トポロジー 演習・レポート問題 13(2013年1月21日)

担当:境 圭一

【レポート問題】(1/28の講義開始前までに提出してください) $S^1:=\{z\in\mathbb{C}\mid |z|=1\}$ とみて,被覆写像 $p:\mathbb{R}\to S^1$ を $p(x):=e^{2\pi ix}$ で定義する.

- (1) ループ $\gamma:(I,\partial I)\to (S^1,1)$ を $\gamma(t):=e^{2\pi it}$ で定義する . $\widetilde{\gamma}:I\to\mathbb{R},\ \widetilde{\gamma}(t):=t$ は γ の持ち上げで $\widetilde{\gamma}(0)=0$ をみたすことを示せ(持ち上げはループになっていないことに注意)
- (2) 任意の $x \in \mathbb{R}$ に対し, ループ $\gamma_x : (I, \partial I) \to (S^1, p(x))$ を $\gamma_x(t) := e^{2\pi i(t+x)}$ で定義する. γ_x の持ち上げ $\widetilde{\gamma}_x : I \to \mathbb{R}$ で, $\widetilde{\gamma}_x(0) = x$ をみたすものを求めよ.
- (3) $h:\mathbb{R}\to\mathbb{R}$ を $h(x):=\widetilde{\gamma}_x(1)$ で定義する . h(x) を求め , h は $p:\mathbb{R}\to S^1$ の被覆変換であることを示せ .

【演習問題】

- 1. レポート問題の (2) で, γ_x を $\gamma_x(t):=e^{2\pi i(nt+x)}$ に取り換える(これは S^1 を反時計回りに n 周するループ). $h:\mathbb{R}\to\mathbb{R}$ を $h(x):=\widetilde{\gamma}_x(1)$ で定義するとき,h を求めよ.
- 2. 被覆写像 $p:S^1\to S^1$ を $p(z):=z^2$ で定義する.各 $\alpha=e^{2\pi i x}\in S^1$ $(0\leq x<1)$ に対し,ループ $\gamma_\alpha:(I,\partial I)\to (S^1,p(\alpha))$ を $\gamma_\alpha(t):=e^{2\pi i (t+2x)}$ で定義する(α は p の定義域の S^1 の元と思い, γ_α は p の値域の S^1 のループと思うとよい)
 - (1) γ の持ち上げ $\widetilde{\gamma}_{\alpha}: I \to S^1$ で , $\widetilde{\gamma}_{\alpha}(0) = \alpha$ をみたすものを求めよ .
 - (2) $h:S^1 o S^1$ を , $h(\alpha):=\widetilde{\gamma}_{\alpha}(1)$ で定義する .h を求め , h は被覆変換であることを示せ .
- $3. \ n,k \in \mathbb{Z}$ を固定する.被覆写像 $p:S^1 \to S^1$ を $p(z):=z^n$ で定義する.各 $\alpha=e^{2\pi i x}\in S^1$ $(0 \le x < 1)$ に対し,ループ $\gamma_\alpha:(I,\partial I) \to (S^1,p(\alpha))$ を $\gamma_\alpha(t):=e^{2\pi i (kt+nx)}$ で定義する.
 - (1) γ_{α} の持ち上げ $\widetilde{\gamma}_{\alpha}:I \to S^1$ で , $\widetilde{\gamma}_{\alpha}(0)=\alpha$ をみたすものを求めよ .
 - (2) $\tilde{\gamma}_{\alpha}$ もループになるとき (つまり $\tilde{\gamma}_{\alpha}(1) = \alpha$ のとき) , n, k がみたすべき条件を求めよ .
 - (3) $h:S^1\to S^1$ を , $h(\alpha):=\widetilde{\gamma}_\alpha(1)$ で定義する . h を求め , h は被覆<mark>変換</mark>であることを示せ . (2) のとき , $h=\mathrm{id}_{S^1}$ であることを示せ .
- 4. 被覆写像 $p:\mathbb{R}^2 \to S^1 \times S^1$ を $p(x,y):=(e^{2\pi i x},e^{2\pi i y})$ で定義する.また, $(m,n)\in\mathbb{Z}\oplus\mathbb{Z}$ $(\cong\pi_1(S^1\times S^1))$ を固定する.
 - (1) $\alpha=e^{2\pi ix},$ $\beta=e^{2\pi iy}$ $(0\leq x,y<1)$ とする . $p^{-1}(\alpha,\beta)$ を \mathbb{R}^2 上に図示せよ .
 - (2) $(x,y)\in\mathbb{R}^2$ に対し, $\gamma_{x,y}:(I,\partial I)\to (S^1\times S^1,p(x,y))$ を $\gamma_{x,y}(t):=(e^{2\pi i(mt+x)},e^{2\pi i(nt+y)})$ で定義する. $\gamma_{x,y}$ の持ち上げ $\widetilde{\gamma}_{x,y}:I\to\mathbb{R}^2$ で $\widetilde{\gamma}_{x,y}(0)=(x,y)$ をみたすものを求め, \mathbb{R}^2 上に図示せよ.
 - (3) $h:\mathbb{R}^2\to\mathbb{R}^2$ を $h(x,y):=\widetilde{\gamma}_{x,y}(1)$ で定義する.h(x,y) を求めよ.また $h=\mathrm{id}_{\mathbb{R}^2}$ となるような m,n を求めよ.

以下は講義の補足です.

- 5. X を Hausdorff 空間, $\alpha,\beta:I\to X$ を連続写像とし,t<1 のとき $\alpha(t)=\beta(t)$ であるとする.このとき $\alpha(1)=\beta(1)$ であることを示せ(ヒント: $\alpha(1)\neq\beta(1)$ と仮定し,それぞれの開近傍 U,V を $U\cap V=\emptyset$ となるように取ると, α,β の連続性から矛盾が生じる)
- $6.~p: \tilde{X} \to X$ を被覆写像とし, $\gamma: I \to X$ を連続な path とする.このとき, γ の持ち上げ

$$\widetilde{\gamma}:I\to\widetilde{X},\quad p\circ\widetilde{\gamma}=\gamma$$

は, $\widetilde{\gamma}(0)=\widetilde{x}_0\in\widetilde{X}$ を固定すれば一意的である.このことを以下の手順で示せ.

 $\widetilde{\gamma}$ を講義の定理 13.2 で構成した持ち上げで $\widetilde{\gamma}(0)=\widetilde{x}_0$ をみたすものとし , $\widetilde{\gamma}'$ も $\widetilde{\gamma}'(0)=\widetilde{x}_0$ を みたすような (別の) 持ち上げとする .

$$T := \sup\{s \in I \mid t \leq s$$
 に対し $\widetilde{\gamma}(t) = \widetilde{\gamma}'(t)\}$

とおく . $\widetilde{\gamma}(0)=\widetilde{\gamma}'(0)=\widetilde{x}_0$ なので $T\geq 0$ は存在する . 示したいことは T=1 である .

- (1) $\widetilde{\gamma}(T) = \widetilde{\gamma}'(T)$ を示せ(問題 5 参照)
- (2) T < 1 と仮定する $\gamma(T) \in X$ の開近傍で許容的なものを取る . つまり

$$p^{-1}(U)=igcup_{\lambda}V_{\lambda},\quad V_{\lambda}\subset\widetilde{X}$$
たちは互いに交わらない開集合で $p:V_{\lambda}\stackrel{pprox}{ o}U.$

このとき, $\epsilon > 0$ を十分小さく取れば, $T + \epsilon < 1$ かつ

$$\exists \lambda$$
, s. t. $t \in (T - \epsilon, T + \epsilon) \Rightarrow \widetilde{\gamma}(t) \in V_{\lambda}, \quad \widetilde{\gamma}'(t) \in V_{\lambda}$

となることを示せ (ヒント: $\tilde{\gamma}$, $\tilde{\gamma}$) の連続性)

- (3) 区間 $(T \epsilon, T + \epsilon)$ において $\widetilde{\gamma} = \widetilde{\gamma}'$ であることを示せ(ヒント: $p: V_{\lambda} \to U$ は同相であることと $p \circ \widetilde{\gamma} = \gamma = p \circ \widetilde{\gamma}'$ を使う)
- (4) (3) とT の定義から矛盾を導き,T=1 を示せ.