担当:境圭一

問題 1. 次の写像は線形であることを示せ、それぞれの核 (kernel) と像 (image) を求めよ、これらは全射か?また単射か?

(1)
$$f: \mathbf{R}^2 \to \mathbf{R}$$
, $f \begin{pmatrix} x \\ y \end{pmatrix} = x + 2y$ (2) $g: \mathbf{R} \to \mathbf{R}^2$, $g(x) = \begin{pmatrix} 2x \\ 3x \end{pmatrix}$ (3) $h: \mathbf{R}^2 \to \mathbf{R}^2$, $h \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 2x + y \\ x + 4y \end{pmatrix}$

問題 2. 次の写像は線形ではない、その理由を述べよ、

(1)
$$f: \mathbf{R}^2 \to \mathbf{R}$$
, $f\begin{pmatrix} x \\ y \end{pmatrix} = x^2 + 2y$ (2) $g: \mathbf{R} \to \mathbf{R}^2$, $g(x) = \begin{pmatrix} 2x+1 \\ 3x \end{pmatrix}$ (3) $h: \mathbf{R}^2 \to \mathbf{R}^2$, $h\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} \cos(2x+y) \\ \sin(x+4y) \end{pmatrix}$

問題 3.

- (1) $f: \mathbf{R} \to \mathbf{R}$ を線形写像とし、f(1) = a とおく、各 $x \in \mathbf{R}$ を $x = x \cdot 1$ と見ることにより、f(x) = ax を示せ、
- (2) $g: \mathbf{R}^2 \to \mathbf{R}^2$ を線形写像とし, $g(e_1) = v_1$, $g(e_2) = v_2 \in \mathbf{R}^2$ (縦ベクトル)とおく.また 2×2 行列 A を $A = \begin{pmatrix} v_1 & v_2 \end{pmatrix}$ で定める.各 $\mathbf{u} = \begin{pmatrix} u_1 \\ u_2 \end{pmatrix} \in \mathbf{R}^2$ に対し, $\mathbf{u} = u_1 e_1 + u_2 e_2$ と見ることにより, $g(\mathbf{u}) = A\mathbf{u}$ であることを示せ.
- (3) $h: \mathbf{R}^m \to \mathbf{R}^n$ を線形写像とする. $1 \le k \le m$ に対し $\mathbf{v}_k := h(\mathbf{e}_k) \in \mathbf{R}^n$ とおき, $A = \begin{pmatrix} \mathbf{v}_1 \ \mathbf{v}_2 \ \cdots \ \mathbf{v}_m \end{pmatrix}$ とおくとき,全ての $\mathbf{u} \in \mathbf{R}^m$ に対し $h(\mathbf{u}) = A\mathbf{u}$ となることを示せ.

問題 4. 線形写像 $f: \mathbb{R}^2 \to \mathbb{R}^2$ が,ある 2×2 行列 A を用いて,各 $u \in \mathbb{R}^2$ (縦ベクトル)に対し f(u) = Au と定義されているとする.

- (1) $\operatorname{rank} A = 2$ であるとき , f は単射であることを示せ .(ヒント : f が単射 \iff $\operatorname{Ker} f = \{\mathbf{0}\}$)
- (2) rank A < 2 であるとき, f は単射でないことを示せ.(ヒント:教科書の命題 2.9)

問題 5. 実数を係数とする x の多項式全体のなすベクトル空間を V とする . 写像 $I:V\to \mathbf{R}$ を $I(f):=\int_0^1 f(x)\,dx$ で 定義する . I は線形写像であることを示せ .

補足.(1) 写像について.集合 A,B の間の写像 (map) $f:A\to B$ とは,各 $a\in A$ に対し $f(a)\in B$ がちょうど一つ定まる対応をいいます.典型的な例は $f(x)=x^2+1$ や $g(x)=\sin x$ といった関数 $f:\mathbf{R}\to\mathbf{R}$ で,これらは各 $x\in\mathbf{R}$ に $f(x)\in\mathbf{R}$ がちょうど一つ対応しています.一方, $A=\{$ 信大生 $\},B=\{$ 講義科目 $\}$ という集合を考え, $x\in A$ に対し f(x):=(x が好きな科目) という対応を考えようとすると,多くの $x\in A$ に対し f(x) はちょうど一つには定まらない と思うので,f は写像ではないと思います.なるべくたくさん定まってほしいものです.

(2) ベクトル空間 V,W について,写像 $f:V\to W$ が線形であるとは,各 $u,v\in V, a,b\in K$ に対し f(au+bv)=af(u)+bf(v) が成立することです.これは f が和やスカラー倍の構造を保つことである,と言えます.そのような写像は実はあまり多くなく,問題 2 が示すように, $V=\mathbf{R}^m,W=\mathbf{R}^n$ の場合は,すべての線形写像 $f:\mathbf{R}^m\to\mathbf{R}^n$ は,何らかの $n\times m$ 行列 A により f(u)=Au と表されます.実は一般のベクトル空間 V,W の場合も本質的にこの形に限られます.この意味で,線形写像について考えることは,行列について考えることと同等です.

(3) 単射性 , 全射性の判定.線形写像 $f:V\to W$ が単射であることは, $\ker f=\{\mathbf{0}\}$ と同値です.例えば問題 1 (1) の f について,f(2,-1)=0 ですから(2,-1) $\in \ker f$ です.よって $\ker f\neq \{\mathbf{0}\}$ ですから,f は単射ではありません.また 問題 1 (2) の g について, $g(x)=\mathbf{0}$ 、つまり $x\in \ker g$ と仮定すると 2x=3x=0,よって x=0 です.従って $\ker g=\{0\}$ ですから,g は単射です.