幾何学演習(2011年6月6日)

担当:境 圭一

1. 2 次元球面

$$S^2 := \{(x^1, x^2, x^3) \in \mathbb{R}^3 \mid (x^1)^2 + (x^2)^2 + (x^3)^2 = 1\} \subset \mathbb{R}^3$$

が滑らかな曲面であることを示したい.

(1) $x = (x^1, x^2, x^3) \in S^2, x^3 > 0$ の近傍のパラメータ付けとして,講義でやった

$$\begin{split} U := \{ (u^1, u^2) \in \mathbb{R}^2 \, | \, (u^1)^2 + (u^2)^2 < 1 \}, \quad V := \{ (x^1, x^2, x^3) \in S^2 \, | \, x^3 > 0 \}, \\ \varphi : U \to V, \quad \varphi(u^1, u^2) := \left(u^1, u^2, \sqrt{1 - (u^1)^2 - (u^2)^2} \right) \end{split}$$

を考える.これらが実際にパラメータ付けになっていること,つまり

- \bullet $U \subset \mathbb{R}^2$ は開集合,
- $V \subset S^2$ は (\mathbb{R}^3 の部分集合としての相対位相について) x の開近傍,
- ullet φ は C^∞ 級全単射で,逆写像 φ^{-1} も C^∞ 級

であることを示せ.

- (2) (1) を参考にして $(0,0,-1) \in S^2$ の近傍の局所パラメータ付けを与えよ .
- (3) $(1,0,0) \in S^2$ の近傍のパラメータ付けはどのように与えればよいか.
- $2.~(0,0,1) \in S^2$ の近傍のパラメータ付けとして,前問とは異なるものを考える.
 - (1) x^1x^2 平面 $\{(x^1,x^2,0)\in\mathbb{R}^3\}$ 上の点 $u=(u^1,u^2,0)$ に対し,u と $(0,0,-1)\in S^2$ を結ぶ直線 l_u を考え, l_u と S^2 の交点を $\varphi(u)$ とする. $\varphi(u)$ を u^1,u^2 を用いて表せ.
 - (2) $U:=\mathbb{R}^2$ とし,(0,0,1) の近傍として

$$V = S^2 \setminus \{(0, 0, -1)\} = \{x \in S^2 \mid x \neq (0, 0, -1)\}\$$

を考える . $V\subset S^2$ は開集合であることを示せ . また , (1) の φ は C^∞ 級全単射 $\varphi:U\to V$ を与えることを示せ .

- (3) $\varphi^{-1}:V \to U$ も C^∞ 級であることを示せ .
- $(4) \ \frac{\partial \varphi}{\partial u^1}, \frac{\partial \varphi}{\partial u^2}: U \to \mathbb{R}^3 \ \texttt{を計算せよ} \ . \ \texttt{任意の} \ u \in U \ \texttt{に対し} \ , \ \frac{\partial \varphi}{\partial u^1}(u), \ \frac{\partial \varphi}{\partial u^2}(u) \ \texttt{は一次独立であることを示せ} \ .$

(ヒント) $V\subset S^2$ が開集合であることを示すには , 1. (1) では $W=\{(x^1,x^2,x^3)\in\mathbb{R}^3\,|\,x^3>0\},$ 2. (2) では $W=\{(x^1,x^2,x^3)\in\mathbb{R}^3\,|\,x^3>-1\}$ を考える .

http://math.shinshu-u.ac.jp/~ksakai/11_geometry/11_geometry.html