担当:境圭一

以下, K = R または C とする.

問題 1. V を K ベクトル空間とする.

- (1) ゼロベクトル $\mathbf{0} \in V$ はただ一つに定まることを示せ.つまり,もし $\mathbf{0}, \mathbf{0}' \in V$ がともにゼロベクトルの性質をみたすならば $\mathbf{0} = \mathbf{0}'$ であることを示せ.
- (2) 各 $u \in V$ を 0 倍して得られる $0u \in V$ はゼロベクトル 0 であることを示せ.
- (3) 各 $u \in V$ に対し、その逆元 $-u \in V$ はただ一つに定まることを示せ、
- (4) 各 $u \in V$ を-1倍して得られる $(-1)u \in V$ はuの逆元であることを示せ.

問題 2. x の K 係数多項式全体の集合を K[x] と表す、例えば $1+2x-3x^2 \in \mathbf{R}[x]$ である、

- (1) **K**[x] は **K** ベクトル空間であることを示せ.
- (2) n 次以下の多項式全体の集合を $\mathbf{K}_{\leq n}[x]$ と表す . $\mathbf{K}_{\leq n}[x]$ は \mathbf{K} ベクトル空間であることを示せ .
- (3) $\mathbf{K}[x]$, $\mathbf{K}_{\leq n}[x]$ の生成系を一つずつ求めよ.
- (4) 次数がちょうど n の多項式全体の集合を $\mathbf{K}_n[x]$ と表す $\mathbf{K}_n[x]$ は \mathbf{K} ベクトル空間か?

補足.ベクトル空間とはn項ベクトルの集合 \mathbb{K}^n の性質を座標によらない形で抽象化したものです.問題1の内容は,

$$V = \mathbf{K}^n$$
 であれば当たり前のことで,ゼロベクトルは $\mathbf{0} = \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix}$ しかないし,どんな $\mathbf{u} = \begin{pmatrix} u_1 \\ \vdots \\ u_n \end{pmatrix}$ も 0 倍すれば $\mathbf{0}$ ですし, \mathbf{u}

の逆元
$$-\mathbf{u} = \begin{pmatrix} -u_1 \\ \vdots \\ -u_n \end{pmatrix}$$
 は \mathbf{u} の -1 倍ですが,抽象的なベクトル空間の場合には,これらのことは確認を要します.

ベクトル空間の例としては , いつも $V={\bf K}^n$ を念頭に置いていればいいのですが , 問題 2 のように , ベクトル空間の例はそれだけにはとどまりません . ${\bf K}[x]$ や ${\bf K}_{\le n}[x]$ をベクトル空間とみなすときは , その元 $1+x-2x^2$ などを「ベクトル」とよぶわけです .

特に $\mathbf{K}[x]$ の生成系に含まれるベクトルの数に注目してください . \mathbf{K}^n なら n 個 (例えば基本ベクトル e_1,\ldots,e_n を取れる) で事足りますが , $\mathbf{K}[x]$ ではそれで足りるでしょうか ?