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Lecture 1 is a quick review or recall of
“Introduction to Bivariant Theory, I, II, lll”
which | gave for
“The 9th (Non-)Commutative Algebra and Topology”

February 18 - 20, 2020, Faculty of Science, Shinshu University.
“Bivariant Theory AFi. 1, I, III”

FEomE () mia#Hs bROY—,
2020 &£ 2 H 18 H~2 H 20 BH. EMXFEEH

Bivariant Theory is one introduced by W. Fulton and R. MacPherson in
[FM] “Categorical frameworks for the study of singular spaces”

Mem. Amer. Math. Soc. 243 (1981)

Part I: Bivariant Theories (pp.1-117)
Part Il: Products in Riemann-Roch (pp.119-161)



Menu

§1 Hirzebruch—Riemann—Roch (HRR)
§2. Grothendieck—Riemann—Roch (GRR)

§3. Fulton—MacPherson’s bivariant theory
§3.1. Ingredients of Fulton—MacPherson’s bivariant theory
§3.2. Bivariant operations on B
§3.3. Seven axioms required on these 3 operations
§3.4. Grothendieck transformation

§4. Associated covariant & contravariant functors B, ,B*
§5. Canonical orientation

§6. Gysin maps induced by bivariant elements

§7. Gysin maps induced by canonical orientations

§8. Riemann—Roch formula by Fulton-MacPherson

§9. A remark on RR-formulas



§1 Hirzebruch—Riemann—Roch (HRR)

E, a holomorphic vector bundle on compact manifold X over C

dim X
X(X,E):= > _(~1)'dimc H'(X,E), Euler characteristic of E.

i=0
Serre’s conjecture (1953, 9/29, a letter to Kodaira-Spencer, 1AS)
3 a polynomial P(X, E) of Chern classes of the tangent bundle TX and E
such that

X.E) = [ PXE) NN
X

Hirzebruch—Riemann—Roch (HRR) (1953, 12/9, at IAS of Princeton):

x(X, E):/X(td(TX)UCh(E))ﬂ[X].

dim X

td(7X) = []
j=1
character. 8; and «; are the Chern roots of TX and E respectively.

rank E
ﬂj _ ;
T Todd class of TX, ch(E) = ; €% Chern

in 36 days in 35 days

“private memo” : 9/29 11/4

birth of HRRY!)

12/9. (In the very middle of the



§2. Grothendieck—Riemann—Roch (GRR)

Grothendieck said, “No, the Riemann-Roch theorem is not a theorem about
varieties, it's a theorem about morphisms between varieties.”
He extended HRR to the natural transformation:

ch(——)utd(-): K°(=) = H'(-) ® Q.
K°(Z) is K-theory of vector bundles,H*(Z) is cohomology.
Namely, for a holomorphic map f : X — Y of algebraic manifolds
(=non-singular complex projective varieties) X and Y, the following diagram
is commutative:

KO(X) ch(—)Utd(TX) H(X)® Q
f.l lf\
KO(Y) ———— H(Y)®

ch( YUtd(TY)

Note K°(—) and H*(—) are contravariant! So f, are Gysin (wrong-way) maps.
Grothendieck gave 4 lectures (12 hours for 4 days) of his proof “Classes
de faisceaux et théoreme de Riemann—Roch” (1957) at 1st Arbeitstagung
at Bonn in 1957 (founded by Friedrich Hirzebruch), published in SGA
6(1971), 20-71. His proof was also published by Borel-Serre in
Bull.Soc.Math. France (1958), p. 97-136.)

Borel said, “Grothendieck’s version of Riemann—Roch is a fantastic theorem.
This is really a masterpiece of mathematics.”
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Why is GRR an extension of HRR?
Because [GRR for ax : X — pt (a map to a point)] = HRR !!!
Indeed, let’s consider the following commutative diagram!

KO(x) L0 Xy @ Q
[GRRforax: X =+ pf] === (0| |@on
K° - H* )

(pt) o H*(pt) @ Q

Namely, for E € K°(X)

ch((ax)E) U td(pt) = (ax): (ch(E) U td(TX)).
Ch((Ax) E) U td(DE) = « v vvevereeneeeaeenne. =x(X, E)

(ax) (ch(E)Utd(TX)) = -+ = / (td(TX)U ch(E)) N [X].
X
Thus we have HRR:

X(X,E):/X(td(X)Uch(E))ﬂ[X].



My guess: Probably Grothendieck thought as follows:
Note that for a vector space V, ch(V) = dim V, so

dim X dim X
X(X;E) =Y (=1)dimc H'(X,E) = > _ (=1)'ch(H'(X, E))
i=0 i=0

dim X
=ch <Z(-1)"H"(X7 E)>

i=0

/ (td(TX) U ch(E)) N [X] = (ax)- ((td(TX) U ch(E)) N [X])

KO(X) td(TX)Uch(—) H(X) _Z[X] .00
.‘(ax)”l (ax)i i(aX)*
0 * =3
K1) 1d(Tpr)Uch(—)=ch(—) H*(pt) o H.(pt)

td(TX)Uch(—)

td(TX) U ch(E)

E
“(ax)z”i (ax)!l

S X(—1)H'(X, E) x(X; E)

ch(—)



KO(X) ch(—)Utd(TX) H'(X) © Q
Q n[X]
- h(Q~ (=) utd(TX)N[X -
Ko(X) ch(Q™ ' (=))utd(TX)N[X] H.(X)® Q
fi &\L if* fi
Ko(Y H(Y)®
o(Y) ch(Q = (=))utd(TY)N[X] (V)@Q
Q n[v]
Ko(Y) H*(Y)®Q

ch(—)utd(TY)

The commutativity of the outer square follows from that of the inner square.

Ko(Z) is K-theory of coherent sheaves on Z. f,
by £.F := Y4 X(—1) RIf.F. For X 2% pt, (ax).E

- Ko(X) — Ko(Y) is defined

= 2 (1) H(X, E).

In fact,

K°(X) H*(X)®Q
f!l f is expressed as fll
0

K (Y) ch(—)utd(TY) (Y)

Here Ty := TX — *TY € K°(X) and td(T;) =

ch(—

YUtd(TX)

KO(X) —L— H*(X)®Q

lm (ta(rpu-)
K(Y) —— H (o0,

td(TX)



Indeed, the left diagram means: for E € K°(X)
td(TY)U ch(fE) = fi(td(TX) U ch(E))

fi="Py" of. o Px. Here Px = H*(X)

M H.(X) and

nlY]

Py = H*(Y)
Y are smooth). So, td(TY) U ch(fE) = Py o f. o Px(td(TX) U ch(E)) can be
written as (td(TY) U ch(fiE))n[Y] = f. ((td( TX)U ch(E))m[X]).

td(TY) N (ch(FE)N[Y]) = f. (td(TX) (ch(E)m[X])).

Ch(AE)N[Y] = by N Fe (td(TX) N (ch(E )m[X])).
By the projection formula, the tight-hand-side becomes as follows:

ch(fE)N[Y] = f. (f (WY ) (td(TX) N (ch(E )m[X]))).
ch(KE)N[Y] = f. (W (td(TX)m (ch(E)m[X]))).
en(tEN1Y] = 1. ( (457% L oh(E)rIxD) )

ch(FE)N[Y] = £. ((td( T)U ch(E))m[X]))).
ch(fE) =Py of. o px(td(rf) U ch(E)),
ch(f E) = £ (td(TUch(E)).

H.(Y) the Poincaré duality isomorphisms (since X and



GRR was extended to the following
“SGA 67, 1971: For a proper and local complete intersection morphism
f:X=>Y

K(X) —2— H'(X)®Q

f‘l lf!(td(T,)uf)
KO(Y) —— H*(Y)®Q,

Here T; € K°(X) is the relative tangent bundle of f. If f : X — Y is a map
of smooth manifolds, then T; = TX — f*TY € K°(X).

The inner commutative square was extended to singular varieties
“BFM-RR”’(Baum-Fulton—MacPherson’s Riemann—Roch),
Publ.Math.IHES. 45 (1975), 101-145.”:

3 a natural transformation

™MKy (=) = Ho(-) @ Q

such that if X is non-singular, 78™(0Oyx) = td(TX) N [X], the Poincaré dual of
the Todd class td(TX) of TX: i.e., forapropermapf: X — Y

BFM

Ko(X) ——— H.(X)®Q

f*l lf*

Ko(Y) —— H.(Y)®Q,

FBFM



“BFM-RR” is motivated by MacPherson’s Chern class transformation
(Ann. Math, 100 (1974),423-432)

e, F(=) = Ho(-)

such that if X is nonsingular c.(1lx) = ¢(7X) N [X] the Poincaré dual of
the total Chern class of TX.
Here F(X) is the abelian group of constructible functions of X.)

(NOTE: MacPherson’s Chern class transformation ¢, : F(—) — H.(—)is a
“Grothendieck-Riemann-Roch”-type theorem for Chern classes for singular
varieties. However, in his paper there was no word of “Riemann-Roch”!)

“Verdier-RR”, Astérisque, 1983 (conjectured in BFM’s paper; proved by
Verdier): For a l.c.i. morphism f: X — Y we have the commutative diagram:

Ko(Y) s H.(Y)®Q

I!l ltd(T,)mf'

Ko(X) ——— H(X) ©Q.



§3. Fulton—MacPherson’s bivariant theory

Fulton-MacPherson introduced Bivariant Theory [FM] in order to
unify these “GRR”-type formulas, i.e.,"SGA6”,"BFM-RR”,“Verdier-RR”.

NOTE (important!): “SGA6” and “Verdier-RR” deal with Gysin maps
(wrong-way maps) for f : X — Y.: fi : KO%(X) = K°(Y),f' : Ko(Y) — Ko(X).
FM’s theorem ([FM] Part ll:Products in Riemann-Roch (p.119-161)):
LetK(X — Y) be a bivariant K-theory such that

() K(X — pt) = Ko(X) Grothendieck group of coherent sheaves,

(i) K(X 2% X) = K°(X) Grothendieck group of complex vector bundies.
LetH(X — Y) be a bivariant homology theory such that

(i) H(X — pt) = H.(X) homology , (i) H(X x, X) = H*(X) cohomology.
Then, there exists a Grothendieck transformation

7 K(-) = H(-)oQ

such that
(i) v : K(X = pt) = H(X — pt) @ Q is BFM-RR 8™ . Ky(X) — H.(X) ® Q,
(i) for a I.c.i. morphismf: X — Y

~v(0x(f)) = td(T¢)  Ou(f) (Riemann—-Roch formula) (not v(0x(f)) = Ou(f))

0<(f) € K(X 5 Y),0u(f) € H(X 5 V), td(Ty) € H(X 25 X) = H*(X)
This RR-formula implies “SGA6”,“BFM-RR”,“Verdier-RR’!!!



§3.1. Ingredients of Fulton—-MacPherson’s bivariant
theory

1. An underlying category V,

2. A map B assigning to each map f: X — Y € V a graded abelian group

B'(X 5N Y). (Note: sometimes it can be just a set (cf. §4.3 Differentiable
RR of [FM]))

an element o € B(X 5 Y) is expressed as follows:

@

f

X Y

3. Aclass C of maps in V, called “confined maps” (e.g., proper maps)

4. A class Znd of commutative squares in V, called “independent squares”
(e.g., fiber square)

X' g

bl

Y —— Y



Conditions on the classes C and Znd

1. The class C is closed under composition and base change and contain
all the identity maps.

2. The class Znd satisfies the following:
X" n X' g X

2.1 if the two inside squares in lf” lf’ Jf are
Y” Y’ Y
h g
independent, then the outside square is also independent,
X 9, x X — vy
22 foranyf: X =Y, fl Jf and idxl Jidy
dy

are independent:

2.3 In an independent square f’l lf , iff(resp., g)is

Y —— Y
g
confined, then f’ (resp., g’) is confined.



A REMARK: Given an independent square f’l lr , its transpose

Y —— Y
g
Xl ' Y/

g’i lg is not necessarily independent.
EXAMPLE: Consider the category of topological spaces and continuous
maps. Let any map be confined, and allow a fiber square

x 9, x

A

Y —— Y
g

to be independent only if g is proper (hence g’ is also proper). Then its
transpose is not independent unless f is proper.

NOTE: The pullback of a proper map by any (continuous) map is proper,
because “proper” is equivalent to “universally closed” (i.e., the pullback by
any map is closed.)



§3.2. Bivariant operations on B
1. Product: Forf: X — Yand g: Y — ZinV, the homomorphism

o BXLYV)eB(YS2)»BYX L, Z), « @
Ve
z

2. Pushforward: For X & Y 2 Zin V with f confined, the homomorphism

Y

f

5 4

!
x —9 ., x

foB(X 22y 5 B(Y S Z2), «

Y

3. Pullback : For an independent square 1 |1

v/

Y,

/

g BXLY) B Ly, x L.y

@), Jo
yv_9d .y



§3.3. Seven axioms required on these 3 operations

1. (A¢) Product is associative: for X 5 Y % Z % w with
aeBXLY),BeB(Y S 2),7eBZLw),

(xepB)ey=ae(Sen).

(A) Pushforward is functorial : for X 5 Y % Z % W with fand g
confined and o € B(X 2% w)

(gof)(a) = g«(f:(a)).

3. (As) Pullback is functorial: given independent squares
X" H X' g’ X
ool
Yy” Y’ Y
h g
(goh)" =h"og".
4.

(Ar2) Product and pushforward commute: for X 5 Y & Z 2 W with
f confined and o € B(X 25 2), 8 e B(Z & W),

f.(ae ) =f.(a)e B eB(Y 2% w).



(A12) means the following:




5. (A13) Product and pullback commute: given independent squares

x " x

zZ — V4
with o € B(X 5 ¥),8eB(Y < 2),
h(a e B) = H(a) e h*(8) € B(X' L5 Z).

X' n X
i fl@
g’i gl@

z' V4

=

gef




6. (Az3) Pushforward and pullback commute:for independent squares

x " x

Z —— 2z
with f confined and o € B(X 25 2),

f(h"(a)) = b (f.(a)) € B(Y' L5 Z').




7. (A123) Projection formula: given an independent square with g confined and
aeB(X L Y),BeB(Y 2% Z), we have

hof

gi(gFaepB)=aeg.BcBX = 2).




We also require the theory B to have multiplicative units:

(Units) Forall X € V, there is an element 1x € B°(X x, X) such that
a e 1x = « for all morphisms W — X and all « € B(W — X), and such
that 1x e 5 = 3 for all morphisms X — Y and all 3 € B(X — Y), and
suchthat g*1x = 1x forallg: X' — X.



§3.4. Grothendieck transformation

Let B, B’ be two bivariant theories on a category V.
A Grothendieck transformation from B to B/,

~v:B—B
is a collection of homomorphisms
B(X—Y)=>B(X—=Y)
which preserves the above three basic operations:
1. y(a o5 B) = ~(a) e ¥(B),

2. y(f.a) = fiy(a),
3. v(g"a) = g"v(a).



A remark

In FM’s book,a Grothendieck transformation is defined as follows.
Let — : V — V be a functor sending confined maps in V to confined maps in
V, and independent squares in V to independent squares in V.
Write X and f for the image in V of an object X andamap fin V. Let T be a
bivariant theory on V and U be a bivariant theory on V. Then a Grothendieck
transformation

t: T—>U

is a collection of homomorphisms
t:TX LYy ux Ly,

which commutes with product, pushforward and pullback.
However, if we define

UxLy)y=uxLy)

then the bivariant theory U on V can be considered as a bivariant theory on
V, thus a Grothendieck transformation can be defined as above.



§4. Associated covariant & contravariant functors
B,,B*

B unifies a covariant theory B.. and a contravariant theory B*:

1. B;(X) := B~/(X — pt) is covariant for confined maps:
! 1%
pt

(g o f). = g« o f. follows from (A) (the functoriality of pushforward).

f. . Bi(X) — Bj(Y)(foraconfinedmap f: X — Y), X

2. B'(X) :=B'(X x, X) is contravariant for any morphisms: forg: X — Y

g B(Y) = B(X), x—2-vy

@|o «|@
XY

(gof)" =f"og" follows from (Asz) (the functoriality of pullback).
That is why B(X — Y) is called a bivariant theory.
~ : B — B’ induces natural transformations  : B, — B, and v : B* — B'".
(Sometimes they are denoted ~. and v* with x.)



§5. Canonical orientation

Let S’ be another class of maps in V, which is closed under compositions
and containing all identity maps. ( We keep the symbol S for another class
considered later)

NOTE: For the class C of confined maps, we require the stability of pullback,
i.e., the pullback of a confined map is confined. For this class S’ we do not
require the stability of pullback.

If for f : X — Y € S’ there is assigned an element
o(f) e B(X 5 Y)

satisfying
(i) 6(gof)=0(f) «6(g)
(i) 8(idx) = 1x (the unit element).

Then 6(f) is called a canonical orientation of f.



§6. Gysin maps induced by bivariant elements
Any bivariant element 6 € B'(X N Y) gives rise to Gysin (“wrong-way”
homomorphisms

1. 60" B(Y) > Bii(X), ie, 6 :BI(Ypt)—B (Y > pt)
X—— Y
f
6
pt
ForneB(Z % X)and 0 € B(X 5 Y), (ne6) =1 00'. Because
(ne0)(a) :=(ned)ea=mne(@ea)=7(0(x)=(n0)(a).
2.0 BI(X) = BY(Y), ie, 0 :B(X-X)>B(Y 2 y)

defined by (f : X — Y is a confined map)
0i(a) == f.(ael), X—Lsvy

XY
(ne8) =6 on. Because (ne8)(a) :=(fog)«(cxe(nef)) =
f(9-((a e n) 0 0)) = f.(m(a) @ 0) = Ou(m () = (61 0 ) ().

defined by 6'(a) := e,



§7. Gysin maps induced by canonical orientations

In particular, a canonical orientation 4(f) (f € S’) makes
1. the covariant functor B..(X) contravariant for maps in S’:
Forf: X —YeS, f:B.(Y)— B.(X) defined by 6(f)',i.e,

o, X Y
e
pt
(go ) =6(gof) = (0(f) e 0(g)) = 6(1) 00(g)' = F'og.

2. the contravariant functor B* covariant for mapsinC N S.
Forf: X —YecCn&,fi:B*(X)— B*(Y) defined by

fi() := f.(ceb(f)), X—1lsvy

O |
X Y

(gof)i=0(gof)=(6(f)e0(g)) =0(g)o0(f)r =g oh
f' and £, should carry the data S’ and 6, but usually omitted.

f(a) := 0(f)'(a) = 6(F)



§8. Riemann—Roch formula by Fulton-MacPherson

Let B, B’ be bivariant theories and let 05, 0z be canonical orientations on
B, B’ for a class S’. Let v : B — B’ be a Grothendieck transformation. If there

exists a bivariant element us € B'(X — x, X) for f : X — Y € S such that

0\ /O

it is called a Riemann—Roch formula for « : B — B’ with respect to 6z and 0.
In fact this RR-formula gives rise to the formulas of the following types

“BFM-RR”, “SGA6”, “Verdier-RR”.

’Y(Q]B(f)) = Ur e 9]3/

Indeed
(1) The Grothendieck transformation v : B — B’ gives us:
“BFM-RR” type formula: for a propermap f: X — Y

B.(X) —— B,(X)

‘| I

B.(Y) #) BL(Y),

This is due to y(f.a) = fiy(a).



(2) “SGAB” type formula: foramap f: X - YcCnS
B*(X) —— B*(X)

f’l lf‘(—-uf)

BY(Y) —— B (Y),

~y(fie)) = v(fe (v @ O5(f))) (by the definition of £)
= £y (a0 O5(f))

— 1. (st o206 )

= f. (7(04) . (Uf . GB/(f))) (by RR-formula ~(6s(f)) = ur ® 0/ (f) )

— . (('y(a) our)e 93,(:‘))

= f(v(e) o ur) (oy the definition of fi(—) := £.(— e 6 (f)))



(8) “Verdier-RR” type formula: foramap f: X - Y e &
B.(Y) —— B.(Y)

/| [

B.(X) — BL(X),

() =~(s(f) 0 )
=7(6z(f)) @ v(c)
= (uf . 93/(0) e~(a) (by RR-formula ~(0s(f)) = ur e 0z (f) )
= ure (6(F) 0 7(a))
— U o F(1(a)).



So Fulton-MacPherson’s Grothendieck transformation
v:K(-)—H(-)®Q
with Riemann-Roch formula (0 (f)) = td(T;) e 6u(f) implies

(1) BFM-RR:
B.(X) —— B.(X)
| |
B.(Y) —— BL(Y),
(2) “SGA 6”:
B*(X) —— B"(X)
le Jn(f-un
B*(Y) —— B*(Y),
(3) “Verdier-RR” '
B.(Y) —— BL(Y)

/| [

B.(X) ——— B.(X),

M

Ko(X) —y H.(X)®Q

==> | I

Ko(Y) — H(YV)®Q,

KO(X) —<L 5 H*(X)®Q

—

K(Y) —— H'(V)eQ,

lfl(*Utd(Tf))

Ko(Y) —s H(Y)2Q

==> f!J/ ltd(T,)mf!
Ko(X) —po He(X) @ Q,



§9. A remark on RR-formulas

1. “downstairs” Riemann—Roch formula (by S.Y.):

idy

v(0s(f)) = O (f) o df, d €B'(Y =5 V).

X X % X
%\ o0

Wy

(MEMO:I suppose Fulton-MacPherson use “u” for “us”, indicating “unit”, not
“upstairs”.)

~v(0s(f)) = 0y (f) ® d implies the corresponding
“SGAB” (for f: X — Y € CN S’) and “Verdier-RR” (for f : X — Y € &)



(i) “downstairs” “SGA6” type formula: foramap f: X - YeCn S
B*(X) —— B*(X)

f‘l lﬂ(—)-df

B (Y) —— B"(Y),

Y(fier) = y(f (a @ 03(F)))
= £y (a0 (1))

~ . (3te) 2020

f, (’y(a) . (9B,(f) . d,)) (by d-RR-formula (05 (f)) = 0 (f) e o )

—f <('y(oz) . 93,(0) . d,)

=f. (’y(a) . GB/(f)) e d; (by (As2:product and pushforward commutes)
= fi(y(«)) e di (by the definition of fi(—) := £.(— e g/ (f)))



(ii)“downstairs” “Verdier-RR” type formula: foramap f: X — Y € &’
B.(Y) —— B.(Y)

(
f!l lf!(d,o—)

B.(X) —— BL(X)

Y (o) =~(s(f) 0 )
= (0z(f))  v(c)
= (6s(r) o df) o~(a) (by d-RR-formula v(0s(f)) = 0z (f) ® dy )
= 0s1(1) o (dh 0 7(a))
= f'(dj e y(a)).



Summing up:

“‘SGA 6” type formulas (“upstairs” and “downstairs”)

B*(X) —— B*(X) B*(X) —— B*(X)
f!l lﬂ(*'“r) ﬂJ, lﬁ(*)'df
B*(Y) —— B"(Y), B*(Y) —— B*(Y),

¥

“Verdier-RR” type formulas (“upstairs” and “downstairs”)
B.(Y) —— BL(Y) B.(Y) —— BL(Y)

f‘l lu,of!(—) f‘l lf‘(d,o—)

B. (X) — B.(X), B. (X) E— B (X),



2. Riemann-Roch “self” formula: Let B be a bivariant theory and 9,0’ be
two canonical orientations of B for a class S’:

1. (“upstairs” Riemann-Roch “self” formula (by S.Y.))
0(f) = ur e 0'(F), ur € B(X =% X),
Letting fi := 6'(f),, "' := 0'(f)", we have f, = fi(—eus) and f' = uref*.
2. (“downstairs” Riemann-Roch “self” formula (by S.Y.))
0(f) =0/ (f)ed;, dreB(Y L)
As above, we have fi = fy(—)ed; and f' = f"'(dre—)
In other words, we think
v=1id:B — B,id(6(f)) = ur e 6'(f), id(6(f)) = 0'(f) e d;. Thus, we have
“‘SGA 6” type formulas (“upstairs” and “downstairs”)

B*(X) —— B*(X) B*(X) —<— B*(X)

1| |ft=ew 4| |-

BY(Y) —— BY(Y),  B(Y) —— B(Y),
“Verdier-RR” type formulas (“upstairs” and “downstairs”)

B.(Y) —— B.(Y)  B.(Y) —2— B.(Y)

L e e

B.(X) — B.(X), B.(X) — B.(X),



Thank you very much for your attention!



	§1 Hirzebruch--Riemann--Roch (HRR)
	§2. Grothendieck--Riemann--Roch (GRR)
	§3. Fulton--MacPherson's bivariant theory
	§3.1. Ingredients of Fulton--MacPherson's bivariant theory
	§3.2. Bivariant operations on B
	§3.3. Seven axioms required on these 3 operations
	§3.4. Grothendieck transformation

	§4. Associated covariant & contravariant functors B*,B*
	§5. Canonical orientation
	§6. Gysin maps induced by bivariant elements 
	§7. Gysin maps induced by canonical orientations 
	§8. Riemann--Roch formula by Fulton-MacPherson
	§9. A remark on RR-formulas



