担当:境 圭一

以下, $oldsymbol{arphi}_1:=rac{\partial oldsymbol{arphi}}{\partial u^1},\, oldsymbol{arphi}_2:=rac{\partial oldsymbol{arphi}}{\partial u^2}$ と書く.

 $1. \,\,\, S^2 = \{(x,y,z) \in \mathbb{R}^3 \,|\, x^2 + y^2 + z^2 = 1\}$ とし「北半球」の局所パラメータ付け

$$\begin{split} U := \{ (u^1, u^2) \in \mathbb{R}^2 \, | \, (u^1)^2 + (u^2)^2 < 1 \}, \quad V := \{ (x, y, z) \in S^2 \, | \, z > 0 \}, \\ \varphi : U \to V, \quad \varphi(u^1, u^2) := \left(u^1, \, u^2, \, \sqrt{1 - (u^1)^2 - (u^2)^2} \right) \end{split}$$

を取る.また,定数 $a\in\mathbb{R}$ に対し,曲線 $\boldsymbol{\alpha}_a:(0,\pi/\sqrt{1+a^2})\to U$ を次で定義する:

$$\boldsymbol{\alpha}_a(t) := \frac{1}{\sqrt{1+a^2}} \left(\cos \left(\sqrt{1+a^2} \, t \right), a \right)$$

- (1) S^2 上の曲線 $\gamma_a:=oldsymbol{arphi}\circoldsymbol{lpha}_a$ を考える . $\mathbf{T}_a(t):=oldsymbol{\gamma}_a'(t)$ について , $|\mathbf{T}_a|\equiv 1$ を示せ .
- (2) $\gamma''_a(t)$ を求めよ.
- (3) $\mathbf{u}:=(u^1,u^2)$ と書く. $\boldsymbol{arphi}_i(\mathbf{u})$ (i=1,2) および $\mathbf{n}(\mathbf{u}):=rac{oldsymbol{arphi}_1(\mathbf{u}) imesoldsymbol{arphi}_2(\mathbf{u})}{|oldsymbol{arphi}_1(\mathbf{u}) imesoldsymbol{arphi}_2(\mathbf{u})|}$ を求めよ.
- (4) 内在的法ベクトル $\mathbf{S}_a(t) := \mathbf{n}(\boldsymbol{\alpha}_a(t)) \times \mathbf{T}_a(t)$ を求めよ.
- (5) 測地的曲率 $\kappa_g(t) := \langle \gamma_a''(t), \mathbf{S}_a(t) \rangle$, 法曲率 $\kappa_n(t) := \langle \gamma_a''(t), \mathbf{n}(\alpha_a(t)) \rangle$ を計算せよ.また, $\kappa_g(t) \equiv 0$ となる a,そのときの $\gamma_a(t)$ を求めよ.
- 2. 双曲面 $M:=\{(x,y,z)\in\mathbb{R}^3\,|\,x^2+y^2=z^2-1,\,\,z\geq 1\}$ を考える.局所パラメータ付け

$$\varphi: \mathbb{R}^2 \to M, \quad (u^1, u^2) \mapsto (u^1, u^2, \sqrt{(u^1)^2 + (u^2)^2 + 1})$$

に関する第一基本形式 $g_{ij} := \langle oldsymbol{arphi}_i, oldsymbol{arphi}_i
angle \ (i,j=1,2)$ を計算せよ.

3. $K:=\{(\alpha,\beta)\in\mathbb{R}^2\,|\, -1<\alpha<1,\ 0\leq\beta<\pi\}$ とする. \mathbb{R}^3 の円柱座標 (r,θ,z) を使って, $F:K\to\mathbb{R}^3$ を次のように定義する:

$$F(\alpha, \beta) := (2 + (\cos \beta)\alpha, 2\beta, (\sin \beta)\alpha)$$

- (1) $M:=F(K)\subset\mathbb{R}^3$ の概形を描け(ヒント: $\theta=2\beta$ を固定したとき, α を消去すると,z=(aneta)(r-2),また $(r-2)^2+z^2=lpha^2<1$ である)
- (2)**法** $ベクトル <math>\mathbf{n}(\alpha,\beta) := \frac{F_{\alpha}(\alpha,\beta) \times F_{\beta}(\alpha,\beta)}{|F_{\alpha}(\alpha,\beta) \times F_{\beta}(\alpha,\beta)|}$ を求めよ . ただし $F_{\alpha} := \frac{\partial F}{\partial \alpha}, F_{\beta} := \frac{\partial F}{\partial \beta}.$
- (3) $\lim_{\beta \to \pi} F(0,\beta) = F(0,0)$ である . $\lim_{\beta \to \pi} \mathbf{n}(0,\beta)$ と $\mathbf{n}(0,0)$ は一致するか?