担当:境圭一

問題. $v_0, \ldots, v_n \in \mathbb{R}^N \ (n \ge 1)$ は一般の位置にあるとし, $\sigma := |v_0 \cdots v_n|$ とする.

- (1) $n \le N$ であることを示せ.
- (2) σ の k 次元面単体の数 b_k を求めよ.
- (3) $\sum_{k=0}^{n} b_k$ を求めよ.また $\sum_{k=0}^{n} (-1)^k b_k$ を求めよ.
- (4) 集合 $K(\sigma) := \{\sigma \cap m\}$, ならびに $L := K(\sigma) \setminus \{\sigma\}$ は単体複体であることを示せ.
- (5) $D^n:=\{p\in\mathbb{R}^n\mid |p|\leq 1\},\quad S^{n-1}:=\{p\in\mathbb{R}^n\mid |p|=1\}$ とおく. 同相 $|K(\sigma)|\approx D^n,\quad |L|\approx S^{n-1}$ を構成せよ.

補足. 前期の「トポロジー」を学んだ人は、単体複体を概ね次のようなものと定義したと思います:

 $S = \{0, ..., n\}$ の部分集合族 $\Sigma = \{S_1, ..., S_k \mid S_1, ..., S_k \subset S\}$ が次の (i), (ii) をみたすとき, (S, Σ) の組を S を頂点集合に持つ単体複体とよぶ:

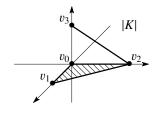
- (i) $0 \le i \le n$ に対し $\{i\} \in \Sigma$ (つまり、 $\exists j, \{i\} = S_i$ ということ)
- (ii) $S_i \in \Sigma, T \subset S_i$ のとき $T \in \Sigma$ (つまり, $\exists j, T = S_i$ ということ)

これは**抽象的単体複体**とよばれるものの定義です.この講義でやった単体複体とは一見別物ですが,実は本質的には同じものです.このことを,簡単な場合を例にとって説明します.まず準備として, \mathbb{R}^m を $\{(x_1,\ldots,x_m,0)\in\mathbb{R}^{m+1}\}$ と同一視することにより,自然に \mathbb{R}^m $\subset \mathbb{R}^{m+1}$ とみなしておきます.

(1) $S=\{0,1,2,3\}$, $\Sigma=\{\{i\}\}_{0\leq i\leq 3}\cup\{\{i,j\}\}_{(i,j)=(0,1),(1,2),(2,0),(2,3)}\cup\{\{0,1,2\}\}$ とすると (S,Σ) は抽象的単体複体です。まず,元の数が最も多い $\{0,1,2\}$ に対応して, $v_0,v_1,v_2\in\mathbb{R}^2$ $(\subset\mathbb{R}^3)$ を, $v_0=(0,0),v_1=(1,0),v_2=(0,1)$ と取ります(右下図参照)。細かい座標にあまり意味はなく,一般の位置にあることが重要です。 $v_0,v_1,v_2\in\mathbb{R}^3$ とみると $v_0=(0,0,0),v_1=(1,0,0),v_2=(0,1,0)$ です。次に元の数が多い集合のうち,まだ考えていない $3\in S$ を含む $\{2,3\}$ に注目し, $3\in S$ に対応して $v_3:=(0,0,1)\in\mathbb{R}^3$ と取ります。座標にあまり意味はなく, v_3 が v_0,v_1,v_2 を含む平面 \mathbb{R}^2 の外にあることが大事です。このとき

- $\{i\} \in \Sigma$ に対応して 0 単体 $|v_i| \subset \mathbb{R}^3$ を,
- $\{i, j\} \in \Sigma$ に対応して 1 単体 $|v_i v_j| \subset \mathbb{R}^3$ を,
- $\{0,1,2\} \in \Sigma$ に対応して 2 単体 $|v_0v_1v_2| \subset \mathbb{R}^3$ を,

それぞれ考え、これらを集めて得られる集合を K と書くと、K は講義の例 3.6 でやった単体複体になっています。幾何的実現 |K| は図の通りです。



(2) $K = \{\sigma_1, \dots, \sigma_k\}$ を 10/26 の講義でやった意味の単体複体とします. $\sigma_1, \dots, \sigma_k$ の頂点を全て集め、重複を取り除くと $v_0, \dots, v_n \in \mathbb{R}^N$ となるとします. このとき $S := \{0, \dots, n\}$ とし、S の部分集合族 Σ を

$$\{i_0,\ldots,i_m\}\in\Sigma\iff |v_{i_0}\cdots v_{i_m}|\in K$$

となるよう定義すると、 (S,Σ) は抽象的単体複体になっています.

(3) 上の(1),(2) の対応は(同相な空間を同一視すれば)互いの逆対応になっています.

この講義の単体複体は(ある程度)絵に描けるのでわかりやすいのですが、複雑になってくると、二つの単体が面以外で交わらないように絵を描くのは困難です。抽象的単体複体のほうが「頂点がいくつあって、どの頂点の組が単体を張っているか」という単体複体の本質を(絵に惑わされず)よく表したものと言えます。

http://math.shinshu-u.ac.jp/~ksakai/17_homology/17_homology.html