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One of my recent works concerns with the magnitude

(or better the magnitude homology) of metric spaces.

.
Question
..
. Is magnitude or magnitude homology related to physics?

Magnitude has at least superficial relationship to

patterned resonators of Prodan and Shmalo.

But, meaningful relationship is still missing.

I talk about basics of magnitude (homology), which

hopefully helps discovery of meaningful relationship.
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Resonators on point patterns

A notion of resonators is introduced in a work of Prodan

and Shmalo [JGP2019] in their development of the

bulk-boundary correspondence:

.
Definition
..

.

A resonator is a 0-dimensional physical system, i.e. a system

confined to a small region of the physical space, whose

physical observables and dynamics can be described by linear

operators over a finite dimensional Hilbert space.

A typical example is a quantum system with a finite

number of quantum states.
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Resonators on point patterns

We are interested in physics of identical resonators

placed on a point pattern.

Figure: Fig 2.1 in the paper of Prodan and Shmalo (Journal of Geometry

and Physics, Volume 135, January 2019, Pages 135–171)

Prodan and Shmalo focused on dynamically generated

patterns, and established a bulk-boundary

correspondence for resonators placed on such patterns.
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Hamiltonian of resonators on a point pattern

Prodan and Shmalo mentioned an example of a

Hamiltonian of single-state (N = 1) resonators on a

general point pattern P

H(P) =
∑

p,p′∈P

e−β|p−p′||p⟩⟨p′|

where β is a constant.

This essentially coincides with the zeta matrix of the

point pattern P regarded as a metric space.

The zeta matrix is used in the definition of the

magnitude of a metric space.

Noting this coincidence, I wondered whether there is

relation between magnitude and physics of resonators,

but I could not yet find meaningful relationship.
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Magnitude

Magnitude is a real number defined for a certain metric

space. (More generally, magnitude is defined for certain

categories [Leinster-Shulman(2017)].)

It provides an effective number of points, and has an

origin in a work to formulate a measurement of diversity

of species [Solow-Polasky(1994)].

Recall that a metric space (X, d) is a set X equipped
with a distance function d : X × X → R≥0,

...1 d(x, y) = 0 if and only if x = y,

...2 d(x, y) = d(y, x),

...3 d(x, y) + d(y, z) ≥ d(x, z). (triangle inequality)

Example: X = Rd, d(x, y) = ∥x − y∥.
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Definition of magnitude

For simplicity, consider a finite metric space consisting of

n points X = {1, 2, · · · , n}.
The zeta matrix of this finite metric space is the n × n

matrix whose (i, j)-component is exp(−d(i, j)).

HX = (e−d(i,j)) =
∑
i,j

e−d(i,j)|i⟩⟨j|

A weight is a real vector ϕ = (ϕi) such that HXϕ = 11,

where 11 = (1) is the vector whose components are 1.

If HX is invertible, then there is the unique weight

ϕ = H−1
X 11.
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Definition of magnitude

HX = (e−d(i,j)), HXϕ = 11.

.
Definition (magnitude)
..

.

Let (X, d) be a finite metric space. When its zeta matrix

HX admits a weight ϕ, the magnitude of (X, d) is defined

as the sum of all the components of ϕ = (ϕi).

Mag(X) :=
∑
i

ϕi = ⟨11, ϕ⟩

The definition is independent of the choice of ϕ.

If HX is invertible, then Mag(X) is the sum of all the

components of H−1
X = (H−1

X (i, j)).

Mag(X) =
∑
i,j

H−1
X (i, j) = ⟨11,H−1

X 11⟩ = ⟨11, ϕ⟩
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Example: two-point set

.

.

HX = (e−d(i,j)), HXϕ = 11, Mag(X) =
∑
i

ϕi.

Let X = {1, 2} be the two-point set with d(1, 2) = δ.

The zeta matrix, its weight, and the magnitude:

HX =

(
1 qδ

qδ 1,

)
, ϕ =

1

1 + qδ

(
1

1

)
, Mag =

2

1 + qδ
,

where q = e−1.

limδ→0 Mag = 1 and limδ→∞ Mag = 2.
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A generalization of entropy

The magnitude has a relationship to a generalization of

entropy (in information theory).

A probability distribution on a finite set is a vector

p = (pi) such that pi ≥ 0 and
∑

i pi = 1.

The entropy of p is given by S(p) = −
∑

i pi log pi .

In the presence of the zeta matrix HX , a generalization

of the entropy is

SX(p) = −
∑
i

pi log(HXp)i,

where (HXp)i =
∑

j e
−d(i,j)pj is the ith component of

the vector HXp.
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Magnitude and generalization of quadratic entropy

SX(p) = −
∑
i

pi log(Hp)i

.
Proposition [Leinster]
..

.

Let (X, d) be a finite metric space such that its zeta matrix

H = (e−d(i,j)) admits a weight ϕ = (ϕi) such that ϕi ≥ 0.

Then it holds that

max
p

SX(p) = logMag(X),

and the maximum is attained by p = ϕ/Mag(X).

Generally, a weight is not an eigenvector of H.

A statistical approach may be useful.
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Magnitude homology

The magnitude homology is a “categorification” of

magnitude [Hepworth-Willerton, Leinster-Shulman].

“Categorification” can be thought of as a way to

generalize notions in mathematics:

number =⇒ set

(an element of a set) (an object of a category)

A basic example is the homology of polyhedra: Given a

finite polyhedron X, its homology group {Hn(X)}
categorifies the Euler characteristic:

χ(X) =
∑
n≥0

(−1)nrankHn(X)

A more sophisticated example is Khovanov homology,

which categorifies the Jones polynomial of links.
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Magnitude homology categorifies magnitude

Similarly, magnitude homology categorifies magnitude.

Recall that the magnitude of a finite metric space is

computed from HX = (e−d(i,j)) = (qd(i,j)).

In a certain ring Q((qR)) of functions in q, HX is

invertible, and the magnitude always makes sense.

.
Theorem [Leinster-Shulman(2017)]
..

.

Let (X, d) be a finite metric space. Then, in Q((qR)),

Mag(X) =
∑
ℓ≥0

(∑
n≥0

(−1)nrankMℓHn(X)

)
qℓ,

with MℓHn(X) the nth magnitude homology of length ℓ.
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Definition of magnitude homology

Given a metric space (X, d), an n-chain ⟨x0, · · · , xn⟩ is

a sequence of points on X such that

x0 ̸= x1 ̸= · · · ̸= xn−1 ̸= xn.

The length of γ = ⟨x0, · · · , xn⟩ is defined by

ℓ(γ) = d(x0, x1) + d(x1, x2) + · · · + d(xn−1, xn).

For i = 0, · · · , n, we remove xi to define

∂iγ = ⟨x0, · · · , xi−1, xi+1, · · · , xn⟩.

Then ℓ(∂iγ) ≤ ℓ(γ) by triangle inequality.
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Definition of magnitude homology
.

. ∂i⟨x0, · · · , xn⟩ = ⟨x0, · · · , xi−1, xi+1, · · · , xn⟩

Let MℓCn(X) denote the free abelian group generated

by n-chains γ of length ℓ.

We define ∂ : MℓCn(X) → MℓCn−1(X) by

∂γ =
∑
i

(−1)i∂iγ,

where the sum is over i such that ℓ(∂iγ) = ℓ(γ).

The composition

MℓCn+1(X)
∂→ MℓCn(X)

∂→ MℓCn−1(X) is trivial.

.
Definition (magnitude homology)
..

.

The homology of the chain complex (MℓC∗(X), ∂) is the

magnitude homology: MℓHn(X) = Ker∂/Im∂
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Example

Let PN = {1, · · · , N} ⊂ R be the N -point set.

..1. 2. 3.
N − 1

. N

.

.

MℓHn(PN) =


ZN , (n = ℓ = 0)

Z2N−2, (n = ℓ = 1, 2, 3, . . .)

0. (otherwise)

Mag(PN) =
N − (N − 2)q

1 + q

= N − (2N − 2)q + (2N − 2)q2 − · · ·

Generators of MnHn(PN):

⟨
n+1︷ ︸︸ ︷

i, i + 1, i, i + 1, · · ·⟩, ⟨
n+1︷ ︸︸ ︷

i, i − 1, i, i − 1, · · ·⟩.
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A refinement of the magnitude homology

The “end points” x0, xn of an n-chain ⟨x0, · · · , xn⟩ are

preserved by ∂ : MℓCn(X) → MℓCn−1(X).

This fact leads to the direct sum decomposition

MℓHn(X) =
⊕

x,y∈X

MℓHn(x, y).

We have the following equality in Q((qR))

H−1
X (x, y) =

∑
ℓ≥0

(∑
n≥0

(−1)nrankMℓHn(x, y)

)
qℓ.

This can be seen as a series expansion of the Feynman

propagator (two point function, Green function) in the

theory of free scalar fields ϕ(x) on X with Lagrangian

L (ϕ) =
1

2
⟨ϕ,HXϕ⟩.
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