担当:境 圭一

模範解答ではありません.書き方は各自検討すること.

【レポート問題】

(1) 任意の $(e^{2\pi ia}, e^{2\pi ib}) \in S^1 \times S^1$ (0 < a, b < 1) に対し, その開近傍

$$U := \{ (e^{2\pi i x}, e^{2\pi i y}) \mid |x - a| < \epsilon, |y - b| < \epsilon \}$$

を取る $.\epsilon>0$ は十分小さい.このとき $p^{-1}(U)=\bigcup_{m,n\in\mathbb{Z}}V_{m,n},$ ただし

$$V_{m,n} = \{(x,y) \in \mathbb{R}^2 \mid |x - (a+m)| < \epsilon, |y - (b+n)| < \epsilon \}$$

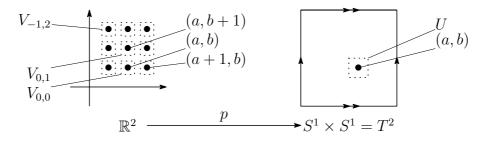
となることがわかる.各 $V_{m,n}\subset\mathbb{R}^2$ は開集合で, ϵ が十分小さければ, $(m,n)\neq(m',n')$ のとき $V_{m,n}\cap V_{m',n'}=\emptyset$ である.各 (m,n) に対し $p:V_{m,n}\to U$ が同相であることを確かめよ.

(2) $\alpha = e^{2\pi i a}$, $\beta = e^{2\pi i b}$ (0 $\leq a, b < 1$) とすると

$$p^{-1}(\alpha, \beta) = \{(a+m, b+n) \in \mathbb{R}^2 \mid m, n \in \mathbb{Z}\}\$$

である.(a+m,b+n) に $(m,n)\in\mathbb{Z}\times\mathbb{Z}$ を対応させると,集合の全単射 $p^{-1}(\alpha,\beta)\cong\mathbb{Z}\times\mathbb{Z}$ を得る.

注意.講義でやった $\mathbb{R}^1 \to S^1$ の場合の U や V の直積が,上の略解の U や V である.同じようにすると問題 4 ができる.先に問題 4 を証明すれば,レポート問題はその系である.



【演習問題】

(2) $\mathbb{C}=\mathbb{R}^2$ の開集合 W で, $W\cap S^1=U_\epsilon(z_0)$ であるものを見つければよい.取り方はいくらでもあるが,例えば次のように具体的に書くこともできる: $z_0=e^{ia}$ であるとき

$$W:=\{re^{ix}\in\mathbb{C}\mid r>0,\ |x-a|<\epsilon\}.$$

これは原点を要として無限に広がる扇形.

(3) $z_0 = e^{ia}$ $(0 \le a < 2\pi)$ のとき , $p^{-1}(U_\epsilon(z_0)) = V_0 \cup V_1$, ただし

$$V_0 = \{ e^{ix} \in S^1 \mid |x - a/2| < \epsilon/2 \},$$

$$V_1 = \{ e^{ix} \in S^1 \mid |x - (\pi + a/2)| < \epsilon/2 \}$$

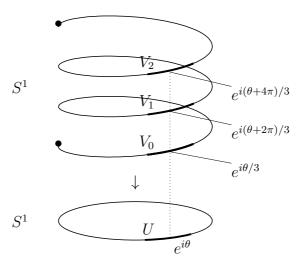
である.これらの弧は原点に関して対称な位置にあるので,その長さ ϵ が半円の長さ π より短ければ交わらない.

- (4) $V_0,V_1\subset S^1$ は互いに交わらない開集合で,i=1,2 に対し $p:V_i\to U_\epsilon(z_0)$ は同相写像である(確かめよ).
- (5) 方程式 $z^n=z_0$ の解 z は n 個あるから, $p^{-1}(z_0)$ は n 個の点からなる.このことから, z_0 の開近傍 U を十分小さく取ると, $p^{-1}(U_\epsilon(z_0))$ も n 個の互いに交わらない開集合に分かれることが想像できる.

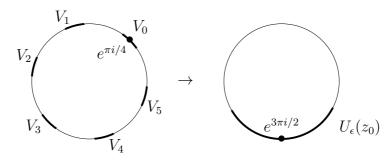
任意の $z_0=e^{ia}$ に対し , $U_\epsilon(z_0)$ を同様に取ると $p^{-1}(U_\epsilon(z_0))=V_0\cup\cdots\cup V_{n-1}$, ただし

$$V_j = \{e^{ix} \in S^1 \mid |x - (2j\pi + a)/n| < \epsilon/n\}$$

と書ける. $\epsilon < \pi$ ならば,これらは互いに交わらず,また $p:V_j \to U_\epsilon(z_0)$ は同相. 以下は $n=3,\ z_0=e^{i\theta}\ (0\leq \theta<2\pi)$ の場合の図.上の螺旋は,端の二点を同一視して S^1 とみなしている. $p^{-1}(e^{i\theta})=\{e^{i\theta/3},\ e^{i(\theta+2\pi)/3},\ e^{i(\theta+4\pi)/3}\}.$



以下は $n=6,\,z_0=e^{3\pi i/2}$ の図. V_0,\ldots,V_5 はいずれも6乗すると $U_\epsilon(z_0)$ にうつる.



 $3.~(1)~\mathbb{R}P^n$ は \mathbb{R}^{n+1} 内の原点を通る直線全体の集合.そのような直線 ℓ は必ず $S^n\subset\mathbb{R}^{n+1}$ と 二点 $\pm x$ で交わる. ℓ に対し $\pm x$ が定める同値類 $[x]\in S^n/\sim$ を対応させると全単射 $\mathbb{R}P^n\to S^n/\sim$ を得る.

- (2) n=2 であったところを n におきかえるだけでよい.
- (3) $\pi_1(S^n)\cong\{1\}$ $(n\geq 2)$ であったから, $p:S^n\to\mathbb{R}P^n$ は普遍被覆.被覆変換群は,n=2 の場合と同じようにすれば

$$\mathcal{G}(S^n,p) = \{ \mathrm{id}_{S^n}, h \},$$
 ただし $h: S^n \to S^n,$ $h(x) := -x$

であることがわかる. $\mathcal{G}(S^n,p) \to \mathbb{Z}/2 = \{0,1\}$ を, $\mathrm{id}_{S^n} \mapsto 0,\, h \mapsto 1$ で定めれば,群の同型 $\mathcal{G}(S^n,p) \stackrel{\cong}{\to} \mathbb{Z}/2$ を得る.定理 12.6 より $\pi_1(\mathbb{R}P^n) \cong \mathcal{G}(S^n,p) \cong \mathbb{Z}/2$.

4. アイデアはレポート問題と同じ . $y_i \in Y_i \; (i=1,2)$ に対し,十分小さい開近傍 $U_i \subset Y_i$ を取れば

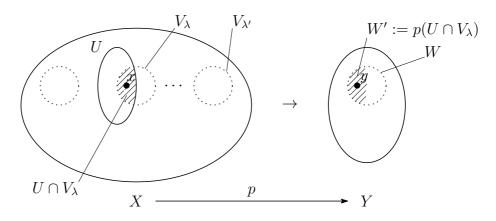
$$p_i^{-1}(U_i) = \bigcup_{\lambda} V_{i,\lambda}$$

は互いに交わらない X_i の開集合で,各 λ に対し $p_i:V_{i,\lambda}\to U_i$ は同相.このとき (y_1,y_2) の開近傍 $U_1\times U_2\subset Y_1\times Y_2$ に対し

$$p^{-1}(U_1 \times U_2) = \bigcup_{\lambda_1, \lambda_2} V_{1,\lambda_1} \times V_{2,\lambda_2},$$

 $V_{1,\lambda_1} imes V_{2,\lambda_2}$ たちは互いに交わらない $X_1 imes X_2$ の開集合で,各 λ_1,λ_2 に対し $p:V_{1,\lambda_1} imes V_{2,\lambda_2} o U_1 imes U_2$ は同相.

5. 任意の $y \in p(U)$ に対し,p(U) に含まれるような y の開近傍を取れることを言えばよい. y の開近傍 W を十分小さく取れば, $p^{-1}(W) = \bigcup_{\lambda} V_{\lambda}, V_{\lambda} \subset X$ は互いに交わらない開集合で $p:V_{\lambda} \to U$ は同相,とできる. $y \in p(U)$ より,ある $x \in U$ に対し p(x) = y.この x は $x \in p^{-1}(y) \subset p^{-1}(W)$ をみたすから,ある λ に対し $x \in V_{\lambda}$.この λ に対し $u \cap V_{\lambda} \neq \emptyset$ で, $u \cap V_{\lambda}$ は x の開集合. $u : V_{\lambda} \to W$ は同相だから,その制限 $u : U \cap V_{\lambda} \to p(U \cap V_{\lambda})$ も同相.開集合を同相でうつしたものは開集合だから, $u : v \in p(U \cap V_{\lambda}) \subset Y$ は開集合.さらに $u : v \in v \in V_{\lambda}$ であり, $u : v \in v \in V_{\lambda}$ だったから $u : v \in V_{\lambda}$ ることができた.



6. 接着する点 x_0 の開近傍 $U\subset X$ をどのように取っても, $p^{-1}(U)=U\vee U$ は連結な開集合であり, $p^{-1}(U)\to U$ は同相写像にならない(単射でない).よって p は被覆写像ではない.

http://math.shinshu-u.ac.jp/~ksakai/12_topology/12_topology.html