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Abstract

This is a note about a simple construction of even dimensional topo-
logical quantum field theories, based on cohomology with its coefficients in
a finite field, the cup product, fundamental classes and Poincare-Lefschetz
duality. A variation of the construction is also given, which only uses the
axioms of cohomology theory and produces TQFT’s of any dimension.

1 Introduction

A d-dimensional topological quantum field theory (TQFT) in the sense of Atiyah
is a functor from a coboridism category of manifolds to the category of vector
spaces. More precisely, it assigns:

• a finite-rank vector space HX over C to a compact oriented (d − 1)-
dimensional manifold X without boundary;

• a vector ZW ∈ H∂W to a compact oriented d-dimensional manifold W
with its boundary ∂W ,

satisfying the following axioms:

• (Functorial) Any orientation preserving diffeomorphism X1 → X2 of (d−
1)-dimensional manifolds induces an isomorphism HX1 → HX2 . Moreover,
the isomorphism H∂W1 → H∂W2 induced from any orientation preserving
diffeomorphism of d-dimensional manifolds W1 → W2 carries ZW1 to ZW2 .

• (Involutory) For any (d − 1)-dimensional manifold X, there is a natural
isomorphism H∗

X
∼= HX∗ , where X∗ is the (d − 1)-dimensional manifold

whose orientation is opposite to that on X.

• (Multiplicative) There is a natural isomorphism HX1tX2
∼= HX1 ⊗HX2 for

any compact oriented (d − 1)-dimensional manifolds X1 and X2. More-
over, for any compact oriented d-dimensional manifolds W1 and W2 whose
boundaries are ∂W1 = X1tX and W2 = X∗tX2, let W1∪W2 denote the
compact oriented manifolds obtained by gluing W1 and W2 along X. Then
the natural pairing TrX : HX ⊗H∗

X → C carries ZW1tW2 ∈ H∂(W1tW2) to
ZW1∪W2 ∈ H∂(W1∪W2).
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• (Non-trivial) H∅ = C and ZX×[0,1] = id.

In this note, we construct a 2n-dimensional TQFT Ẑ2n
n based on ordinary

cohomology groups of degree n with coefficients in any finite field F . A simi-
lar construction gives a 2n-dimesional TQFT Ž2n

n . The constructions of these
TQFT’s use the cup product, the fundamental classes of manifolds, and the
Poincare-Lefschetz duality. We also construct d-dimensional TQFT’s Zd

p and
Zd

≤p from certain generalized cohomology theory, and explore relations among
these TQFT’s.

The drawback of these TQFT’s is that they only capture information of Betti
numbers. But, the simpleness of the construction may be of the advantage.

As a convention of this note, for a finite group A, we will write |A| for the
number of elements in A.

2 Preliminary

2.1 Some facts about (skew-)symmetric form

Let V be a finite-dimensional vector space over a field R. A bilinear form
I : V ×V → R is said to be symmetric if I(x, y) = I(y, x) for all x, y ∈ V . Also,
I is said to be skew-symmetric if I(x, y) = −I(y, x) for all x, y ∈ V instead.
A (skew-)symmetric form I is called non-degenerate if any x ∈ V \{0} admits
y ∈ V such that I(x, y) 6= 0. The non-degeneracy of I is equivalent to that the
homomorphism I] : V → Hom(V,R) given by I](x)(y) = I(x, y) is injective.
If this is the case, then the finite-dimensionality of V implies that I] is an
isomorphism.

Lemma 2.1. Let V be a finite-dimensional vector space over a field R, and
I : V × V → R a non-degnerate (skew-)symmetric bilinear form. For any
subspace W ⊂ V , let W⊥ denote the complement of W in V with respect to I:

W⊥ = {x ∈ V | I(x, y) = 0 for all y ∈ W}.

Then the following holds:

(a) There is a natural isomorphism W⊥ ∼= Hom(V/W,R).

(b) (W⊥)⊥ = W .

Proof. Since R is a field, the inclusion W ⊂ V induces the exact sequence:

0 → Hom(V/W,R) → Hom(V,R)
jW→ Hom(W,R) → 0.

Since I] is an isomorphism, we see

W⊥ = Ker(jW I]) ∼= Ker(jW ) ∼= Hom(V/W,R),
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which shows (a). For (b), we use (a) to get the formulae:

dimW + dimW⊥ = dimV,

dimW⊥ + dim(W⊥)⊥ = dimV.

Hence we have dimW = dim(W⊥)⊥. But, by the (skew-)symmetry of I, we
have W ⊂ (W⊥)⊥. Thus, by the dimensional reason, we see W = (W⊥)⊥.

A non-degenerate skew-symmetric bilinear form I : V × V → R is called
symplectic if I(x, x) = 0 for all x ∈ V .

Lemma 2.2. If I is a symplectic, then rankRV = 0 mod 2.

Proof. This is standard: a proof constructs a symplectic basis inductively.

2.2 The intersection pairing

Definition 2.3. Let R be a principal ideal domain, and W a compact d-
dimensional manifold with boundary ∂W which is oriented over R (i.e. it has
fundamental class in the cohomology with its coefficients in R). We define an
R-module ′Hq = ′Hq(W ; R) to be the kernel of the restriction r : Hq(W ; R) →
Hq(∂W ; R):

′Hq(W ; R) = Ker{r : Hq(W ; R) → Hq(∂W ; R)}.

Lemma 2.4. For p, q such that p + q = d, there exists a bilinear form

I : ′Hp(W ; R) × ′Hq(W ; R) −→ R.

Proof. Recall the exact sequence for the pair (W,∂W ):

Hq−1(∂W ;R) δ→ Hq(W,∂W ; R)
j→ Hq(W ; R) r→ Hq(∂W ; R).

Now, suppose that x ∈ ′Hp and y ∈ ′Hq are given. Since r(y) = 0 by definition,
there is ỹ ∈ Hq(W,∂W ; R) such that j(ỹ) = y. We then define

I(x, y) = 〈x ∪ ỹ, [W ]〉,

where x ∪ ỹ ∈ Hd(W,∂W ; R) is the cup product, and [W ] ∈ Hd(W,∂W ; R) is
the fundamental class of W . If ỹ′ ∈ Hq(W,∂W ;R) is another choice such that
j(ỹ′) = y, then there is z ∈ Hq−1(∂W ; R) such that δ(z) = ỹ′ − ỹ. Now, we get

〈x ∪ (ỹ′ − ỹ), [W ]〉 = 〈x ∪ δ(z), [W ]〉 = 〈r(x) ∪ z, [∂W ]〉 = 0,

so that I(x, y) is well-defined.

Lemma 2.5. Let p, q be such that p + q = d. Then we have

I(x, y) = (−1)pqI(y, x)

for any x ∈ ′Hp and y ∈ ′Hq.
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Proof. We choose x̃ ∈ Hp(W,∂W ; R) and ỹ ∈ Hq(W,∂W ; R) such that j(x̃) = x
and j(ỹ) = y. Then the following holds in Hd(W,∂W ; R):

x ∪ ỹ = x̃ ∪ ỹ = (−1)pq ỹ ∪ x̃ = (−1)pqy ∪ x̃,

which leads to the lemma.

Proposition 2.6. Let p, q be such that p + q = d. We define a homomorphism

I] : ′Hp(W ; R) −→ HomR(′Hq(W ; R), R)

by I](x)(y) = I(x, y). The the following holds:

(a) The kernel of I] is the torsion submodule of ′Hp(W ; R).

(b) I] is surjective if and only if:

′Hp(W ; R) = r−1(T (Hp(∂W ; R))),

where we write r : Hp(W ;R) → Hp(∂W ; R) for the restriction, and
T (Hp(∂W ; R)) ⊂ Hp(∂W ; R) for the torsion submodule.

Proof. We have the following commutative diagram:

0 0 0y y y
0 −−−−→ T (′Hp) −−−−→ ′Hp(W ; R) I]

−−−−→ Hom(′Hq(W ; R), R)y y yj∗

0 −−−−→ T (Hp) −−−−→ Hp(W ;R) Ĩ]

−−−−→ Hom(Hq(W,∂W ; R), R) −−−−→ 0∥∥∥ ∥∥∥ ∥∥∥
0 −−−−→ T (Hp) −−−−→ Hp(W ;R) −−−−→ Hom(Hp(W ;R), R) −−−−→ 0,

where T (Hp) ∼= Ext(Hq−1(W,∂W ; R), R) is the torsion part in Hp(W ; R), and
T (′Hp) = T (Hp) ∩ ′Hp(W ; R) that in ′Hp(W ;R). The homomorphism Ĩ] is
defined by Ĩ](x)(y) = 〈x ∪ y, [W ]〉 for x ∈ Hq(W ; R) and y ∈ Hp(W,∂W ; R).
The isomorphism Hq(W,∂W ; R) ∼= Hp(W ; R) is the Lefschetz duality, and the
universal coefficient theorem implies that sequence in the lowest row is exact.
Since j : Hq(W,∂W ; R) → ′Hq(W ; R) is surjective by definition, the induced
homomorphism j∗ is injective. Hence we see the kernel of I] is exactly T (′Hp)
and (a) is shown. For (b), let hx : Hq(W,∂W ; R) → R denote the homomor-
phism determined by an element x ∈ Hp(W ; R), that is, hx(y) = 〈x ∪ y, [W ]〉
for all y ∈ Hq(W,∂W ; R). To get the necessary and sufficient condition for hx

belongs to the image of j∗, notice the identification:

′Hq(W ; R) ∼= Hq(W,∂W ;R)/Ker(j) = Hq(W,∂W ;R)/Im(δ),
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where δ : Hq−1(∂W ; R) → Hq(W,∂W ; R) is the connecting homomorphism.
For any z ∈ Hq−1(∂W ; R), we have the formula

hx(δ(z)) = 〈x ∪ δ(z), [W ]〉 = 〈r(x) ∪ z, [∂W ]〉 = fr(x)(z ∩ [∂W ]),

where f is the homomorphism in the universal coefficient theorem:

0 → Ext(Hp−1(∂W,R)) → Hp(∂W ; R)
f→ Hom(Hp(∂W ), R) → 0,

and z ∩ [∂W ] ∈ Hp−1(∂W ) is the image of the cap product:

∩ : Hq−1(∂W ; R) × Hd−1(∂W ; R) −→ Hp(∂W ; R).

By the Poincaré duality, ∩[∂W ] : Hq−1(∂W ; R) → Hp(∂W ; R) is an isomor-
phism. Therefore the condition for hx to be in Im(j∗) is that r(x) ∈ Hp(∂W ;R)
is a torsion, which implies (b).

Corollary 2.7. If R is a field, then I] is an isomorphism.

Corollary 2.8. Suppose that d = 4k + 2 and p = q = 2k + 1 for some k.
Suppose also that: R is a field in which 2 is invertible; or R = Z. Then we have

rankR
′H2k+1(W ; R) = 0 mod 2.

Proof. In the case that R is a field in which 2 is invertible, we have I(x, x) = 0
for all x ∈ ′H2k+1(W ; R). Thus, with the fact that I] is an isomorphism, the
bilinear form I is a symplectic form. This implies that the rank of ′H2k+1(W ;R)
is divisible by 2. Then the case of R = Z follows from the fact that the rank of
H2k+1(W ; Z) agrees with that of H2k+1(W ; Z) ⊗ R = H2k+1(W ; R).

We slightly generalize the construction above: For a pair of integers p and
q, and a pair of manifolds (X, Y ) such that Y ⊂ X, we will write

H(p,q)(X,Y ; R) = Hp(X, Y ; R) ⊕ Hq(X, Y ; R)

for the direct sum of the cohomology groups of degree p and q. We will also
write T (p,q)(X, Y ) for the torsion submodule in H(p,q)(X,Y ; R). It is then easy
to derive the following as a corollary to Proposition 2.6:

Corollary 2.9. For p and q such that p + q = d, we put

′H(p,q)(W ; R) = Ker{r : H(p,q)(W ; R) → H(p,q)(∂W ; R)},

where r is the restriction. On ′H(p,q)(W ; R), we define a bilinear form

I : ′H(p,q)(W ; R) × ′H(p,q)(W ; R) −→ R

by I((a, b), (a′, b′)) = 〈a ∪ b̃′ + b ∪ ã′, [W ]〉, where (ã′, b̃′) ∈ H(p,q)(W,∂W ; R) is
such that j(ã′, b̃′) = (a′, b′). Then the following holds:
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1. I is well-defined.

2. I(x, y) = (−1)pqI(y, x) for all x, y ∈ ′H(p,q)(W ; R).

3. If p and q are odd, then I(x, x) = 0 for all x ∈ ′H(p,q)(W ;R).

4. Let I] : ′H(p,q)(W ; R) → Hom(′H(p,q)(W ; R), R) be the homomorphism
defined by I](x)(y) = I(x, y). Then we have

KerI] = ′H(p,q)(W ; R) ∩ T (p,q)(W ).

5. I] is surjective if and only if ′H(p,q)(W ;R) = r−1(T (p−1,q−1)(∂W )).

Corollary 2.10. Suppose that d = 2n for some n and that p and q are odd
numbers such that p + q = d. Suppose also that R is a field or Z. Then,

rankR
′H(p,q)(W ; R) = 0 mod 2.

Remark 1. In the case that R is a field in which 2 is not invertible, a compact
oriented (4k + 1)-dimensional manifold W may admits a non-trivial element
x ∈ ′H2k+1(W ;R) such that x2 6= 0. In particular, in the case of R = Z/2,
there exist such elements if and only if the (2k + 1)th Wu class ν2k+1(W ) ∈
H2k+1(W ; Z/2) is non-trivial.

3 TQFT constructed from cohomology

3.1 Construction

Definition 3.1. Let F be a finite field, and n a positive integer.

(a) We assign to a compact oriented (2n − 1)-dimensional manifold X the
vector space Ĥ2n

n (X) over C generated by elements in Hn(X; F ):

Ĥ2n
n (X) =

⊕
c∈Hn(X;F )

C|c〉.

We also define a Hermitian metric 〈 | 〉 : HX × HX → C by 〈αc1|βc2〉 =
ᾱβδc1,c2 for α, β ∈ C and c1, c2 ∈ Hn(X; F ), where δc1,c2 = 1 if c1 = c2

while δc1,c2 = 0 otherwise.

(b) Let W be a compact oriented 2n-dimensional manifold W . In the case of
∂W 6= ∅, we assign to W the vector Ẑ2n

n (W ) ∈ Ĥ2n
n (∂W ) defined by

Ẑ2n
n (W ) =

√
|Ker(r)|

∑
c∈Im(r)

|c〉,

where r : Hn(W ; F ) → Hn(∂W ; F ) is induced by the restriction. In the
case of ∂W = ∅, we assign to W the number Ẑ2n

n (W ) ∈ C defined by

Ẑ2n
n (W ) =

√
|Hn(W ;F )|.
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Theorem 3.2. The assignments X 7→ Ĥ2n
n (X) and W 7→ Ẑ2n

n (W ) in Definition
3.1 give rise to a 2n-dimensional topological quantum field theory Ẑ2n

n .

The remainder of this subsection is devoted to the proof of this theorem. To
suppress notations, we write Ĥ2n

n (X) = HX and Ẑ2n
n (W ) = ZW simply.

In the axioms of topological quantum field theory, the functoriality axiom is
clear. For the involutority (orientation) axiom, we use the Hermitian metric 〈 | 〉
to construct an isomorphism HX∗ ∼= H∗

X . (Since ZW∗ = ZW in HX∗ = HX),
the isomorphism carries ZW ∈ H∂W to ZW∗ ∈ H∂W∗ . Thus, the TQFT is in
particular “unitary”.) For the non-triviality axiom, we adapt the convention
H∅ = C. It is easy to check that ZX×[0,1] gives rise to the identity on HX .

Finally, we prove the multiplicativity axiom. It is clear that HXtX′ ∼=
HX ⊗HX′ . Now, let W1 and W2 be compact oriented 2n-dimensional manifolds
whose boundaries are ∂W1 = X1 t X and W2 = X t X2. We assume that the
induced orientations on X ⊂ ∂W1 and X ⊂ ∂W2 are opposite to each other,
so that we glue W1 and W2 along X to get a compact oriented 2n-dimensional
manifold W1 ∪W2 whose boundary is ∂(W1 ∪W2) = X1 tX2. We write R1 and
R2 for the homomorphisms induced by restriction:

R1 : Hn(W1) → Hn(X1) ⊕ Hn(X), R2 : HnW2) → Hn(X) ⊕ Hn(X2).

In the above, we omit the coefficients from the notations of cohomology groups.
We also write R and R′ for the following restrictions:

R : Hn(W1 ∪ W2) → Hn(X1) ⊕ Hn(X) ⊕ Hn(X2),
R′ : Hn(W1 ∪ W2) → Hn(X1) ⊕ Hn(X2),

By definition, the vectors assigned to W1 and W2 are expressed as:

ZW1 =
√
|KerR1|

∑
(a1,b1)∈ImR1

a1 ⊗ b1, ZW2 =
√
|KerR2|

∑
(b2,a2)∈ImR1

b2 ⊗ a2,

where ai ∈ Hn(Xi) and bi ∈ Hn(X) for i = 1, 2. Now, by the contraction

TrX : HX1 ⊗ HX ⊗ HX ⊗ HX2 −→ HX1 ⊗ HX2 ,

we evaluate ZW1tW2 = ZW1 ⊗ ZW2 to get:

TrX(ZW1tW2) =
√
|Ker(R1 ⊕ R2)|

∑
(a1,b1)∈ImR1
(b2,a2)∈ImR2

δb1,b2a1 ⊗ a2

=
√
|Ker(R1 ⊕ R2)|

∑
(a1,b1,b2,a2)∈Im(R1⊕R2)

b1=b2

a1 ⊗ a2.

To analyze the summation in the above, we consider the following commutative
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diagram involving a part of the Mayer-Vietoris exact sequence:

Hn(W1 ∪ W2)
R−−−−→ Hn(X1) ⊕ Hn(X) ⊕ Hn(X2)

π−−−−→ Hn(X1) ⊕ Hn(X2)

f

y y∆

∥∥∥
Hn(W1) ⊕ Hn(W2)

R1⊕R2−−−−−→ Hn(X1) ⊕ Hn(X) ⊕ Hn(X) ⊕ Hn(X2)
π̃−−−−→ Hn(X1) ⊕ Hn(X2)

ρ1−ρ2

y y
Hn(X) Coker∆,

where f, ρ1, ρ2 are the restrictions, ∆ the diagonal map, and π and π̃ the pro-
jections. The exactness of the first column shows

{(a1, b1, b2, a2) ∈ Im(R1 ⊕ R2)| b1 = b2} = Im(∆R).

For any (a1, a2) ∈ Im(π∆R) given, we have

|{(a′
1, b

′, b′, a′
2) ∈ Im(∆R)| a′

1 = a1, a
′
2 = a2}|

= |{(a′′
1 , b′′, b′′, a′′

2) ∈ Im(∆R)| a′′
1 = 0, a′′

2 = 0}| = |Im(∆R) ∩ Ker(π̃)|.

Since π̃∆ = π, the injection ∆ induces the isomorphism:

Im(R) ∩ Ker(π) ∼= Im(∆R) ∩ Ker(π̃).

Further, the homomorphism R induces the isomorphism

Ker(R′)/Ker(R) = Ker(πR)/Ker(R) ∼= Im(R) ∩ Ker(π).

Thus, in view of π̃∆R = π∆ = R′, we arrive at:

TrX(ZW1tW2) =
√
|Ker(R1 ⊕ R2)||Ker(R′)/Ker(R)|

∑
(a1,a2)∈Im(R′)

a1 ⊗ a2.

To rewrite the formula above, we use

Lemma 3.3. There is the following exact sequence:

0 −−−−→ Kerf −−−−→ KerR
f−−−−→ Ker(R1 ⊕ R2) −−−−→ 0.

Proof. The exact sequence follows from the following commutative diagram:

Hn−1(X) 0
↓ ↓

Hn(W1 ∪ W2, X1 t X t X2) → Hn(W1 ∪ W2)
R→ Hn(X1) ⊕ Hn(X) ⊕ Hn(X2)

‖ ↓ f ↓
Hn(W1, X1 t X) ⊕ Hn(W2,tX t X2) → Hn(W1) ⊕ Hn(W2)

R1⊕R2→ Hn(X1) ⊕ Hn(X) ⊕ Hn(X) ⊕ Hn(X2)
↓ ρ1 − ρ2 ↓

Hn(X) = Hn(X)
↓
0.
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In this diagram, the first and second columns are the Mayer-Vietoris exact
sequences. Also, the second row is the exact sequence for the pair (W1∪W2, X1t
X t X2), and the third row the direct sum of the exact sequences for the pairs
(W1, X1 t X) and (W2, X t X2).

As a consequence of the lemma, we get

√
|Ker(R1 ⊕ R2)|KerR′/KerR| =

√
|KerR′|

√
|KerR′/KerR|

|Kerf |
.

Lemma 3.4. |KerR′/KerR| = |Kerf |.

Proof. Since W is oriented and F is a field, W is also oriented over F . Thus,
by Proposition 2.6, KerR′ = ′Hn(W1 ∪W2) is endowed with the non-degenerate
(skew-)symmetric form I. Recall Kerf ⊂ KerR′. Then, by Lemma 2.1, we get

rankKerf = rankHom(KerR′/Kerf⊥, F ) = rank(KerR′/Kerf⊥).

We now claim Kerf⊥ = KerR. To see this, let δ : Hn−1(X) → Hn(W1∪W2) be
the connecting homomorphism in the Mayer-Vietoris sequence, so that Kerf =
Imδ. For any x ∈ Hn−1(X) and y ∈ KerR′, we have

I(δx, y) = 〈δx ∪ ỹ, [W1 ∪ W2]〉 = 〈x ∪ ỹ|X , [X]〉 = 〈x ∪ ρ(y), [X]〉,

where ỹ ∈ Hn(W1∪W2, X1∪X2) is such that j(ỹ) = y, and ρ : Hn(W1∪W2) →
Hn(X) is the restriction. Thus, y ∈ KerR′ belongs to Kerf⊥ = Imδ⊥ if and
only if x ∈ KerR = KerR′ ∩ Kerρ.

Lemma 3.4 above completes the proof of the multiplicativity axiom:

TrX(ZW1tW2) =
√

|KerR′|
∑

(a1,a2)∈Im(R′)

a1 ⊗ a2 = ZW1∪W2 .

Remark 2. In the case of n = 1, we can relax the condition on the coefficients of
the cohomology: Instead of a fintie field F , we can allow a principal ideal domain
R with |R|< +∞. This is because the ordinary cohomology with coefficients
in R of compact oriented manifolds of dimesion less than or equal to 2 are free
as R-modules. Thus, for a compact oriented 2-dimensional manifold X, the
intersection pairing I on ′H1(X; R) is non-degenerate, and hence we can apply
the argument in the proof of Theorem 3.2 to this case.

3.2 Application

Proposition 3.5. Let W1 and W2 be a compact oriented (4k + 2)-dimensional
manifolds, where k is a non-negative integer. Assume that a compact oriented
(4k + 1)-dimensional manifold X is a component of the boundary of each W1

and W2 with opposite induced orientations, so that we glue W1 and W2 together
along X to get a compact oriented (4k + 2)-dimensional manifold W1 ∪ W2. If
ν2k+1(W1) and ν2k+1(W2) are trivial, then so is ν2k+1(W1 ∪ W2).
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Proof. We can prove this claim directly by using the Mayer-Vietoris sequence.
But, we appeal to our TQFT with F = Z/2: In general, if ν2k+1(W ) is trivial,
then the intersection pairing on ′H2k+1(W ; Z/2) is symplectic, so that the coef-
ficients

√
|Ker(r)| = |F |rank′H2k+1(W ;F )/2 of ZW ∈ H∂W are integers. Thus, by

the assumption, the coefficients of ZW1 and ZW2 are integer. Clearly, the coef-
ficients of ZW1 ⊗ ZW2 = ZW1tW2 are integers. Since TrX preserves the lattice
of vectors with integer coefficients, the coefficients of TrX(ZW1tW2) = ZW1∪W2

are also integers, so that ν2k+1(W1 ∪ W2) is trivial.

3.3 ‘Dual’ or ‘complementary’ construction

We here construct a TQFT Ž2n
n which is dual to Ẑ2n

n in a sense.

Definition 3.6. Let F be a finite field and n a positive integer.

(a) We assign to a compact oriented (2n − 1)-dimensional manifold X the
vector space Ȟ2n

n (X) over C generated by elements in Hn−1(X; F ):

Ȟ2n
n (X) =

⊕
x∈Hn−1(X;F )

C|x〉.

We also define a Hermitian metric 〈 | 〉 on Ȟ2n
n (X) by 〈x|x′〉 = δx,x′ .

(b) Let W be a compact oriented 2n-dimensional manifold W . In the case of
∂W 6= ∅, we assign to W the vector Ž2n

n (W ) ∈ Ȟ2n
n (∂W ) defined by

Ž2n
n (W ) =

√
|Hn−1(∂W ; F )||Ker(rn)|

|Im(rn−1)|
∑

x∈Im(rn−1)

|x〉,

where ri : Hi(W ;F ) → Hi(∂W ;F ), (i = n − 1, n) are the restrictions. In
the case of ∂W = ∅, we assign to W the number Ž2n

n (W ) ∈ C defined by

Ž2n
n (W ) =

√
|Hn(W ;F )|.

The coefficient of Ž2n
n (W ) has the following equivalent expressions:√

|Hn−1(∂W ; F )||Ker(rn)|
|Im(rn−1)|

=

√
|Hn(W,∂W ;F )|

|Im(rn−1)|
=

√
|Hn(W ; F )|
|Im(rn−1)|

.

Theorem 3.7. The assignments X 7→ Ȟ2n
n (X) and W 7→ Ž2n

n (W ) in Definition
3.6 give rise to a 2n-dimensional topological quantum field theory Ž2n

n .

Proof. The proof is essentially the same as that of Theorem 3.2: We use the
relations among some cohomology groups derived from the properties of the cup
product.

Notice that in the case of n = 1 the TQFT Ž2n
n is also defined by using a

finite PID R instead of a finite field F .
Remark 3. As will be seen later, Ẑ2

1 and Ž2
1 are (non-canonically) equivalent.

A conjecture is that Ẑ2n
n and Ž2n

n is equivalent generally.
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3.4 Generalization

Definition 3.8. Let F be a finite field, n a positive integer, and p and q are
numbers such that 2n = p + q.

(a) We assign to a compact oriented (2n − 1)-dimensional manifold X the
vector space Ĥ2n

p,q(X) over C generated by elements in H(p,q)(X;F ):

Ĥ2n
p,q(X) =

⊕
c∈H(p,q)(X;F )

C|c〉.

We also define a Hermitian metric 〈 | 〉 : Ĥ2n
p,q(X) × Ĥ2n

p,q(X) → C by
〈αc1|βc2〉 = ᾱβδc1,c2 for α, β ∈ C and c1, c2 ∈ H(p,q)(X;F ).

(b) Let W be a compact oriented 2n-dimensional manifold W . In the case of
∂W 6= ∅, we assign to W the vector Ẑ2n

p,q(W ) ∈ Ĥ2n
p,q(∂W ) defined by

Ẑ2n
p,q(W ) =

√
|Ker(r)|

∑
c∈Im(r)

|c〉,

where r : H(p,q)(W ; F ) → H(p,q)(∂W ; F ) is induced by the restriction. In
the case of ∂W = ∅, we assign to W the number Ž2n

p,q(W ) ∈ C defined by

Ẑ2n
p,q(W ) =

√
|H(p,q)(W ;F )|.

Theorem 3.9. The assignments X 7→ Ĥ2n
p,q(X) and W 7→ Ẑ2n

p,q(W ) in Defini-
tion 3.8 give rise to a 2n-dimensional topological quantum field theory Ẑ2n

p,q.

Proof. The argument proving Theorem 3.2 is adapted without any change.

In a similar way, we incorporate the other combinations of degree to define
various TQFT’s. For example, we use all even degree and all odd degree to
construct Ẑ2n

even and Ẑ2n
odd. With a slight generalization, we can construct a

TQFT involving all degree Ẑ2n
all as well. There also exist the dual versions such

as Ž2n
p,q, Ž2n

even, Ž2n
odd, Ž2n

all , etc. For instance, Ž2n
p,q with p + q = 2n is defined by

Ȟ2n
p,q(X) =

⊕
z∈H(p−1,q−1)(X;F )

C|z〉,

Ž2n
p,q(W ) =

√
|H(p−1,q−1)(∂W ; F )||Ker(rp ⊕ rq)|

|Im(rp−1 ⊕ rq−1)|
∑

x∈Im(rp−1⊕rq−1)

|x〉.

3.5 Possibility of other generalizations

• The construction of our TQFT’s only uses basic facts about ordinary
cohomology theory with its coefficients in a finite field F . In particular, the
essential fact is that the cup product and the fundamental class combine

11



to give a non-degenerate, (skew-)symmetric bilinear form on cohomology
groups with coefficients in F . Thus, it would be possible to apply our
construction to other generalized cohomology theories h with some extra
structures. (For this direction, we will shortly axiomatize the properties
of a cohomology theory we used in the construction of our TQFT’s.)

• In the construction of our TQFT’s, we restrict ourselves to consider a
finite field as the coefficient of cohomology. But, there might be a general-
ization based on cohomology groups with integer coefficients. We expect
the generalization in 2-dimension recover the TQFT constructed from the
U(1) Wess-Zumino-Witten model at level `.

• Related to the two generalizations above, we may generalize the construc-
tion of TQFT by introducing “local coefficients” to the underlying coho-
mology theory.

• The notion of extended TQFT, including manifolds of higher codimensions
and higher categories, is of recent interest. It may be possible to construct
an extended version of our TQFT in a simple manner also.

A related issue is to explain our construction from viewpoint of physics,
namely, to find out field theories whose quantizations yield the TQFT’s.

4 Axiomatization

4.1 Axioms

Let F denote the category of pairs of finite CW complexes (X,Y ) such that
Y ⊂ X. The morphisms f : (X, Y ) → (X ′, Y ′) in F are continuous maps
f : X → X ′ such that f(Y ) ⊂ Y ′. A finite CW complex X may be regarded
as an object (X, ∅) in F . There is the subcategory M in F : an object in F
is a pair (X, ∂X) consisting of a compact manifold X and its boundary ∂X. A
morphism f : (X, ∂X) → (X ′, ∂X ′) in M is a smooth map f : X → X ′ such
that f(∂X) ⊂ ∂X ′. A subcategory in M is said to be closed under gluing if,
for manifolds X1, X2 ∈ M which share a boundary component, the manifold
X1 ∪X2 obtained by gluing X1 and X2 along the boundary component belongs
to M .

Axiom 4.1. Let h be a generalized cohomology theory defined on F .

(a) (finite field) There is a finite field F , and hp(X, Y ) is an F -module for any
(X, Y ) ∈ F and p ∈ Z.

(b) (multiplication) There exists an biadditive map

∪ : hp(X, A) × hq(X,B) → hp+q(X, A ∪ B)

for any (X, A), (X, B) ∈ F and p, q ∈ Z satisfying the following:

12



• If h satisfies the finite-field axiom, then ∪ is F -bilinear.

• ∪ is natural: for any p, q ∈ Z, (X, A), (X, B), (X ′, A′), (X ′, B′) ∈ F
and a continuous map f : X → X ′ such that f(A) ⊂ A′ and f(B) ⊂
B′, the following diagram is commutative:

hp(X,A) × hq(X,B) ∪−−−−→ hp+q(X, A ∪ B)

f∗×f∗
x xf∗

hp(X ′, A′) × hq(X ′, B′) ∪−−−−→ hp+q(X ′, A′ ∪ B′).

• ∪ is compatible with the exactness axiom: for any p, q ∈ Z and
(X, Y ) ∈ F , the following diagram is commutative:

hp−1(Y ) × hq(X)

δ×1

��

1×r // hp−1(Y ) × hq(Y ) ∪ // hp+q−1(Y )

δ

��
hp(X, Y ) × hq(X) ∪ // hp+q(X, Y ),

where δ and r are the maps in the exactness axiom for (X, Y ):

· · · → h∗−1(Y ) δ→ h∗(X, Y ) → h∗(X) r→ h∗(Y ) δ→ · · · .

• ∪ is graded-commutative.

(c) (integration) Under the finite-field axiom, there are a subcategory M + in
M closed under gluing, and, for any compact d-dimensional manifold W
possibly with boundary such that (W,∂W ) ∈ M +, a F -linear map∫

W

: hd(W,∂W ) −→ F,

satisfying the following exists:

•
∫

is compatible with boundary: for any (W,∂W ) ∈ M + such that
dimW = d, the following diagram is commutative:

hd−1(∂W ) δ //

∫
∂W $$III

III
III

I
hd(W,∂W )

∫
Wzzuuuuuuuuuu

F,

where δ is the connecting map in the exact sequence for (W,∂W ).

•
∫

is compatible with excision: Suppose (W1, X1tX), (W2, XtX2) ∈
M + such that dimW1 = dimW2 = d are given. We denote by (W1 ∪
W2, X1 t X2) ∈ M + the manifold obtained by gluing. Then the

13



natural inclusions induce the homomorphisms making the following
diagram commutative:

hd(W1 ∪ W2, X1 t W2) −−−−→ hd(W1 ∪ W2, X1 t X2)

∼=
y y∫W1∪W2

hd(W1, X1 t X)
∫

W1−−−−→ F.

(d) (duality) Under the above three axioms, let (W,∂W ) ∈ M + be a d-
dimensional compact manifold possibly with boundary. For any p ∈ Z, we
define an F -module ′hp(W ) by

′hp(W ) = Ker{r : hp(W ) → hp(∂W )},

which agrees with hp(W ) in the case of ∂W = ∅. For any p, q ∈ Z, we also
define an F -bilinear form

I : ′hp(W ) × ′hq(W ) −→ F

by
∫

X
x ∪ ỹ, where ỹ ∈ hq(W,∂W ) maps to y ∈ hq(W ) under the natural

map. Then the F -linear map

I] : ′hp(X) −→ HomF (′hq(X), F ),

given by I](x)(y) = I(x, y), is an isomorphism.

An example of a cohomology theory satisfying the above axioms is of course
the ordinary cohomology theory with coefficients in a finite field F : ∪ is the
usual cup product, M + is the subcategory of oriented manifolds, and

∫
W

is
defined by the evaluation of the fundamental class of (W,∂W ) ∈ M +.

4.2 Consequence of axiom

Lemma 4.2. Suppose that a cohomology theory h satisfies the multiplication
axiom. Then, for any (X, A), (X, B) ∈ F and p, q ∈ Z, the following diagram
is commutative:

hp−1(A ∪ B) × hq(X,B)

δ×1

��

1×r // hp−1(A ∪ B) × hq(A ∪ B,B) ∪ // hp+q−1(A ∪ B,B)

δ

��
hp(X, A ∪ B) × hq(X, B) ∪ // hp+q(X,A ∪ B),

where δ and r are the maps in the exactness sequence for the triple (X,A∪B,B):

· · · → h∗−1(A ∪ B,B) δ→ h∗(X, A ∪ B) → h∗(X,B) r→ h∗(A ∪ B, B) δ→ · · · .
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Proof. The connecting homomorphism δ is the composition of

h∗−1(A ∪ B,B) → h∗−1(A ∪ B) → h∗(X, A ∪ B).

With this decomposition, the present lemma follows from a diagram chasing by
using the naturality and the compatibility with the exactness in the multiplica-
tion axiom together with the excision axiom of h.

Lemma 4.3. Suppose that a cohomology theory h satisfies the multiplication
axiom. Then, for any (W1, X1 t X), (W2, X t X2) ∈ M + such that dimW1 =
dimW2 = d, and for any p, q ∈ Z such that p + q = d, the following diagram is
commutative:

hp−1(X) × hq(W1 ∪ W2, X1 t X2)

δ×1

��

1×r // hp−1(X) × hq(X) ∪ // hp+q−1(X)

δ′

��
hp(W1 ∪ W2) × hq(W1 ∪ W2, X1 t X2)

∪ // hp+q(W1 ∪ W2, X1 t X2),

where W1 ∪ W2 is the manifold obtained by gluing W1 and W2 along X, δ and
δ′ are the connecting homomorphisms in the Mayer-Vietoris exact sequences for
{W1,W2} and {(W1, X1), (W2, X2)}, respectively, and r is the restriction.

Proof. The lemma also follows from the naturality and the compatibility with
the exactness in the multiplication axiom together with the excision axiom of h.
Notice that the equivalent form of the compatibility with the exactness shown
in the previous lemma is useful.

Lemma 4.4. Suppose that a cohomology theory h satisfies the integration ax-
iom. Then, for any (W1, X1 t X), (W2, X t X2) ∈ M + such that dimW1 =
dimW2 = d, the following diagram is commutative:

hd−1(X) δ′
//

∫
X ##GGGGGGGGG

hd(W1 ∪ W2, X1 t X2)

∫
W1∪W2wwnnnnnnnnnnnnn

F,

where W1 ∪ W2 is the manifold obtained by gluing W1 and W2 along X, and δ′

is the connecting map in the Mayer-Vietoris sequence for {(W1, X1), (W2, X2)}.

Proof. The connecting map δ′ is the composition of:

hd−1(X) ∼= hd−1(X t X1, X1) → hd−1(X t X1),

hd−1(X t X1) → hd(W1, X t X1),

hd(W1, X t X1) ∼= hd(W1 ∪ W2, X1 t W2) → hd(W1 ∪ W2, X1 t X2).

Thus the integration axiom leads to the present lemma.
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Theorem 4.5. Let h be a cohomology theory satisfying the finite-field, multipli-
cation, integration and duality axioms, and n a positive integer. To a (2n− 1)-
dimensional oriented manifold X ∈ M +, we assign a C-vector space:

X 7→ HX =
⊕

x∈hn(X)

Cx.

To a 2n-dimensional oriented manifold W ∈ M +, we assign a vector:

W 7→ ZW =
√

|Ker(r)|
∑

x∈Im(r)

x ∈ H∂W ,

where r : hn(W ) → hn(∂W ) is the restriction. Then the assignments above
gives rise to a 2n-dimensional topological quantum field theory in which compact
oriented manifolds in M + are only considered.

Proof. Since the underlying manifolds M are assumed to be compact, the co-
homology groups h∗(M) are finitely generated abelian groups for each degree.
Hence the rank of the F -module h2k+1(X) is finite, and so is HX . Now, the
argument in the proof of Theorem 3.2 can be directly adapted.

There also exist generalizations such as in Definition 3.8.

5 Other constructions of TQFT

5.1 Construction, I

We let h be a generalized cohomology theory such that the abelian group
hp(X, Y ) is finite for all p ∈ Z and (X,Y ) ∈ F .

Definition 5.1. Let d be a non-negative integer, and p an integer.

(a) We assign to a compact oriented (d−1)-dimensional manifold X the vector
space Hd

p (X) over C generated by elements in hp−1(X) ⊕ hp(X):

Hd
p (X) =

⊕
x∈hp−1(X),y∈hp(X)

C|x, y〉.

We also define a Hermitian metric 〈 | 〉 : Hd
p (X)×Hd

p (X) → C by extending
〈x, y|x′, y′〉 = δx,x′δy,y′ for x, x′ ∈ hp−1(X) and y, y′ ∈ hp(X).

(b) Let W be a compact oriented d-dimensional manifold W . In the case of
∂W 6= ∅, we assign to W the vector Zd

p (W ) ∈ Hd
p (∂W ) defined by

Zd
p (W ) =

√
|hp−1(∂W )| |Ker(rp)|

|Im(rp−1)|
∑

xp−1∈Im(rp−1)
xp∈Im(rp)

|xp−1, xp〉,
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where ri : hi(W ) → hi(∂W ), (i = p−1, p) are the restrictions. In the case
of ∂W = ∅, we assign to W the number Zd

p (W ) ∈ C defined by

Zd
p (W ) = |hp(W )|.

Theorem 5.2. The assignments X 7→ Hd
p (X) and W 7→ Zd

p (W ) in Definition
5.1 give rise to a d-dimensional topological quantum field theory Zd

p .

We prove this theorem in the remainder of this subsection. To suppress
notatins, we write HX = Hd

p (X) and ZW = Zd
p (W ) simply. The functoriality,

involutority, non-triviality axioms and the former part of the multiplicativity ax-
iom are straightforward. To prove the latter part of the multiplicativity axiom,
let W1 and W2 be compact oriented d-dimensionla manifolds whose boundaries
are ∂W1 = X1 t Y ∗ and ∂W2 = Y t X2. For i = p − 1, p and j = 1, 2, we write
Ri

j and δi
j for the following homomorphisms in the exact sequence for the pair

(Wj , ∂Wj):

hp−1(W1)
Rp−1

1→ hp−1(X1 t Y )→hp(W1, X1 t Y ) → hp(W1)
Rp

1→ hp−1(X1 t Y ),

hp−1(W2)
Rp−1

2→ hp−1(Y t X2)→hp(W2, Y t X2) → hp(W2)
Rp

2→ hp−1(X2 t Y ),

Then the vectors assigned to Wj are:

ZW1 =
√
|hp−1(X1 t Y )| |Ker(Rp

1)|
|Im(Rp−1

1 )|

×
∑

(xp−1
1 ,yp−1

1 )∈Im(Rp−1
1 )⊂hp−1(X1tY )

(xp
1 ,yp

1 )∈Im(Rp
2)⊂hp(X1tY )

|xp−1
1 , xp

1〉 ⊗ 〈yp−1
1 , yp

1 |,

ZW2 =
√
|hp−1(Y t X2)|

|Ker(Rp
2)|

|Im(Rp−1
2 )|

×
∑

(yp−1
2 ,xp−1

2 )∈Im(Rp−1
2 )⊂hp−1(Y tX2)

(yp
2 ,xp

2)∈Im(Rp
2)⊂hp(Y tX2)

|yp−1
2 , yp

2〉 ⊗ |xp−1
2 , xp

2〉.

The same argument as in the proof of Theorem 3.2 leads to:

TrY (ZW1 ⊗ ZW2)

= C
∑

(xp−1
1 ,xp−1

2 )∈Im(R′p−1)⊂hp−1(X1tX2)

(xp
1 ,xp

2)∈Im(R′p)⊂hp(X1tX2)

|xp−1
1 , xp

1〉 ⊗ |xp−1
2 , xp

2〉.

The coefficient C ∈ C is

C =
√
|hp−1(X1 t X2)||hp−1(Y )| |Ker(Rp

1 ⊕ Rp
2)|

|Im(Rp−1
1 ⊕ Rp−1

2 )|
|KerR′p−1|
|KerRp−1|

|KerR′p|
|KerRp|

,
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where Ri and R′i are the restriction homomorphisms:

Ri : hi(W1 ∪ W2) → hi(X1) ⊕ hi(Y ) ⊕ hi(X2),

R′i : hi(W1 ∪ W2) → hi(X1) ⊕ hi(X2).

Lemma 5.3. The following holds:

|KerRp| = |Im∇p−1||Ker(Rp
1 ⊕ Rp

2)|,

|KerR′p−1|/|KerRp−1| = |Imρ̃p−1
1 ∩ Imρ̃p−1

2 |,

where ∇p−1 is the connecting homomorphism in the Mayer-Vietoris exact se-
quence for {W1, W2}, and ρ̃p−1

j the restriction homomorphisms:

∇p−1 : hp−1(Y ) → hp(W1 ∪ W2),

ρ̃p−1
j : hp−1(Wj , Xj) → hp−1(Y ) = hp−1(Y t Yj , Yj).

Proof. The first formula follows from Lemma 3.3 and the exact sequence:

hp−1(Y ) ∇p−1

−→ hp(W1 ∪ W2)
fp

−→ hp(W1) ⊕ hp(W2),

For the second formula, we use the map of short exact sequences:

0 −−−−→ hp−1(W1 ∪ W2) hp−1(W1 ∪ W2)y Rp−1

y R′p−1

y
hp−1(Y ) −−−−→ hp−1(X1 t Y t X2)

proj−−−−→ hp−1(X1 t X2).

This induces the exact sequence

0 → KerRp−1 → KerR′p−1 → hp−1(Y ) → CokerRp−1 → CokerR′p−1 → 0.

A close look at the map to hp−1(Y ) gives the exact sequence:

0 −−−−→ KerRp−1 −−−−→ KerR′p−1 −−−−→ ρp−1(KerR′p−1) −−−−→ 0,

where ρp−1 : hp−1(W1 ∪ W2) → hp−1(Y ) is the restriction. To complete the
proof, consider the commutative diagram:

hp−1(W1 ∪ W2, X1 t X2) −−−−→ hp−1(W1 ∪ W2)
R′p−1

−−−−→ hp−1(X1 t X2)y yfp−1

∥∥∥
hp−1(W1, X1) ⊕ hp−1(W2, X2) −−−−→ hp−1(W1) ⊕ hp−1(W2) −−−−→ hp−1(X1 t X2)yρ̃p−1

1 −ρ̃p−1
2

yρp−1
1 −ρp−1

2

hp−1(Y ) hp−1(Y ),

In view of this diagram, we understand ρp−1(KerR′p−1) = Imρ̃p−1
1 ∩Imρ̃p−1

2 .
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Lemma 5.4. We have

|Im∇̃p−1| = |Im∇p−1||Im(rp−1
1 ⊕ rp−1

2 )/ImR′p−1|,

where rj : hp−1(Wj) → hp−1(Xj) are the restrictions.

Proof. Let ρp−1
j : hp−1(Wj) → hp−1(Y ) be the restrictions. The diagram:

hp−1(W1, X1) ⊕ hp−1(W2, X2) −−−−→ hp−1(W1) ⊕ hp−1(W2)yρ̃p−1
1 −ρ̃p−1

2

yρp−1
1 −ρp−1

2

hp−1(Y ) hp−1(Y )y∇̃p−1

y∇p−1

hp−1(W1 ∪ W2, X1 t X2) −−−−→ hp−1(W1 ∪ W2)

implies Ker∇̃p−1 ⊂ Ker∇p−1. The obvious exact sequence

0 → Ker∇p−1/Ker∇̃p−1 → hp−1(Y )/Ker∇̃p−1 → hp−1(Y )/Ker∇p−1 → 0

and isomorphisms

Ker∇p−1/Ker∇̃p−1 = Im(ρp−1
1 − ρp−1

2 )/Im(ρ̃p−1
1 − ρ̃p−1

2 ),

hp−1(Y )/Ker∇̃p−1 ∼= Im∇̃p−1,

hp−1(Y )/Ker∇p−1 ∼= Im∇p−1,

lead to the formula:

|Im∇̃p−1| = |Im∇p−1||Im(ρp−1
1 − ρp−1

2 )/Im(ρ̃p−1
1 − ρ̃p−1

2 )|.

Noting ImR′p−1 ⊂ Im(rp−1
1 ⊕ rp−1

2 ) ⊂ hp−1(X1 t X2), consider the diagram:

hp−1(W1 ∪ W2, X1 ∪ X2) −−−−→ hp−1(W1 ∪ W2) −−−−→
R′p−1

ImR′p−1yf̃p−1

yfp−1

y
hp−1(W1, X1) ⊕ hp−1(W2, X2) −−−−→ hp−1(W1) ⊕ hp−1(W2)

rp−1
1 ⊕rp−1

2−−−−−−−→ Im(rp−1
1 ⊕ rp−1

2 )yρ̃p−1
1 −ρ̃p−1

2

yρp−1
1 −ρp−1

2

hp−1(Y ) hp−1(Y ).

The upper part of this diagram leads to the exact sequence:

0 → Cokerf̃p−1 → Cokerfp−1 → Im(rp−1
1 ⊕ rp−1

2 )/ImR′p−1 → 0.

Hence we get

Im(ρp−1
1 − ρp−1

2 )/Im(ρ̃p−1
1 − ρ̃p−1

2 ) ∼= Cokerfp−1/Cokerf̃p−1

∼= Im(rp−1
1 ⊕ rp−1

2 )/ImR′p−1
,

and the lemma is proved.
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Lemma 5.5. For j = 1, 2, it holds that:

|ImRp−1
j | = |Imρ̃p−1

j ||Im(rp−1
j )|.

Proof. We have the following diagram:

hp−1(Wj , Xj) −−−−→ hp−1(Wj)
rp−1

j−−−−→ Im(rp−1
j )yρ̃p−1

j

yRp−1
j

y
hp−1(Y ) −−−−→ hp−1(Y t Xj) −−−−→ hp−1(Xj),

in which the lower row is split. Noting that Im(rp−1
j ) ⊂ hp−1(Xj), we get:

0 → Cokerρ̃p−1
j → CokerRp−1

j → Coker(rp−1
j ) → 0.

This exact sequence also splits, and leads to ImRp−1
j

∼= Imρ̃p−1
j ⊕ Im(rp−1

j ).

Lemma 5.6. It holds that:

|Im(∇̃p−1)| =
|hp−1(Y )||Imρ̃p−1

1 ∩ Imρ̃p−1
2 |

|Imρ̃p−1
1 ||Imρ̃p−1

2 |
.

Proof. Let γ1 be the connecting homomorphism in the exact sequence for the
triple (W1, X1 t X, X1):

hp−1(W1, X1)
ρ̃p−1
1→ hp−1(X1 t Y, X1) = hp−1(Y )

γ1→ hp(W1, X1 t Y ).

Then the connecting homomorphism ∇̃p−1 : hp−1(Y ) → hp(W1 ∪ W2, X1 t X2)
in the Mayer-Vietoris sequence for {(W1, X1), (W2, X2)} is realized as ∇̃p−1 =
jε−1γ1, where j is induced from the inclusion and ε is the excision isomorphism:

hp−1(W2, X2) −−−−→ hp(W1 ∪ W2, X1 t W2)
j−−−−→ hp(W1 ∪ W2, X1 t X2)yρ̃p−1

1

yε

hp−1(Y )
γ1−−−−→ hp(W1, X1 t Y ).

Thus, Kerγ1 ⊂ Ker∇̃p−1 clearly, and we get an exact sequence:

0 → Ker∇̃p−1/Kerγ1 → hp−1(Y )/Kerγ1 → hp−1(Y )/Ker∇̃p−1 → 0.

We know Imρ̃p−1
1 = Kerγ1 and Im(ρ̃p−1

1 − ρ̃p−1
2 ) = Ker∇̃p−1, so that:

Ker∇̃p−1/Kerγ1 = Im(ρ̃p−1
1 − ρ̃p−1

2 )/Imρ̃p−1
1

∼= Imρ̃p−1
2 /(Imρ̃p−1

1 ∩ Imρ̃p−1
2 ).

Hence we have the exact sequence:

0 → Imρ̃p−1
2 /(Imρ̃p−1

1 ∩ Imρ̃p−1
2 ) → hp−1(Y )/Imρ̃p−1

1 → Im∇̃p−1 → 0,

which establishes the formula in this lemma.
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Now, the formulae in the last three lemmas show:

C =
√

|hp−1(X1 t X2)|
|KerR′p|
|ImR′p−1|

.

This completes the proof of the multiplicativity TrY (ZW1 ⊗ ZW2) = ZW1∪W2 .

Remark 4. Assume that d = 2n − 1 and p = n for an integer n ≥ 2, and that
h( ) = H( ;F ) is ordinary cohomology with coefficients in a fintie field F . (In
the particular case of n = 2, we allow F to be any principal ideal domain such
that |R| < ∞.) In this case, the coefficients of the vector Z2n−1

n (W ) assigned to
a compact oriented (2n−1)-dimensional manifold W with boundary get simple:

Z2n−1
n (W ) = |Ker(rn)|

∑
xn−1∈Im(rn−1)

xn∈Im(rn)

|xn−1, xn〉.

The reason is as follows: Under the assumption, there is the intersection pairing
I on Hn−1(∂W ;F ). By some properties of the cup product, we can prove that
the complement of image Im(rn−1) ⊂ Hn−1(∂W ; F ) with respect to I satisfies:

Im(rn−1)⊥ = Im(rn−1).

Then, by Lemma 2.1, we get |Im(rn−1)|2 = |Hn−1(∂W ; F )|. (This also implies
that: for any compact oriented (2n−1)-dimensional manifold W with boundary,
the rank of Hn−1(∂W ; F ) is divisible by 2.) We notice that Z2n−1

n is equivalent
to the compactification of Ẑ2n

n along S1, as will be shown in Proposition 6.4.

Remark 5. We can readily generalized the construction of Zd
p invoving other

degree. But, the essense of the construction can be transparetly accounted for
in view of Proposition 6.2 given later.

5.2 Construction, II

Let h be a generalized cohomology theory such that:

• The abelina group hp(X,Y ) is finite for all p ∈ Z and X,Y ∈ F ,

• hp(X, Y ) is bounded below for all X, Y ∈ F .

Definition 5.7. Let d be a non-negative integer, and p an integer.

(a) We assign to a compact oriented (d−1)-dimensional manifold X the vector
space Hd

≤p(X) over C generated by elements in hp(X):

Hd
≤p(X) =

⊕
x∈hp(X)

C|x〉.

We define a Hermitian metric 〈 | 〉 : Hd
≤p(X)×Hd

≤p(X) → C by extending
〈x|x′〉 = δx,x′ for x, x′ ∈ hp(X).
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(b) Let W be a compact oriented d-dimensional manifold W . In the case of
∂W 6= ∅, we assign to W the vector Zd

≤p(W ) ∈ Hd
≤p(∂W ) defined by

Zd
≤p(W ) = |Ker(rp)|

∏
i≥1

(
|hp−i(W )|√
|hp−i(∂W )|

)(−1)i ∑
x∈Im(rp)

|x〉,

where rp : hp(W ) → hp(∂W ) is the restriction. In the case of ∂W = ∅, we
assign to W the number Zd

≤p(W ) ∈ C defined by

Zd
≤p(W ) =

∏
i≥0

|hp−i(W )|(−1)i

.

Theorem 5.8. The assignments X 7→ Hd
≤p(X) and W 7→ Zd

≤p(W ) in Defini-
tion 5.7 give rise to a d-dimensional topological quantum field theory Zd

≤p.

Proof. We just indicate how to prove the multiplicative axiom in the case where
compact oriented d-dimensional manifolds W1 and W2 such that ∂W1 = X
and ∂W2 = X∗ are given. In this case, the Mayer-Vietoris sequence and the
homomorphism theorem yield the formula

|Im(f j)| =
|hj(W1 ∪ W2)||hj−1(W1)||hj−1(W2)|

|hj−1(X)||Im(f j−1)|
,

where j = p, p − 1, p − 2, . . ., and f j appears in the exact sequence

· · · → hj(W1 ∪ W2)
fj

→ hj(W1) ⊕ hj(W2)
rj
1−rj

2→ hj(X) → · · · .

Now, we use the formula recursively to compute TrX(Zd
p (W1 t W2)). Since h∗

is bounded below, the computation terminates and we get Zd
p (W1 ∪ W2).

Remark 6. In the case where p = 1 and h∗( ) = H∗( ; A) with A a finite abelian
group, Zd

≤1 is equivalent to the untwisted Dijkgraaf-Witten theory. The TQFT
Zd

≤p with general p may be an example of the TQFT’s considered in [1].

6 Relations

We here observe relations among the TQFT’s introduced in this note.

6.1 Tensor product

In general, d-dimensional TQFT’s Z and Z ′ yield via tensor products a d-
dimensional TQFT Z ⊗ Z ′. We study relations among TQFT’s introduced so
far from the viewpoint of tensor product operations.

The relations among Ẑ2n such as

Ẑ2n
n,n

∼= Ẑ2n
n ⊗ Ẑ2n

n , Ẑ2n
all

∼= Ẑ2n
even ⊗ Ẑ2n

odd

are quie easy to see.
The following relation accounts for that Žn is termd ‘dual’ or complementary.
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Proposition 6.1. For any n and p, q such that p + q = n, we have:

Ẑ2n
n ⊗ Ž2n

n
∼= Z2n

n , Ẑ2n
p,q ⊗ Ž2n

p,q
∼= Z2n

p ⊗Z2n
q .

Proof. The TQFT Z2n
n is defined by using the finite field F that is used in Ẑ2n

n

and Ž2n
n . Then the proposition follows directly from the definitions. In fact, Ž2n

n

is defined so that the relation holds true. Notice that the Poincare-Lefschetz
duality is used implicitly. The case involving p, q is similar.

A relation among Zd
p and Zd

≤p is as follows:

Proposition 6.2. For any d and p, we have a natural equivalence:

Ẑd
p
∼= Zd

≤p−1 ⊗Zd
≤p.

Proof. The TQFT’s Ẑd
p , Zd

≤p−1 and Zd
≤p are defined by using the same general-

ized cohomology theory h∗. Then proposition can be verified by just comparing
the definitions the TQFT’s.

By this proposition, we can see that the construction of Zd
p is readily gener-

alized so that, for any positive integer k given, the resulting TQFT assings to a
compact oriented d-dimensional manifold W without boundary the invariant

k∏
i=0

|hp−i(W )|(−1)i

.

The combination of propositions above provide us:

Corollary 6.3. For any n and p, q such that p + q = n, we have

Ẑ2n
n ⊗ Ž2n

n
∼= Z2n

≤n−1 ⊗Z2n
≤n, Ẑ2n

p,q ⊗ Ž2n
p,q

∼= Z2n
p−1 ⊗Z2n

p ⊗Z2n
q−1 ⊗Z2n

q .

6.2 Compactification or dimensional reduction

Besides the tensor product construction of TQFT’s, there is another general
construction of TQFT’s called compactifications or dimensional reductions: Let
Z be a d-dimensional TQFT, and K a compact oriented k-dimensional manifold
without boundary. Then we have a (d − k)-dimensional TQFT Z/K by ‘com-
pactifying’ d- and (d − 1)-dimensional manifolds along K. This construction
produces some relationship among our TQFT’s.

Proposition 6.4. For any n, we have:

Ẑ2n
n /S1 ∼= Z2n−1

n
∼= Z2n−1

≤n−1 ⊗Z2n−1
≤n .

Proof. The TQFT Z2n−1
n is defined by using H∗( ) = H∗( ; F ) with F a finite

field. By the Kunneth formula, we have a canonical identification Ĥ2n
n /S1(Y ) =

Ĥ2n−1
n (Y )⊗ Ĥ2n−1

n (Y ) for any compact oriented (2n− 2)-dimensional manifold
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Y without boundary. Now, for any compact oriented (2n − 1)-dimensional
manifold, the Kunneth formula gives

Ž2n
n /S1(X) =

√
|Ker(rn−1)||Ker(rn)|

∑
z∈Im(rn−1⊕rn)

|z〉,

Ž2n−1
n (X) =

√
|Hn−1(∂W )| |Ker(rn)|

|Im(rn−1)|
∑

z∈Im(rn−1⊕rn)

|z〉.

The Mayer-Vietoris sequence and the homomorphism theorem shows

|Ker(rn)| =
|Hn(X, ∂X)|
|Hn−1(∂X)|

|Im(rn−1)|,

which leads to√
|Hn−1(∂W )| |Ker(rn)|

|Im(rn−1)|
=

|Hn(X, ∂X)|√
|Hn−1(∂X)|

,

√
|Ker(rn−1)||Ker(rn)| =

√
|Hn(X, ∂X)||Hn−1(X)|

|Hn−1(∂X)|
.

Comparing these formulae, we get

√
|Hn−1(∂W )| |Ker(rn)|

|Im(rn−1)|
=
√
|Ker(rn−1)||Ker(rn)| ×

√
|Hn(X, ∂X)|
|Hn−1(X)|

.

Now, the Poincare-Lefshcetz duality completes the proof.

A few examples of compactifications of Ẑ2n
n along other manifolds are:

Ẑ4
1,3/S2 ∼= Ẑ2

1 ⊗ Ẑ2
1 , Ẑ6

3/S2 ∼= Ẑ6
1,5/S2 ∼= Ẑ4

1,3,

Ẑ6
3/(S2 × S2) ∼= Ẑ2

1 ⊗ Ẑ2
1 , Ẑ6

3/CP 2 ∼= Ẑ2
1 .

It happens that a dimensional reduction gives a trivial TQFT, e.g. Ẑ6
3/S4.

Proposition 6.5. For any d, p and k, we have:

Zd
p/Sk ∼= Zd−k

p ⊗Zd−k
p−k .

Proof. This directly follows from the Kunneth formula.

Remark 7. In general, the compactification a d-dimensional TQFT Z along S1

assigns to a compact oriented (d−1)-dimensional manifold X without boundary
the integer Z/S1(X) = Z(X ×S1) = dimHX . Thus, the TQFT Ẑ4k+2

2k+1 with the
coefficients F = Z/2 cannot be the compactification of any (4k+3)-dimensional
TQFT along S1, provided that there exits a (4k + 2)-dimensional manifold W
without boundary such that ν2k+1(W ) 6= 0.
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7 Examples in low dimension

7.1 Ẑ2n
n and Ž2n

n

The information of a 2-dimensional TQFT is encoded in the so-called commu-
tative Frobenius algebra. We here describe the Frobenius algebras Â2

1 and Ǎ2
1

corresponding to Ẑ2
1 and Ž2

1 associated to a principal ideal domain R:

space unit multiplication
Â2

1

⊕
x∈R C|x〉 |0〉 |x〉 ∗ |x′〉 = |x + x′〉

Ǎ2
1

⊕
x∈R C|x〉 1√

|R|

∑
x∈R |x〉 |x〉 ∗ |x′〉 =

√
|R|δx,x′ |x′〉

Thus, Â2
1 is the group algebra C[R] of the additive group underlies R. In

other words, Â2
1 is the space C(R, C) of C-valued functions on R equipped with

the convlution product. On the other hand, Ǎ2
1 is C(R, C) equipped with the

usual pointwise product of functions. They are of course different on the nose.
However, we can construct an algebra isomorphism Â2

1 → Ǎ2
1 by specifying the

primitive idempotents in the group algebra C[R]. This proves that Ẑ2
1 and Ž2

1

are (non-canonically) equivalent.

7.2 Zd
p

We here take h∗( ) = Hp( ;A) to be the ordinary cohomology with coeffi-
cients in a finite abelian group A. In 2-dimensions, the Frobenius algebras A2

p

corresponding to the 2-dimensional TQFT’s Z2
p are:

p A2
p unit multiplication

0
⊕

x∈A C|x〉
∑

x∈A |x〉 |x〉 ∗ |x′〉 = δx,x′ |x′〉
1
⊕

x,y∈A C|x, y〉 1√
|A|

∑
x∈A |x, 0〉 |x, y〉 ∗ |x′, y′〉 =

√
|A|δx,x′ |x′, y + y′〉

2
⊕

y∈A C|y〉
√
|A||0〉 |y〉 ∗ |y′〉 = 1√

|A|
|y + y′〉

Also, the 2-dimensionla TQFT Z3p/S1 given by the dimensional reduction
of the 3-dimensional TQFT Z3

p , (p = 0, 1, 2, 3) along S1 produces the following
Frobenius algebras:
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p Ap/S1 unit multiplication
0

⊕
x∈A C|x〉

∑
x∈A |x〉 |x〉 ∗ |x′〉 = δx,x′ |x′〉

1
⊕

x,y,z∈A C|x, y, z〉 1√
|A|

∑
x,z∈A |x, 0, z〉 |x, y, z〉 ∗ |x′, y′, z′〉

=
√

|A|δx,x′δz,z′ |x′, y + y′, z′〉

2
⊕

x,y,z∈A C|x, y, z〉
∑

y∈A |0, y, 0〉 |x, y, z〉 ∗ |x′, y′, z′〉
= δy,y′ |x + x′, y′, z + z′〉

3
⊕

x∈A C|x〉
√
|A||0〉 |x〉 ∗ |x′〉 = 1√

|A|
|x + x′〉

As is seen, we have the equivalence

Zd
p/Sk ∼= Zd−k

p ⊗Zd−k
p−k .

The examples above illustrate this phnomena explicitly.
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