quad \tilde{x}\right|_{t=1}=x^{\prime}, \quad \tilde{\omega}\left(\frac{\partial}{\partial t}\right)=0 .
$$

Property of the differential K-cohomology

- $\check{K}^{*}(X)$ gives rise to a graded-commutative ring.
- $\check{K}^{n}(X)$ fits into the natural exact sequences:

$$
\begin{aligned}
& 0 \longrightarrow \Omega^{|n-1|}(X) / \Omega_{K}^{|n-1|}(X) \longrightarrow \check{K}^{n}(X) \longrightarrow K^{n}(X) \longrightarrow 0, \\
& 0 \longrightarrow \quad K^{n-1}(X ; \mathbb{R} / \mathbb{Z}) \longrightarrow \check{K}^{n}(X) \longrightarrow \Omega_{K}^{|n|}(X) \longrightarrow 0,
\end{aligned}
$$

where $\Omega_{K}^{|n|}(X)$ is the group of closed forms representing the image of the Chern character ch : $K^{n}(X) \rightarrow H^{|n|}(X ; \mathbb{R})$.

- The multiplication is compatible with these sequences.

Comments on the general case

- For any generalized cohomology theory h^{*}, its differential version \breve{h}^{*} is defined in a way similar to the case of the K-cohomology, by using classifying spaces.
- \check{h}^{*} also fits into two natural exact sequences.
- It is unclear whether the differential cohomology of a multiplicative cohomology theory admits a compatible multiplication.
(All the cohomology theories obtained by the Landweber exact functor theorem have compatible multiplications. [Bunke-Schick-Schröder-Wiethaup])

Differential cohomology in Physics

- Relationship between \check{q} and:
- Chern-Simons theory in 5-dimensions
- Hamiltonian quantization of self-dual abelian generalized gauge fields
- The key is interpretation of differential cocycles.

Interpretation of differential cocycles

- Differential (ordinary) cocycles are abelian gauge fields and their generalization.
$\check{H}^{1}(X) \cong C^{\infty}(X, U(1))$
$\check{H}^{2}(X) \cong\{U(1)$-bundle with connection/X\}/isom
$\check{H}^{3}(X) \cong\{$ abelian gerbe with connection/X\}/isom

Interpretation of differential cocycles

- Differential (ordinary) cocycles are abelian gauge fields and their generalization.
$\check{H}^{1}(X) \cong C^{\infty}(X, U(1))$
periodic scalar field
$\check{H}^{2}(X) \cong\{U(1)$-bundle with connection/ $X\} /$ isom
$U(1)$-gauge field
$\check{H}^{3}(X) \cong\{$ abelian gerbe with connection/X\}/isom
B-field (2-form gauge field)

Interpretation of differential cocycles

- Differential (ordinary) cocycles are abelian gauge fields and their generalization.
$\check{H}^{1}(X) \cong C^{\infty}(X, U(1))$
periodic scalar field
$\check{H}^{2}(X) \cong\{U(1)$-bundle with connection/ $X\} /$ isom
$U(1)$-gauge field
$\check{H}^{3}(X) \cong\{$ abelian gerbe with connection/X $\}$ /isom B-field (2-form gauge field)
- Differential K-cocycles can be thought of as Ramond-Ramond fields in type II string theory. (degree 0 for IIA, and degree 1 for IIB)

Witten's 5-dimensional Chern-Simons theory

- X : closed oriented 5-dimensional manifold
- the space of fields (modulo gauge transformation)

$$
\mathcal{B}_{\mathrm{RR}} \times \mathcal{B}_{\mathrm{NS}}=\check{H}^{3}(X) \times \check{H}^{3}(X)
$$

- the action functional $I_{\mathrm{CS}}: \mathcal{B}_{\mathrm{RR}} \times \mathcal{B}_{\mathrm{NS}} \rightarrow \mathbb{R} / \mathbb{Z}$

$$
I_{\mathrm{CS}}\left(\boldsymbol{B}_{\mathrm{RR}}, B_{\mathrm{NS}}\right)=\int_{X}^{\check{H}} \boldsymbol{B}_{\mathrm{RR}} \cup \boldsymbol{B}_{\mathrm{NS}}
$$

where $\int_{X}^{\check{H}}$ is the integration in \check{H}^{*} :

$$
\int_{X}^{\check{H}}: \check{H}^{6}(X) \xrightarrow{\cong} \check{H}^{1}(\mathrm{pt}) \cong \mathbb{R} / \mathbb{Z}
$$

- On $\mathcal{B}_{\mathrm{RR}} \times \mathcal{B}_{\mathrm{NS}}, S L(2, \mathbb{Z})$ acts:
$\left(B_{\mathrm{RR}}, B_{\mathrm{NS}}\right)\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)=\left(a B_{\mathrm{RR}}+c B_{\mathrm{NS}}, b B_{\mathrm{RR}}+d B_{\mathrm{NS}}\right)$
- On $\mathcal{B}_{\mathrm{RR}} \times \mathcal{B}_{\mathrm{NS}}, S L(2, \mathbb{Z})$ acts:
$\left(B_{\mathrm{RR}}, B_{\mathrm{NS}}\right)\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)=\left(a B_{\mathrm{RR}}+c B_{\mathrm{NS}}, b B_{\mathrm{RR}}+d B_{\mathrm{NS}}\right)$
- But, I_{CS} is not generally invariant under the action:
- On $\mathcal{B}_{\mathrm{RR}} \times \mathcal{B}_{\mathrm{NS}}, S L(2, \mathbb{Z})$ acts:
$\left(B_{\mathrm{RR}}, B_{\mathrm{NS}}\right)\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)=\left(a B_{\mathrm{RR}}+c B_{\mathrm{NS}}, b B_{\mathrm{RR}}+d B_{\mathrm{NS}}\right)$
- But, I_{CS} is not generally invariant under the action:

$$
\begin{aligned}
& \left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right) \\
& \left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)
\end{aligned}
$$

- On $\mathcal{B}_{\mathrm{RR}} \times \mathcal{B}_{\mathrm{NS}}, S L(2, \mathbb{Z})$ acts:
$\left(B_{\mathrm{RR}}, B_{\mathrm{NS}}\right)\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)=\left(a B_{\mathrm{RR}}+c B_{\mathrm{NS}}, b B_{\mathrm{RR}}+d B_{\mathrm{NS}}\right)$
- But, I_{CS} is not generally invariant under the action:

$$
\begin{aligned}
I_{\mathrm{CS}}\left(\left(B_{\mathrm{RR}}, B_{\mathrm{NS}}\right)\right. & \left.\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)\right)=I_{\mathrm{CS}}\left(B_{\mathrm{RR}}, B_{\mathrm{NS}}\right) \\
& \left(\begin{array}{cc}
1 & 1 \\
0 & 1
\end{array}\right)
\end{aligned}
$$

- On $\mathcal{B}_{\mathrm{RR}} \times \mathcal{B}_{\mathrm{NS}}, S L(2, \mathbb{Z})$ acts:
$\left(B_{\mathrm{RR}}, B_{\mathrm{NS}}\right)\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)=\left(a B_{\mathrm{RR}}+c B_{\mathrm{NS}}, b B_{\mathrm{RR}}+d B_{\mathrm{NS}}\right)$
- But, I_{CS} is not generally invariant under the action:

$$
\begin{aligned}
I_{\mathrm{CS}}\left(\left(B_{\mathrm{RR}}, B_{\mathrm{NS}}\right)\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)\right)= & I_{\mathrm{CS}}\left(B_{\mathrm{RR}}, B_{\mathrm{NS}}\right) \\
I_{\mathrm{CS}}\left(\left(B_{\mathrm{RR}}, B_{\mathrm{NS}}\right)\left(\begin{array}{cc}
1 & 1 \\
0 & 1
\end{array}\right)\right)= & I_{\mathrm{CS}}\left(B_{\mathrm{RR}}, B_{\mathrm{NS}}\right) \\
& +\int_{X}^{\check{H}} B_{\mathrm{RR}} \cup B_{\mathrm{RR}}
\end{aligned}
$$

- $\check{q}: \check{H}^{3}(X) \rightarrow \check{H}^{6}(X)$ is the obstruction to the $S L(2, \mathbb{Z})$-invariance of I_{CS}.
- In the case that $X=4$-dimensional spin manifold $\times S^{1}$, Witten showed the $S L(2, \mathbb{Z})$-invariance on a subgroup in $\mathcal{B}_{\mathrm{RR}} \times \mathcal{B}_{\mathrm{NS}}$.
- Main result implies that I_{CS} is generally $S L(2, \mathbb{Z})$-invariant for any 5 -dimensional spin manifold.

Hamiltonian quantization of Freed-Moore-Segal

- Freed-Moore-Segal studied Hamiltonian quantization of self-dual generalized abelian gauge theories.
- In particular, they defined the quantum Hilbert space to be a unique representation space of a central extension \hat{A} of an abelian group A.
(1) self-dual $2 k$-form fields in $(4 k+2)$-dimensions:

$$
A=\check{H}^{2 k+1}(X), \quad \operatorname{dim} X=4 k+1
$$

($k=0$: theory of chiral scalar fields or $U(1)$ WZW)
(2) RR fields in type II string:

$$
A=\check{K}^{n}(X), \quad \operatorname{dim} X=9
$$

- In the construction of \hat{A}, the squaring map \check{q} appears.

Classification of central extensions

A : an abelian group with a resonable condition.

$$
\begin{aligned}
& \{\text { central extension } \hat{A} \text { of } A \text { by } U(1)\} / \text { isom } \\
& \quad \cong H_{\text {group }}^{2}(A ; \mathbb{R} / \mathbb{Z}) \\
& \quad=\{c: A \times A \rightarrow \mathbb{R} / \mathbb{Z} \mid \text { cocycle condition }\} / \text { coboundary }
\end{aligned}
$$

$$
0 \longrightarrow U(1) \longrightarrow \hat{A} \longrightarrow A \longrightarrow 0
$$

$$
A \times U(1)
$$

$$
(a, z) \cdot\left(a^{\prime}, z^{\prime}\right)=\left(a+a^{\prime}, z z^{\prime} \exp 2 \pi \sqrt{-1} c\left(a, a^{\prime}\right)\right)
$$

$\{$ central extension \hat{A} of A by $U(1)\} /$ isom

$$
\begin{aligned}
& \cong\{c: A \times A \rightarrow \mathbb{R} / \mathbb{Z} \mid \text { cocycle condition }\} \text { /coboundary } \\
& \cong\{s: A \times A \rightarrow \mathbb{R} / \mathbb{Z} \mid \text { biadditive, skew, alternating }\}
\end{aligned}
$$

$\begin{aligned} \text { biadditive }: & \left\{\begin{array}{l}s\left(a+a^{\prime}, b\right)=s(a, b)+s\left(a^{\prime}, b\right) \\ s\left(a, b+b^{\prime}\right)=s(a, b)+s\left(a, b^{\prime}\right)\end{array}\right. \\ \text { skew }: & s(a, b)=-s(b, a) \\ \text { alternating }: & s(a, a)=0\end{aligned}$

$$
\begin{aligned}
c(a, b) & \mapsto s(a, b)=c(a, b)-c(b, a) \\
\text { coboundary } & \mapsto 0
\end{aligned}
$$

- Apply the classification to:

$$
A=\check{H}^{2 k+1}(X), \quad \operatorname{dim} X=4 k+1
$$

To specify a central extension of A, it suffices to choose $s: A \times A \rightarrow \mathbb{R} / \mathbb{Z}$ which is biadditive, skew and alternating.

- A naive construction:

$$
s_{\text {trial }}(x, y)=\int_{X}^{\check{H}} x \cup y
$$

This is biadditive and skew, but not alternating:

$$
s_{\text {trial }}(x, x)=\int_{X}^{\check{H}} \check{q}(x) \stackrel{?}{=} 0
$$

- Freed-Moore-Segal:

$$
\begin{gathered}
s(x, y)=\int_{X}^{\check{H}} x \cup y-\frac{1}{2} \epsilon(x) \epsilon(y), \\
\epsilon(x)= \begin{cases}0, & (\check{q}(x)=0 \in \mathbb{R} / \mathbb{Z}) \\
1 . & (\check{q}(x)=1 / 2 \in \mathbb{R} / \mathbb{Z})\end{cases}
\end{gathered}
$$

This is biadditive, skew and alternating. $(\Rightarrow \hat{A})$

- In the case that $k=0$ and $X=S^{1}$, the resulting central extension \hat{A} is the basic central extension $\widehat{L U(1)}$ of $A=\check{H}^{1}\left(S^{1}\right)=C^{\infty}\left(S^{1}, U(1)\right)=L U(1)$.

Main result in the case of oridnary cohomology

Lemma

The squaring map $\check{q}: \check{H}^{2 k+1}(X) \rightarrow \check{H}^{4 k+2}(X)$ reduces to a homomorphism $\check{q}: H^{2 k+1}(X ; \mathbb{Z}) \rightarrow H^{4 k+1}(X ; \mathbb{R} / \mathbb{Z})$.

Proof

$$
\begin{aligned}
& \Omega^{2 k}(X) / \Omega_{\mathbb{Z}}^{2 k}(X) \xrightarrow{i} \check{H}^{2 k+1}(X) \longrightarrow H^{2 k+1}(X ; \mathbb{Z}) \\
& H^{4 k+1}(X ; \mathbb{R} / \mathbb{Z}) \longrightarrow \check{H}^{4 k+2}(X) \xrightarrow[\delta]{\longrightarrow} \Omega^{4 k+2}(X)_{\mathbb{Z}}
\end{aligned}
$$

- $\delta(\check{x} \cup \check{x})=(\text { odd form })^{2}=0$

Main result in the case of oridnary cohomology

Lemma

The squaring map $\check{q}: \check{H}^{2 k+1}(X) \rightarrow \check{H}^{4 k+2}(X)$ reduces to a homomorphism $\check{q}: H^{2 k+1}(X ; \mathbb{Z}) \rightarrow H^{4 k+1}(X ; \mathbb{R} / \mathbb{Z})$.

Proof

$$
\begin{gathered}
\Omega^{2 k}(X) / \Omega_{\mathbb{Z}}^{2 k}(X) \xrightarrow{i} \check{H}^{2 k+1}(X) \longrightarrow H^{2 k+1}(X ; \mathbb{Z}) \\
H^{4 k+1}(X ; \mathbb{R} / \mathbb{Z}) \longrightarrow \check{H}^{4 k+2}(X) \xrightarrow[\delta]{\longrightarrow} \Omega^{4 k+2}(X)_{\mathbb{Z}}
\end{gathered}
$$

- $\delta(\check{x} \cup \check{x})=(\text { odd form })^{2}=0$

Main result in the case of oridnary cohomology

Lemma

The squaring map $\check{q}: \check{H}^{2 k+1}(X) \rightarrow \check{H}^{4 k+2}(X)$ reduces to a homomorphism $\check{q}: H^{2 k+1}(X ; \mathbb{Z}) \rightarrow H^{4 k+1}(X ; \mathbb{R} / \mathbb{Z})$.

Proof

$$
\begin{gathered}
\Omega^{2 k}(X) / \Omega_{\mathbb{Z}}^{2 k}(X) \xrightarrow{i} \check{H}^{2 k+1}(X) \longrightarrow H^{2 k+1}(X ; \mathbb{Z}) \\
H^{4 k+1}(X ; \mathbb{R} / \mathbb{Z}) \longrightarrow \check{H}^{4 k+2}(X) \xrightarrow[\delta]{\longrightarrow} \Omega^{4 k+2}(X)_{\mathbb{Z}}
\end{gathered}
$$

- $\delta(\check{x} \cup \breve{x})=(\text { odd form })^{2}=0$
- $i([\eta]) \cup i([\eta])=i([\eta \wedge d \eta])=i\left(\left[\frac{1}{2} d\left(\eta^{2}\right)\right]\right)=0$

Main result in the case of oridnary cohomology

Lemma

The squaring map $\check{q}: \check{H}^{2 k+1}(X) \rightarrow \check{H}^{4 k+2}(X)$ reduces to a homomorphism $\check{q}: H^{2 k+1}(X ; \mathbb{Z}) \rightarrow H^{4 k+1}(X ; \mathbb{R} / \mathbb{Z})$.

Proof

$$
\begin{aligned}
& \Omega^{2 k}(X) / \Omega_{\mathbb{Z}}^{2 k}(X) \xrightarrow{i} \check{H}^{2 k+1}(X) \longrightarrow H^{2 k+1}(X ; \mathbb{Z}) \\
& H^{4 k+1}(X ; \mathbb{R} / \mathbb{Z}) \longrightarrow \check{H}^{4 k+2}(X) \xrightarrow{\longrightarrow} \Omega^{4 k+2}(X)_{\mathbb{Z}}
\end{aligned}
$$

- $\delta(\check{x} \cup \breve{x})=(\text { odd form })^{2}=0$
- $i([\eta]) \cup i([\eta])=i([\eta \wedge d \eta])=i\left(\left[\frac{1}{2} d\left(\eta^{2}\right)\right]\right)=0$

Theorem (case of ordinary cohomology)

The homomorphism $\check{q}: H^{2 k+1}(X ; \mathbb{Z}) \rightarrow H^{4 k+1}(X ; \mathbb{R} / \mathbb{Z})$ factors through the Steenrod squaring operation $\mathbf{S q}^{2 k}$:

$$
\begin{aligned}
& H^{2 k+1}(X ; \mathbb{Z}) \xrightarrow{\rho} H^{2 k+1}(X ; \mathbb{Z} / 2) \\
& \mid \mathrm{Sq}^{2 k} \\
& H^{4 k+1}(X ; \mathbb{Z} / 2) \longrightarrow H^{4 k+1}(X ; \mathbb{R} / \mathbb{Z})
\end{aligned}
$$

Proof The theorem follows from a description of $\mathrm{Sq}^{2 k}$.

Cororally

- For any closed 5 -dimensional spin manifold X, the map $\check{q}: \check{H}^{3}(X) \rightarrow \check{H}^{5}(X)$ is trivial: $\check{q}=0$.
- Thus, $I_{\mathrm{CS}}: \mathcal{B}_{\mathrm{RR}} \times \mathcal{B}_{\mathrm{NS}} \rightarrow \mathbb{R} / \mathbb{Z}$ is $S L(2, \mathbb{Z})$-invariant.

$$
\operatorname{Sq}^{2}(c)=w_{2}(X) \cup c, \quad c \in H^{2}(X ; \mathbb{Z} / 2)
$$

Main result in the case of K-cohomology

Lemma

The map \check{q} is compatible with the Bott periodicity:

$$
\begin{aligned}
& \check{K}^{2 k+1}(X) \xrightarrow{\check{q}} \check{K}^{4 k+2}(X)
\end{aligned}
$$

Consider the case that $k=0$ only.

Lemma

The map \check{q} reduces to $\check{q}: K^{1}(X) \rightarrow K^{1}(X ; \mathbb{R} / \mathbb{Z})$.
The proof is the same as that in the ordinary case.

Proposition

The map $\check{q}: K^{1}(X) \rightarrow K^{1}(X ; \mathbb{R} / \mathbb{Z})$ factors as follows:

$$
K^{1}(X) \xrightarrow{q} K^{1}(X ; \mathbb{Z} / 2) \longrightarrow K^{1}(X ; \mathbb{R} / \mathbb{Z}) .
$$

The map q is a lift of the squaring in K^{*}, induced from the graded-commutativity of the multiplication in K^{*} :

$$
\begin{aligned}
& K^{1}(X) \\
& \cdot \cdot \underset{\rho}{\longrightarrow} K^{1}(X ; \mathbb{Z} / 2) \underset{\text { Bock }}{\longrightarrow} K^{2}(X) \xrightarrow[2(\cdot)]{\longrightarrow} K^{2}(X) \xrightarrow[\rho]{\longrightarrow} \cdot
\end{aligned}
$$

Comments

- $\mathrm{Sq}^{2 k} \circ \rho$ has the same property as q in K^{*} :

$$
\begin{aligned}
& H^{2 k+1}(X ; \mathbb{Z}) \\
& \mathrm{Sq}^{2 k} \circ \rho \\
& H^{4 k+1}(X ; \mathbb{Z} / 2) \underset{\text { Bock }}{\longrightarrow} H^{4 k+2}(X ; \mathbb{Z}) \underset{2(\cdot)}{\longrightarrow} H^{4 k+2}(X ; \mathbb{Z})
\end{aligned}
$$

- It is unclear whether q in K^{*} factors through ρ :

(Reasonable multiplications in $K^{*}(X ; \mathbb{Z} / 2)$ are not graded-commutative. [Araki-Toda])

Theorem (case of K-cohomology)

The map $q: \tilde{K}^{1}(X) \rightarrow \tilde{K}^{1}(X ; \mathbb{Z} / 2)$ is the delooping of the composition of the Adams operation ψ^{2} and the $\bmod 2$ reduction ρ :

$$
\begin{aligned}
& \tilde{\boldsymbol{K}}^{0}(\boldsymbol{X}) \xrightarrow{\psi^{2}} \tilde{K}^{0}(\boldsymbol{X}) \xrightarrow{\rho} \tilde{\boldsymbol{K}}^{0}(\boldsymbol{X} ; \mathbb{Z} / \mathbf{2}) \\
& \left.\simeq\right|_{V} \\
& \tilde{K}^{1}\left(S^{1} \wedge X\right) \longrightarrow \tilde{K}^{1}\left(S^{1} \wedge X ; \mathbb{Z} / \mathbf{2}\right)
\end{aligned}
$$

Proof Theorem follows from:

$$
\begin{aligned}
q(x y) & =q(x) \cup \rho\left(y^{2}\right), & & \left(x \in K^{1}(X), y \in K^{0}(X)\right) \\
\rho\left(y^{2}\right) & =\rho\left(\psi^{2}(y)\right), & & \left(y \in K^{0}(X)\right) \\
q(x) & =\rho(x) . & & \left(x \in K^{1}\left(S^{1}\right)\right) .
\end{aligned}
$$

Computation of $q: K^{1}\left(S^{1}\right) \rightarrow K^{1}\left(S^{1} ; \mathbb{Z} / 2\right)$

(1) Realize $1 \in K^{1}\left(S^{1}\right)=\mathbb{Z}$ by a family of self-adjoint Fredholm operators parametrized by ($I, \partial I$).
(2) Rewrite $q(1)$ through:

$$
\begin{aligned}
K^{1} & (I, \partial I ; \mathbb{Z} / 2) & & \\
& \cong K^{-1}(I, \partial I ; \mathbb{Z} / 2) & & \text { (periodicity) } \\
& \cong K^{-1}(I, \partial I) / 2 K^{-1}(I, \partial I) & & \left(\tilde{K}^{0}\left(S^{1}\right)=0\right) \\
& =K^{0}\left(I^{2}, \partial I^{2}\right) / 2 K^{0}\left(I^{2}, \partial I^{2}\right) & & \text { (definition) }
\end{aligned}
$$

(3) Formulations of $K^{0}\left(D^{2}, S^{1}\right)=\mathbb{Z}$: ∞-dim \rightarrow finite-dim
(9) Compute a winding number to conclude $q(1) \neq 0$.

- As a simple corollary, we can compute

$$
q: K^{1}(X) \rightarrow K^{1}(X ; \mathbb{Z} / 2)
$$

in the case of $X=S^{2 m+1}$.

$$
\begin{array}{ll}
m=0 & q: \mathbb{Z} \rightarrow \mathbb{Z} / 2 \text { is non-trivial. } \\
m>0 & q: \mathbb{Z} \rightarrow \mathbb{Z} / 2 \text { is trivial. }
\end{array}
$$

Problem/Conjecture [Freed]

The map q factors as follows:

$$
\cdots \underset{2(\cdot)}{\longrightarrow} \tilde{K}^{1}(X) \xrightarrow[\rho]{\Sigma^{-1} \psi^{2}} \tilde{K}^{1}(X)
$$

where $\Sigma^{-1} \psi^{2}$ is a delooping of the Adams square ψ^{2} defined by Freed-Hopkins:

$$
\begin{aligned}
& \tilde{\boldsymbol{K}}^{0}(\boldsymbol{X}) \xrightarrow{\psi^{2}} \tilde{\boldsymbol{K}}^{0}(X) \\
& \begin{array}{c}
\cong \\
\tilde{K}^{1}\left(S^{1} \wedge X\right) \xrightarrow{\Sigma^{-1} \psi^{2}} \tilde{K}^{1}\left(S^{1} \wedge X\right) .
\end{array}
\end{aligned}
$$

Problem/Conjecture [Freed]

The map q factors as follows:

$$
\cdots \underset{2(\cdot)}{\longrightarrow} \tilde{K}^{1}(X) \xrightarrow[\rho]{\Sigma^{-1} \psi^{2}} \tilde{K}^{1}(X)
$$

where $\Sigma^{-1} \psi^{2}$ is a delooping of the Adams square ψ^{2} defined by Freed-Hopkins:

$$
\begin{gathered}
\tilde{K}^{0}(X) \xrightarrow{\psi^{2}} \tilde{K}^{0}(X) \\
\cong \mid \cong \\
\tilde{K}^{1}\left(S^{1} \wedge X\right) \xrightarrow{\Sigma^{-1} \psi^{2}} \tilde{K}^{1}\left(S^{1} \wedge X\right) .
\end{gathered}
$$

Remark $x^{2}=0$ for $\forall x \in K^{1}(X) .\left(K^{*}\left(U_{\infty}\right)\right.$ is torsion free.)

