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@ One of my recent works concerns with the magnitude
(or better the magnitude homology) of metric spaces.

Question
Is magnitude or magnitude homology related to physics?

e Magnitude has at least superficial relationship to
patterned resonators of Prodan and Shmalo.

e But, meaningful relationship is still missing.

o | talk about basics of magnitude (homology), which
hopefully helps discovery of meaningful relationship.



Plan of my talk

© Resonators on point patterns
@ Magnitude

© Magnitude homology



Resonators on point patterns

Resonators on point patterns

@ A notion of resonators is introduced in a work of Prodan
and Shmalo [JGP2019] in their development of the
bulk-boundary correspondence:

Definition

A resonator is a 0-dimensional physical system, i.e. a system
confined to a small region of the physical space, whose
physical observables and dynamics can be described by linear
operators over a finite dimensional Hilbert space.

@ A typical example is a quantum system with a finite

number of quantum states.
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Resonators on point patterns

@ We are interested in physics of identical resonators
placed on a point pattern.
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Figure: Fig 2.1 in the paper of Prodan and Shmalo (Journal of Geometry
and Physics, Volume 135, January 2019, Pages 135-171)

@ Prodan and Shmalo focused on dynamically generated
patterns, and established a bulk-boundary
correspondence for resonators placed on such patterns.



Resonators on point patterns
Hamiltonian of resonators on a point pattern

@ Prodan and Shmalo mentioned an example of a
Hamiltonian of single-state (N = 1) resonators on a
general point pattern &

H(2)= Y e P ¥p) |
pp' €Y
where 3 is a constant.

e This essentially coincides with the zeta matrix of the
point pattern & regarded as a metric space.

@ The zeta matrix is used in the definition of the
magnitude of a metric space.

@ Noting this coincidence, | wondered whether there is
relation between magnitude and physics of resonators,
but | could not yet find meaningful relationship.
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Magnitude

@ Magnitude is a real number defined for a certain metric
space. (More generally, magnitude is defined for certain
categories [Leinster-Shulman(2017)].)

o It provides an effective number of points, and has an
origin in a work to formulate a measurement of diversity
of species [Solow-Polasky(1994)].

e Recall that a metric space (X, d) is a set X equipped
with a distance function d : X X X — R,
O d(z,y) =0 if and only if z = y,
Q d(z,y) = d(y,z),
Q d(z,y) + d(y, z) > d(zx, z). (triangle inequality)

o Example: X = R4, d(z,y) = ||z — y]|.



Magnitude

Definition of magnitude

e For simplicity, consider a finite metric space consisting of
n points X = {1,2,--- ,n}.

@ The zeta matrix of this finite metric space is the n X n
matrix whose (%, j)-component is exp(—d(z,7)).

Hx = (e—d(i,j)) - Ze_d(i’j)|i>(j|
4,
e A weight is a real vector ¢ = (¢;) such that Hx¢ = 1,
where 1 = (1) is the vector whose components are 1.

o If Hx is invertible, then there is the unique weight
¢ = Hyx'1.



Magnitude
Definition of magnitude

Hx = (e”40D), Hx¢ = 1.

Definition (magnitude)

Let (X, d) be a finite metric space. When its zeta matrix
H x admits a weight ¢, the magnitude of (X, d) is defined
as the sum of all the components of ¢ = (¢;).

Mag(X) := qu,- = (1, ¢)

@ The definition is independent of the choice of ¢.
e If Hx is invertible, then Mag(X) is the sum of all the

components of H‘,_{1 = (H)_(l(i,j)).
Mag(X) = ) Hx'(i,j) = (I, Hx'1l) = (1, ¢)

2%}



Magnitude

Example: two-point set

Hx = (e—d(i’j)), HX¢ =1, Mag(X) = Z¢'L’

e Let X = {1, 2} be the two-point set with d(1,2) = 4.

o The zeta matrix, its weight, and the magnitude:

1 q° 1 1 2
H - = M = —
X <q5 1’>a ¢ 1+q5<1>7 ag 1+q5a

where g = e L.

o lims_,o Mag = 1 and limg_,, Mag = 2.
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A generalization of entropy

o The magnitude has a relationship to a generalization of
entropy (in information theory).

@ A probability distribution on a finite set is a vector
p = (p;) such that p; > 0 and ), p; = 1.

o The entropy of p is given by S(p) = — >, p;logp; .

@ In the presence of the zeta matrix Hx, a generalization
of the entropy is

SX(p) = — Zpi log(Hxp)i,

(2

where (Hxp); = ) ; e~“®)p; is the ith component of
the vector Hxp.



Magnitude

Magnitude and generalization of quadratic entropy

SX(p) = — Z'pi log(Hp);

Proposition [Leinster]

Let (X, d) be a finite metric space such that its zeta matrix
H = (e~ 4%3)) admits a weight ¢ = (¢;) such that ¢; > 0.
Then it holds that

max SX (p) = log Mag(X),
P
and the maximum is attained by p = ¢/Mag(X).

@ Generally, a weight is not an eigenvector of H.

@ A statistical approach may be useful.
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Magnitude homology

@ The magnitude homology is a “categorification” of
magnitude [Hepworth-Willerton, Leinster-Shulman].

o “Categorification” can be thought of as a way to
generalize notions in mathematics:

number = set
(an element of a set) (an object of a category)

@ A basic example is the homology of polyhedra: Given a
finite polyhedron X, its homology group {H,(X)}
categorifies the Euler characteristic:

x(X) =) _(—1)"rankH,(X)
n>0

@ A more sophisticated example is Khovanov homology,
which categorifies the Jones polynomial of links.
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Magnitude homology categorifies magnitude

e Similarly, magnitude homology categorifies magnitude.

@ Recall that the magnitude of a finite metric space is
computed from Hx = (e~ #53)) = (q4(i9)),
e In a certain ring Q((g%)) of functions in q, Hx is

invertible, and the magnitude always makes sense.

Theorem [Leinster-Shulman(2017)]
Let (X, d) be a finite metric space. Then, in Q((q%)),

Mag(X) = ) < Z(—l)"rankMan(X)> qt,

£>0 “n>0

with MyH,, (X) the nth magnitude homology of length £.
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Definition of magnitude homology

e Given a metric space (X, d), an n-chain (xg,--- ,x,) is
a sequence of points on X such that

T F X1 F 00 F Tpo1 F Tn.
e The length of v = (xg,--- ,x,) is defined by
£(v) = d(xo,x1) + d(x1,22) + - -+ + d(Tp—1,%n).
e Fori=0,.--,n, we remove x; to define
0iy = (Toy++* s Ti—1, Tig1,* »Tn)-

Then £(9;v) < £(y) by triangle inequality.
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Definition of magnitude homology

a’i(‘”Oa"' 7wn> =5 (2130,"' s Lj—19 Lif1y° " a$n>

e Let M,C,,(X) denote the free abelian group generated
by n-chains v of length £.
e We define 9 : M,C,,(X) — M;C,_1(X) by

oy = Z(_l)iai'y’

where the sum is over ¢ such that £(9;v) = £().

@ The composition
MCrir(X) S MCH(X) S M,C,_1(X) is trivial.

Definition (magnitude homology)

The homology of the chain complex (M,C.(X), d) is the
magnitude homology: M H, (X) = Kerd/Imd
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Example

o Let Py = {1,--- , N} C R be the N-point set.

1 2 3 N—-1N

N, (n=4£=0)

MH,(Pn) =<} Z*N72, (n=4£=1,2,3,...)
0. (otherwise)
N — (N —2)q
Mag(Pn) =
i) 1+4+¢

=N—- (2N —2)g+ (2N —2)¢* — - ..

e Generators of M,,H,,(Pn):
n+1 n+1
(t, e+ 1,¢,e+1,--4), (4,4 —1,4,2—1,---).




Resonators on point patterns Magnitude Magnitude homology

A refinement of the magnitude homology
e The “end points” xq, x,, of an n-chain (xg,-:- ,x,) are
preserved by 0 : M,C, (X) — My;C),_1(X).
@ This fact leads to the direct sum decomposition
MZHn(X) = @ Man(a:,y).
z,yeX
e We have the following equality in Q((g*))
1y @) = Y (X () rankMeHo (@,9) ) o
£>0 *n>0
@ This can be seen as a series expansion of the Feynman

propagator (two point function, Green function) in the
theory of free scalar fields ¢(x) on X with Lagrangian

2(8) = 5 (6, Hxo).
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