1. (1)
$$\mathbf{a} \times \mathbf{b} = \begin{pmatrix} 1 \\ -1 \\ -1 \end{pmatrix}$$
. 平行六面体の体積は、 $\left| \det \begin{pmatrix} \mathbf{a} & \mathbf{b} & \mathbf{c} \end{pmatrix} \right| = \left| (\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c} \right| = 2$.

$$(2) \ \mathbf{u} = \begin{pmatrix} 1 \pm \sqrt{2} \\ 0 \end{pmatrix}.$$

- (3) $x \pm y = 2\pi n \ (n \in \mathbb{Z})$ となる全ての $\mathbf{u} = \begin{pmatrix} x \\ y \end{pmatrix}$.
- (4) $(\operatorname{div} W)(u) = 2 (x^2 + y^2) = 2 |u|^2$ である. $|u|^2 \ge 0$ だから $(\operatorname{div} W)(u) \le 2$ で、等号は u = 0 のとき成立. した
- がって、 $\operatorname{div} W$ は $\boldsymbol{u} = \boldsymbol{0}$ において最大値 2 を取る。 (5) $\operatorname{div}(\operatorname{grad}(g)) = \frac{\partial^2 g}{\partial x^2} + \frac{\partial^2 g}{\partial y^2}$ である。 $\frac{\partial^2 g}{\partial x^2} = \frac{\partial (2g)}{\partial x} = 4g$ となるから $\operatorname{div}(\operatorname{grad}(g)) = (4 k^2)g$. これが恒等的に 0 に
- 2. (1) $\operatorname{div} V = 4x^2 2y^2$, $\operatorname{rot} V = 0$, $\operatorname{div} W = 6(x y)$, $\operatorname{rot} W = 8$. (2) $f(u) := \frac{x^4}{4} + \frac{x^2y^2}{2} \frac{y^4}{4}$ とおくと $\operatorname{grad}(f) = V$. (3) $\operatorname{rot} W \neq 0$ だから, $\operatorname{grad}(g) = W$ となる g は存在しない.

 - (4) (2) より

$$\int_{I} \boldsymbol{V} \cdot d\boldsymbol{l} = f(\boldsymbol{l}(\pi)) - f(\boldsymbol{l}(0)) = f \binom{\pi}{0} - f \binom{0}{0} = \frac{\pi^4}{4}.$$

$$\int_{l} \mathbf{W} \cdot d\mathbf{l} = \int_{0}^{\pi} (-3\cos^{2}t\sin t - 3\sin^{2}t\cos t + 4) dt = \left[\cos^{3}t - \sin^{3}t + 4t\right]_{0}^{\pi} = 4\pi - 2.$$

3. (1) $\boldsymbol{l}: \mathbb{R} \to \mathbb{R}^2$ を、 $n \in \mathbb{Z}$ に対し

$$I(t) = \begin{cases} (-t + 4n + 1, t - 4n) & 4n \le t \le 4n + 1, \\ (-t + 4n + 1, -t + 4n + 2) & 4n + 1 \le t \le 4n + 2, \\ (t - 4n - 3, -t + 4n + 2) & 4n + 2 \le t \le 4n + 3, \\ (t - 4n - 3, t - 4n - 4) & 4n + 3 \le t \le 4n + 4, \end{cases}$$

で定める. l は周期 4 の写像で $l(\mathbb{R})=\partial\Omega$ であり、 $t\notin\mathbb{Z}$ において C^∞ 級で $\frac{dl}{dt}(t)\neq \mathbf{0}$ だから、l は区分的に正則 である. (※答は他にもあります)

- (2) $f(\mathbf{u}) := \log(1 + x^2 y^2)$ とすると $\operatorname{grad}(f) = \mathbf{V}$ だから, $\int_{\mathbf{U}} \mathbf{V} \cdot d\mathbf{l} = f(\mathbf{l}(4)) f(\mathbf{l}(0)) = f\begin{pmatrix} 1 \\ 0 \end{pmatrix} f\begin{pmatrix} 1 \\ 0 \end{pmatrix} = 0$.
- (3) W は Ω 上で定義されているから、Gauss の発散定理より

$$\int_{l} \mathbf{W} \cdot \mathbf{n} \, d\mathbf{l} = \int_{\Omega} \operatorname{div} \mathbf{W} \, dx dy \tag{*}$$

 $\operatorname{div} W = 9x^8 + 2x^5y^3 + 9y^8$ である. x^5y^3 は x, y に関して奇関数だから, Ω の対称性により $\int_{\Omega} x^5y^3 \, dx dy = 0$. x^8+y^8 は x,y に関して偶関数であるから, $\Omega_+:=\{\pmb{u}\in\Omega\mid x,y\geq 0\}$ とおくと,

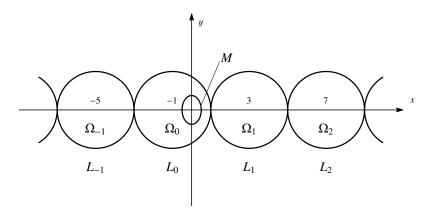
$$(*) = \int_{I} \mathbf{W} \cdot \mathbf{n} \, d\mathbf{l} = \int_{\Omega} \operatorname{div} \mathbf{W} \, dx dy$$

$$= 9 \int_{\Omega} (x^8 + y^8) \, dx dy = 36 \int_{\Omega_{+}} (x^8 + y^8) \, dx dy = 72 \int_{\Omega_{+}} x^8 \, dx dy$$

$$= 72 \int_{y=0}^{1} \left(\int_{x=0}^{1-y} x^8 \, dx \right) dy = 8 \int_{0}^{1} (1-y)^9 \, dy = \frac{4}{5}.$$

4. (1)
$$\operatorname{div} V = -\frac{6xy}{(x^2 + 4y^2)^2}$$
, $\operatorname{rot} V = 0$.

(2) l_n で表される曲線 L_n を境界とする有界領域を Ω_n とする.



 $\mathbf{0} \in \Omega_n$ となるのは n=0 のときに限る. よって $n \neq 0$ のとき, \mathbf{V} は Ω_n 上で定義されるから, Green の定理と (1) より

$$\int_{l_n} \mathbf{V} \cdot d\mathbf{l}_n = \int_{\Omega_n} \operatorname{rot} \mathbf{V} \, dx dy = 0 \quad (n \neq 0).$$

 $\epsilon>0$ を十分小さく取ると, $m:\mathbb{R}\to\mathbb{R}^2$, $m(t):=\epsilon \binom{2\cos(-t)}{\sin(-t)}=\epsilon \binom{2\cos t}{-\sin t}$ で表される楕円 M は Ω_0 の内部に含まれ, L_0 と M で囲まれる有界領域を Ω' とおけば, l_0 ,m は Ω' の境界としての L_0 ,M の向きを表す. $0\notin\Omega'$ だから, Ω' 上で Green の定理を使うと

$$\int_{l_0} \mathbf{V} \cdot d\mathbf{l}_0 + \int_{\mathbf{m}} \mathbf{V} \cdot d\mathbf{m} = \int_{\Omega'} \operatorname{rot} \mathbf{V} \, dx dy = 0.$$

一方

$$\int_{\boldsymbol{m}} \boldsymbol{V} \cdot d\boldsymbol{m} = \int_{0}^{2\pi} \frac{1}{4\epsilon^{2}(\cos^{2}t + \sin^{2}t)} \, \epsilon \binom{\sin t}{2\cos t} \cdot \epsilon \binom{-2\sin t}{-\cos t} dt = -\frac{1}{2} \int_{0}^{2\pi} dt = -\pi.$$

よって

$$\int_{\boldsymbol{l}_0} \boldsymbol{V} \cdot d\boldsymbol{l}_0 = \pi.$$