担当:境圭一

- 1. $f: \mathbb{R}^3 \to \mathbb{R}$ を $f(x, y, z) := xy + z^2 1$ で定義し, $S:=f^{-1}(0)$ とおく.
 - (1) $\operatorname{grad}(f)(p) = \mathbf{0}$ となる $p \in \mathbb{R}^3$ を全て求めよ.
 - (2) (1) で求めた p は S 上にないことを示せ、このことから S は曲面であることを示せ、
 - (3) $p=(a,b,c)\in S$ に対し , T_pS と $T_p^\perp S$ を表す方程式をそれぞれ求めよ .
 - (4) T_pS を , $\mathbf{0} \in T_pS$ が p に移るように平行移動して得られる平面を表す方程式を求めよ .
 - (5) S の概形を図示せよ.(ヒント:平面 z = k で切った切り口を考えるとよい)
 - (6) 上と同様のことを,以下の関数について考えよ.
 - (i) $f(x, y, z) := y^2 + (z 1)^2 2$

(ii) f(x, y, z) := 2x - 3y + 4z - 5

- (iii) $f(x, y, z) := x^2 + y^2 z^2 + 1$ (iv) $f(x, y, z) := x^2 + \frac{y^2}{4} + \frac{z^2}{9} 1$
- 2. $V_z^+ := \{(x,y,z) \in S^2 \mid z > 0\}$ 上の点 p の近くの局所座標として , $\varphi: D^\circ \to V_z^+, \varphi(s,t) := (s,t,\sqrt{1-s^2-t^2})$ を考え る . ただし $D^\circ := \{(s,t) \in \mathbb{R}^2 \mid s^2 + t^2 < 1\}$ とする .
 - (1) $\partial_s oldsymbol{arphi} := rac{\partial oldsymbol{arphi}}{\partial s}$ などと略記する . $\partial_s oldsymbol{arphi}, \partial_t oldsymbol{arphi}$ を計算せよ .
 - (2) $p=(a,b,c)\in V_z^+$ とする . $\varphi(s,t)=p$ となる $(s,t)\in D^\circ$ を求めよ .
 - (3) (1), (2) を使って T_pS^2 を表す方程式を求めよ.また, $\mathbf{0} \in T_pS^2$ が p に移るよう T_pS^2 を平行移動して得られる 平面の方程式を求めよ.
 - (4) $\partial_s \varphi \times \partial_t \varphi$ を計算せよ.
 - (5) $\mathbf{n}: V_z^+ \to \mathbb{R}^3$ を , $\mathbf{n}(p) := \frac{(\partial_s \varphi \times \partial_t \varphi)(s,t)}{|(\partial_s \varphi \times \partial_t \varphi)(s,t)|}$ で定義する . ただし $p \in V_z^+$ に対し , $\varphi(s,t) = p$ となる $(s,t) \in D^\circ$ を選んでいる . \mathbf{n} は V_z^+ 上の連続な単位法ベクトル場であることを示せ .
 - (6) $\psi:D^{\circ}\to V_{z}^{+}$ を $\psi(s,t):=(t,s,\sqrt{1-s^{2}-t^{2}})$ で定義し $\widetilde{n}:V_{z}^{+}\to\mathbb{R}^{3}$ を n の定義中の φ を ψ で置き換える ことにより定義する. \widetilde{n} はnと逆の向きを定める,即ち $\widetilde{n} = -n$ が成り立つことを示せ.
- 3. 円柱座標 (r, θ, z) で $\{(r, \theta, z) \mid (r-2)^2 + z^2 = 1\}$ で表されるトーラスを T とおく $.\varphi: U := (0, 2\pi) \times (0, 2\pi) \to \mathbb{R}^3$ を , \mathbb{R}^3 の xyz 座標で $\varphi(\alpha,\beta) := ((2+\cos\alpha)\cos\beta, (2+\cos\alpha)\sin\beta, \sin\alpha)$ で定義する.
 - (1) $\varphi(U) \subset T$ であることを示せ.
 - (2) φ は単射であること, $D\varphi$ は常に階数 2 であることを示せ.
 - (3) $p = (a, b, c) \in \varphi(U)$ に対し , T_pT と $T_p^{\perp}T$ をそれぞれ求めよ .
 - (4) $f(x,y,z):=(x^2+y^2+z^2+3)^3-16(x^2+y^2)$ に対し $T=f^{-1}(0)$ であること (6/17 の講義, 演習を参照のこと) を用いて, $p \in T$ に対し T_pT と $T_p^{\perp}T$ をそれぞれ求めよ.
- $4. \ f: \mathbb{R}^3 \to \mathbb{R}$ は C^∞ 級で , $S:=f^{-1}(0)$ 上 $\operatorname{grad}(f) \neq \mathbf{0}$ であるとする .S は向き付け可能な曲面であることを示せ .S
- $5. \ \varphi: (-1,1) \times [0,2\pi] \to \mathbb{R}^3$ を $\varphi(t,\theta) := ((2+t\cos(\theta/2))\cos\theta, (2+t\cos(\theta/2)\sin\theta, t\sin(\theta/2))$ で定義し, その像を $M := \varphi((-1,1) \times [0,2\pi])$ とおく.
 - (1) M を図示し, M はメビウスの帯であることを確かめよ.
 - (2) $U:=(-1,1)\times(0,2\pi)$ に対し, $\pmb{\varphi}:U\to M$ は単射で, $D\pmb{\varphi}$ の階数は常に 2 であることを示せ.
 - (3) $p = \varphi(t,\theta)$ $((t,\theta) \in U)$ に対し $\mathbf{n}(p) := \frac{(\partial_t \varphi \times \partial_\theta \varphi)(t,\theta)}{|(\partial_t \varphi \times \partial_\theta \varphi)(t,\theta)|}$ とおくと,2. (4),(5) と同様に $\mathbf{n}(p) \in T_p^\perp M$ である. $\lim_{\theta \downarrow 0} \mathbf{n}(\varphi(0,\theta))$ と $\lim_{\theta \uparrow 2\pi} \mathbf{n}(\varphi(0,\theta))$ を比べよ.このことから M は向き付け可能ではないことを示せ.
- 6.(難)向き付け可能な曲面 S に対しては,連続写像 $\mathbf{n}:S \to \mathbb{R}^3$ で, $\mathbf{n}(p) \in T_p^\perp S, |\mathbf{n}(p)| = 1 \ (\forall p \in S)$ をみたすもの が定まった.では,連続写像 $u:S\to\mathbb{R}^3$ で, $u(p)\in T_pS$,|u(p)|=1($\forall p\in S$)をみたすものは定まるか? S がトー ラスの場合,このようなuを一つ見つけよ.Sが2次元球面 S^2 の場合はどうか?

(提出の必要はありません)

幾何入門 レポート問題 10 (2016年6月24日)

担当:境 圭一

 $S:=\{(x,y,z)\in\mathbb{R}^3\mid x^2-y^2+2z^2=-1\}$ 上の点 p=(a,b,c) における接平面 T_pS が $\pmb{u}:=(1,-2,2)$ と直交するとき,a,b,c を求めよ.

(7/1の3限開始時までに提出してください)

 $\verb|http://math.shinshu-u.ac.jp/~ksakai/16_geometry.html|$