担当:境圭一

※今回からスペースの都合でベクトルを横に書きますが、もちろん縦でも構いません.

1. (1) $S^2 := \{ \boldsymbol{u} \in \mathbb{R}^3 \mid |\boldsymbol{u}| = 1 \} \succeq \cup, \ V_+ \subset S^2 \succeq V_+ \subset S^2 \subseteq V_+ C^2 \subseteq V_+ \subset S^2 \subseteq V_$

$$V_{+} := \{(x, y, z) \in S^{2} \mid -1 < z\}, \quad V_{-} := \{(x, y, z) \in S^{2} \mid z < 1\}.$$

で定義する. $V_+ \cup V_- = S^2$ を示せ.

- (2) φ_+ : $\mathbb{R}^2 \to \mathbb{R}^3$ を次のように定義する. $\mathbf{a} = (s,t) \in \mathbb{R}^2$ に対し, \mathbb{R}^3 の点 (s,t,0) と $(0,0,-1) \in S^2$ を結ぶ直線が V_+ と交わる点を $\varphi_+(\mathbf{a})$ と定める. $\varphi_+(\mathbf{a})$ を s,t の式で表し,すべての $\mathbf{a} \in \mathbb{R}^2$ に対し $\varphi_+(\mathbf{a}) \in V_+$ であることを 示せ.従って φ_+ : $\mathbb{R}^2 \to V_+$ とみなせる.
- (3) $\varphi_+: \mathbb{R}^2 \to V_+$ は全単射であることを,逆写像 $\varphi_+^{-1}: V_+ \to \mathbb{R}^2$ を構成することにより示せ.また,Jacobi 行列 $D\varphi_+ = \begin{pmatrix} \partial_s \varphi_+ & \partial_t \varphi_+ \end{pmatrix}$ の階数は,任意の $\mathbf{a} \in \mathbb{R}^2$ において 2 であることを示せ.これにより, φ_+ は V_+ の各点の近くでの S^2 の局所座標になることがわかる.
- (4) $\mathbf{a} = (s,t) \in \mathbb{R}^2$ に対し、 \mathbb{R}^3 の点 (s,t,0) と $(0,0,1) \in S^2$ を結ぶ直線が V_- と交わる点を $\mathbf{\varphi}_-(\mathbf{a})$ と定める. (2), (3) と同様にして、 $\mathbf{\varphi}_-$: $\mathbb{R}^2 \to V_-$ は V_- の各点の近くでの S^2 の局所座標になることを示せ.また $\mathbf{\varphi}_-^{-1}$ を具体的に求めよ.
- 注. この φ_+ あるいは逆写像 φ_+^{-1} を立体射影 (stereographic projection) とよぶ.
- 2. (1) S^2 上の任意の点は $(\cos\alpha\cos\beta, \sin\alpha\cos\beta, \sin\beta)$ $(0 \le \alpha \le 2\pi, -\frac{\pi}{2} \le \beta \le \frac{\pi}{2})$ の形に表せることを示せ. (ヒント: \mathbb{R}^3 の極座標)

 S^2 の部分集合

$$A := \{(x, 0, z) \in S^2 \mid x \ge 0\}, \quad B := \{(x, y, 0) \in S^2 \mid x < 0\}$$

を考え、 $V := S^2 - A$ 、 $W := S^2 - B$ とおく.

- (2) $U:=(0,2\pi)\times\left(-\frac{\pi}{2},\frac{\pi}{2}\right):=\left\{(\alpha,\beta)\in\mathbb{R}^2\mid 0<\alpha<2\pi,-\frac{\pi}{2}<\beta<\frac{\pi}{2}\right\}$ とおく. $\boldsymbol{\varphi}\colon U\to V$ を $\boldsymbol{\varphi}(\alpha,\beta):=(\cos\alpha\cos\beta,\sin\alpha\cos\beta,\sin\beta)$ で定義すると、 $\boldsymbol{\varphi}$ は V の各点近くでの S^2 の局所座標になることを示せ.
- (3) ψ : $U \to W$ を $\psi(\alpha, \beta)$:= $(\sin \alpha \cos \beta, \sin \beta, -\cos \alpha \cos \beta)$ で定義すると、 ψ は W の各点の近くでの S^2 の局所座標になることを示せ、
- $3. (x,y,z) \in \mathbb{R}^3$ に対し $x = r\cos\theta, y = r\sin\theta$ (ただし $0 \le \theta < 2\pi, r \ge 0$ とする)とおき, (r,θ,z) を円柱座標とよぶ.
 - (1) 円柱座標で一意的に表せない \mathbb{R}^3 の点を全て求めよ.
 - (2) 球面 S^2 を円柱座標で表せ.
 - (3) 円柱座標でr=1で表される図形 A を図示せよ. また A を xyz 座標で表せ.
 - (4) 円柱座標で $V := \{(1, \theta, z) \in A \mid \theta \neq 0\}$ とおく. $\varphi : \mathbb{R}^2 \to V$ を, \mathbb{R}^2 の直交座標 (s, t) と \mathbb{R}^3 の円柱座標を使って $\varphi(s, t) := (1, \pi + 2 \tan^{-1} s, t)$ で定義するとき, φ は V の各点の近くでの A の局所座標になることを示せ.
- 4. (1) $S := \{(x,y,z) \in \mathbb{R}^3 \mid z = \sqrt{x^2 + y^2} \}$ とおく. S を図示せよ. (ヒント:問題3の円柱座標を使う)
 - (2) $\mathbf{0} \in S$ の近くで S の局所座標を取れないことを示せ、従って S は曲面ではない、(ヒント: C^{∞} 級写像 φ : $U \to S$ で $\varphi(a) = \mathbf{0}$ となる $a \in U$ が存在するものに対し、 $\frac{\partial \varphi}{\partial s}(a) = \mathbf{0}$ または $\frac{\partial \varphi}{\partial t}(a) = \mathbf{0}$ であることを示す)
 - (3) *S* \ {**0**} は曲面であることを示せ.
- 5. (1) $S := \{(x, y, z) \in \mathbb{R}^3 \mid x^2 = y^3\}$ とおく. S を図示せよ.
 - (2) S は曲面ではないことを示せ. (ヒント: $\mathbf{0} \in S$ の近くで局所座標を取れないことを前問と同様に示す)
- 6. $u,v \in \mathbb{R}^3$ を一次独立なベクトルとするとき、 $u,v \perp u \times v$ であることを示せ、また $(u,v,u \times v)$ は \mathbb{R}^3 の基底をなすことを示せ、(第 1 回目にやりましたが、次回以降使うので再掲しました)

(提出の必要はありません)

補足:曲面の局所座標について.

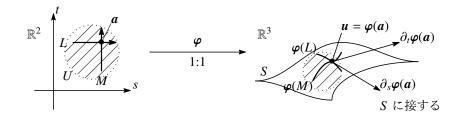
曲面の定義、すなわち、任意の $u \in S$ のまわりで取れる局所座標 $\varphi: U \to S$ の意味はわかりにくいと思います。曲線 の場合の正則パラメータに対応するものと考えればよいのですが、いろいろ言い換えるうちに意味がつかめてくる、 ということもあると思うので、少し補足してみます。

 $u \in S$ とします. S が曲面であることから, u のまわりの局所座標が取れます. その定義に出てくる ϵ と φ : $U \to S$ の性質 (i), (ii) は次のようなことを意味します (あくまで気分であり,数学的に厳密ではありません):

- (i) $\varphi(U) \subset S$ であり、S 上で u に近い点は全て $\varphi(U)$ に含まれる(二年生後期の「位相空間論」では「 $\varphi(U)$ は S に おける u の近傍である」という言い方をします)
- (ii) φ : $U \to \varphi(U)$ とみると φ は全単射で、従って U と $\varphi(U)$ は「同一視」される(正確には φ と逆写像の連続性も 込めた同一視で、位相空間論では「U と $\varphi(U)$ は同相」といいます)

(i), (ii) より, $\varphi(a) = u$ となる $a \in U$ が唯一つ存在します. $U \subset \mathbb{R}^2$ ですから, $a = \begin{pmatrix} a_1 \\ a_2 \end{pmatrix}$ のように,a の位置は 2 つの 実数の組(座標)により確定します.(ii) により U と $\varphi(U)$ は同一視されるので,u の $\varphi(U)$ 上での位置も,2 つの 実数の組 $\begin{pmatrix} a_1 \\ a_2 \end{pmatrix}$ で確定していると言えます.同じように,S 上で u に近い点 v ($\in \varphi(U)$) に対しても, $\varphi(b) = v$ となる $b = \begin{pmatrix} b_1 \\ b_2 \end{pmatrix} \in U$ が唯一つ存在し,v の $\varphi(U)$ 上の位置は座標 $\begin{pmatrix} b_1 \\ b_2 \end{pmatrix}$ で確定していると言えます.このように,S が曲面であるとき,任意の $u \in S$ の近くで,平面と同じような「座標」が φ を通して定まることになります.

正則曲線のパラメータ \boldsymbol{l} の場合だと、曲線上の点 $\boldsymbol{u} = \boldsymbol{l}(t)$ の位置が \boldsymbol{l} を通して「座標」 $t \in \mathbb{R}$ で確定しました。曲線の場合は 1 つのパラメータ \boldsymbol{l} で曲線全体を表せたのに対し、曲面の場合は s 全体を 1 つの「座標」で表すのは一般には無理です。s つの座標が表せるのは、考えている点 s を含む s の(十分小さい)部分集合のみです。



上のaを通る,U上の二つの直線

$$L := \{(x, a_2) \in U\}, \quad M := \{(a_1, y) \in U\}$$

を考えます. L,M はそれぞれ x 軸, y 軸に平行な直線です. φ により, L,M は $\varphi(U)$ ($\subset S$) 上の曲線 $\varphi(L),\varphi(M)$ に うつされます. これらは曲がってはいますが(S が曲がっているから),もとの L,M は U の座標軸に平行で,U は $\varphi(U)$ と同一視されるのでしたから, $\varphi(L),\varphi(M)$ も「座標軸」のようになっているものと期待されます. 局所座標の条件 (iii) はこのことに関係します:

簡単のため $e_1 := \begin{pmatrix} 1 \\ 0 \end{pmatrix}, e_2 := \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ とおき,曲線 L, M のパラメータ l, m を l(0) = m(0) = a となるよう選んでおきます:

$$l(u) := a + ue_1, \quad m(u) := a + ue_2.$$

このとき

$$\frac{\partial \boldsymbol{\varphi}}{\partial s}(\boldsymbol{a}) = \lim_{\epsilon \to 0} \frac{1}{\epsilon} \Big(\boldsymbol{\varphi}(\boldsymbol{a} + \epsilon \boldsymbol{e}_1) - \boldsymbol{\varphi}(\boldsymbol{a}) \Big) = \lim_{\epsilon \to 0} \frac{1}{\epsilon} \Big((\boldsymbol{\varphi} \circ \boldsymbol{l})(\epsilon) - (\boldsymbol{\varphi} \circ \boldsymbol{l})(0) \Big) = \frac{d(\boldsymbol{\varphi} \circ \boldsymbol{l})}{du}(0),$$

つまり $\frac{\partial \varphi}{\partial s}(a)$ は S 内の曲線 $\varphi \circ l$ の(つまり, $\varphi(L)$ の)u における接ベクトルであることがわかります. $\frac{\partial \varphi}{\partial t}(a)$ も同様に,u における $\varphi(M)$ の接ベクトルです. 局所座標の条件 (iii) より,これらは一次独立です. これは, $\varphi(L)$ と $\varphi(M)$ の接ベクトルが u において平行にはなっていないこと,つまり「座標軸」 $\varphi(L)$, $\varphi(M)$ が接したりせず,「横断的に」交わることを意味します(直交はしていないかもしれません). もし $\varphi(L)$ と $\varphi(M)$ が u において接していると, $\varphi(U)$ 上の「座標軸」だと言うのは無理がありますが,条件 (iii) により,その心配はないことになります.

幾何入門 レポート問題 8 (2018 年 6 月 15 日)

担当:境 圭一

(6/22 の 3 限開始時までに提出してください)

各自の学籍番号の下 2 桁の数を 3 で割った余りを k とおく.例えば 17S1067X なら k=1, 17S1089Y なら k=2. 6/15 の演習問題 1. (4) の $\boldsymbol{\varphi}_-$: $\mathbb{R}^2 \to V_-$ を考える. V_- の部分集合 $U_0:=\{(x,y,z)\in V_-\mid 0< z<1\},$ $U_1:=\{(x,y,z)\in V_-\mid -1/2< z<1/2\},\quad U_2:=\{(x,y,z)\in V_-\mid z<0\}$ について, $\boldsymbol{\varphi}_-^{-1}(U_k)\subset\mathbb{R}^2$ を図示せよ.

http://math.shinshu-u.ac.jp/~ksakai/18_geometry/18_geometry.html