Lecture 1:
 A quick review of Bivariant Theory

Shoji Yokura
Kagoshima University

December 5, 2020

Lecture 1 is a quick review or recall of
＂Introduction to Bivariant Theory，I，II，III＂
which I gave for
＂The 9th（Non－）Commutative Algebra and Topology＂
February 18－20，2020，Faculty of Science，Shinshu University． ＂Bivariant Theory 入門，I，II，III＂

「第9回（非）可換代数とトポロジー」 2020年2月18日～2月20日，信州大学理学部

Bivariant Theory is one introduced by W．Fulton and R．MacPherson in
［FM］＂Categorical frameworks for the study of singular spaces＂
Mem．Amer．Math．Soc． 243 （1981）
Part I：Bivariant Theories（pp．1－117）
Part II：Products in Riemann－Roch（pp．119－161）

Menu

§1 Hirzebruch-Riemann-Roch (HRR)
§2. Grothendieck-Riemann-Roch (GRR)
§3. Fulton-MacPherson's bivariant theory
§3.1. Ingredients of Fulton-MacPherson's bivariant theory
§3.2. Bivariant operations on \mathbb{B}
§3.3. Seven axioms required on these 3 operations
§3.4. Grothendieck transformation
§4. Associated covariant \& contravariant functors $\mathbb{B}_{*}, \mathbb{B}^{*}$
§5. Canonical orientation
§6. Gysin maps induced by bivariant elements
§7. Gysin maps induced by canonical orientations
§8. Riemann-Roch formula by Fulton-MacPherson
§9. A remark on RR-formulas

§1 Hirzebruch-Riemann-Roch (HRR)

E, a holomorphic vector bundle on compact manifold X over \mathbb{C}

$$
\chi(X, E):=\sum_{i=0}^{\operatorname{dim} X}(-1)^{i} \operatorname{dim}_{\mathbb{C}} H^{i}(X, E), \quad \text { Euler characteristic of } E
$$

Serre's conjecture (1953, 9/29, a letter to Kodaira-Spencer, IAS)
\exists a polynomial $P(X, E)$ of Chern classes of the tangent bundle $T X$ and E such that

$$
\chi(X, E)=\int_{X} P(X, E) \cap[X]
$$

Hirzebruch-Riemann-Roch (HRR) (1953, 12/9, at IAS of Princeton):

$$
\chi(X, E)=\int_{X}(t d(T X) \cup \operatorname{ch}(E)) \cap[X]
$$

$t d(T X):=\prod_{j=1}^{\operatorname{dim} X} \frac{\beta_{j}}{1-e^{-\beta_{j}}}$ Todd class of $T X, \operatorname{ch}(E)=\sum_{i=1}^{\text {rank } E} e^{\alpha_{i}}$ Chern
character. β_{j} and α_{i} are the Chern roots of $T X$ and E respectively.
"private memo" : $9 / 29 \xrightarrow{\text { in } 36 \text { days }} 11 / 4 \xrightarrow{\text { in } 35 \text { days }} 12 / 9$. (In the very middle of the birth of HRR!)

§2. Grothendieck-Riemann-Roch (GRR)

Grothendieck said, "No, the Riemann-Roch theorem is not a theorem about varieties, it's a theorem about morphisms between varieties."
He extended HRR to the natural transformation:

$$
\operatorname{ch}(--) \cup t d(-): K^{0}(-) \rightarrow H^{*}(-) \otimes \mathbb{Q}
$$

$K^{0}(Z)$ is K-theory of vector bundles, $H^{*}(Z)$ is cohomology. Namely, for a holomorphic map $f: X \rightarrow Y$ of algebraic manifolds (=non-singular complex projective varieties) X and Y, the following diagram is commutative:

$$
\begin{aligned}
& K^{0}(X) \xrightarrow{c h(-) \cup t d(T X)} H^{*}(X) \otimes \mathbb{Q} \\
& f_{!} \downarrow \\
& K^{0}(Y) \xrightarrow[c h(-) \cup t d(T Y)]{ } H^{*}(Y) \otimes \mathbb{Q} .
\end{aligned}
$$

Note $K^{0}(-)$ and $H^{*}(-)$ are contravariant! So $f_{!}$are Gysin (wrong-way) maps. Grothendieck gave 4 lectures (12 hours for 4 days) of his proof "Classes de faisceaux et théorème de Riemann-Roch" (1957) at 1st Arbeitstagung at Bonn in 1957 (founded by Friedrich Hirzebruch), published in SGA 6(1971), 20-71. His proof was also published by Borel-Serre in Bull.Soc.Math. France (1958), p. 97-136.) Borel said, "Grothendieck's version of Riemann-Roch is a fantastic theorem. This is really a masterpiece of mathematics."

Riemaun-Roch'scher Sats: der letzte Schrei: Od Diagramm.

U_{m} dieser Anosage über $f^{\prime \prime}: X \rightarrow Y$ encen apv voxim ativen Sinn zu gebein, mussteich nahezu zurei itunden lang die Geduld der 2nhören misbrauchen. So'nwarts anf weiss (in. Springer's Lectuve Nstes) nimmit's wode an die 400,500 Seiticn. Ein rackendes Beispiel dafir, wie unser Wissens- and Futdecking. drang sich imener mehr in einen lebeusentrickten ilogischen. Delirium auslabt, während das beben selbrt anf tantendfa. che Art sum Tiufel geht - und witn endgilitiger Vernichian bedrolst ist. Hóctuste Zeit, unsern Kurs zu ähdern! (6. in (97) Alexander Trothendis.k

京都・パリ・ハーバードで鍛えた発想と手法が，代数幾何の未解決難問の解決へと導いた

代数的多様体の研究
（㯭和 45 年）

広中平祐

哩団法人数㻎科学振置会理事長

数学

どパリの代数幾何の連中がみんな来ていました。グロタ ンディークが『代数幾何原論』を13巻まで書くといって，講義をしながら書き始めた頃です。しばらくして，チャー ン類（クラス）を定義して，リーマン・ロッホ定理を一般化した。それがK理論につながったのです。「できた！」 と非常に喜んでいました。このころグロタンディークは本格的に注目されるようになりました。そのあとエター ル・コホモロジーにいくのだけど，そのころは，僕はハー バードに帰っていました。

2009年9月13日．日本孛上
硣比 τ

Why is GRR an extension of HRR?
Because [GRR for $a_{X}: X \rightarrow p t$ (a map to a point)] = HRR !!! Indeed, let's consider the following commutative diagram!

$$
\left[\text { GRR for } a_{x}: X \rightarrow p t\right]===\begin{aligned}
& K^{0}(X) \xrightarrow{\operatorname{ch(-)\cup td(TX)}} H^{*}(X) \otimes \mathbb{Q} \\
& \left(a_{x}\right)! \\
& K^{0}(p t) \xrightarrow{\operatorname{ch(-)\cup td(pt)}} H^{*}(p t) \otimes \mathbb{Q} .
\end{aligned}
$$

Namely, for $E \in K^{0}(X)$

$$
\begin{gathered}
\operatorname{ch}\left(\left(a_{X}\right)!E\right) \cup \operatorname{td}(p t)=\left(a_{X}\right)!(\operatorname{ch}(E) \cup t d(T X)) . \\
\operatorname{ch}\left(\left(a_{X}\right)!E\right) \cup \operatorname{td}(p t)=\cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdot \cdots(X, E) \\
\left(a_{x}\right)!(\operatorname{ch}(E) \cup \operatorname{td}(T X))=\cdots \cdots \cdots \cdot=\int_{X}(\operatorname{td}(T X) \cup \operatorname{ch}(E)) \cap[X] .
\end{gathered}
$$

Thus we have HRR:

$$
\chi(X, E)=\int_{X}(\operatorname{td}(X) \cup \operatorname{ch}(E)) \cap[X] .
$$

My guess: Probably Grothendieck thought as follows:
Note that for a vector space $V, \operatorname{ch}(V)=\operatorname{dim} V$, so

$$
\begin{aligned}
& \chi(X ; E)=\sum_{i=0}^{\operatorname{dim} X}(-1)^{i} \operatorname{dim}_{\mathbb{C}} H^{i}(X, E)=\sum_{i=0}^{\operatorname{dim} X}(-1)^{i} \operatorname{ch}\left(H^{i}(X, E)\right) \\
& =c h\left(\sum_{i=0}^{\operatorname{dim} X}(-1)^{i} H^{i}(X, E)\right) \\
& \int_{X}(t d(T X) \cup \operatorname{ch}(E)) \cap[X]=\left(a_{X}\right)_{*}((t d(T X) \cup \operatorname{ch}(E)) \cap[X])
\end{aligned}
$$

The commutativity of the outer square follows from that of the inner square. $K_{0}(Z)$ is K -theory of coherent sheaves on $Z . f_{*}: K_{0}(X) \rightarrow K_{0}(Y)$ is defined by $f_{*} \mathcal{F}:=\sum_{i=0}^{\operatorname{dim}_{i} X}(-1)^{i} R^{i} f_{*} \mathcal{F}$. For $X \xrightarrow{a_{X}} p t,\left(a_{X}\right)_{*} E=\sum_{i=0}^{\operatorname{dim}^{X} X}(-1)^{i} H^{i}(X, E)$. In fact,
$K^{0}(X) \xrightarrow{\operatorname{ch}(-) \operatorname{tad}(T X)} H^{*}(X) \otimes \mathbb{Q}$
$K^{0}(X) \xrightarrow{\text { ch }} H^{*}(X) \otimes \mathbb{Q}$
$\ddagger \downarrow \quad \downarrow \hbar_{i}$ is expressed as $\hbar_{\ddagger} \downarrow \downarrow_{i}\left(\operatorname{td}\left(T_{\mathbf{T}}\right) \cup-\right)$
$K^{0}(Y) \xrightarrow[\text { ch(-) Utdd }(T Y)]{ } H^{*}(Y) \otimes \mathbb{Q}$. $K^{0}(Y) \xrightarrow[c h]{ } H^{*}(Y) \otimes \mathbb{Q}$,
Here $T_{f}:=T X-f^{*} T Y \in K^{0}(X)$ and $t d\left(T_{f}\right)=\frac{t d(T X)}{f^{*} t d(T Y)} \in \mathcal{H}^{*}(X) \otimes \mathbb{Q}_{\bar{三}}$

Indeed, the left diagram means: for $E \in K^{0}(X)$

$$
\operatorname{td}(T Y) \cup \operatorname{ch}\left(f_{!} E\right)=f_{!}(t d(T X) \cup \operatorname{ch}(E))
$$

$f_{!}=\mathcal{P}_{Y}^{-1} \circ f_{*} \circ \mathcal{P}_{X}$. Here $\mathcal{P}_{X}=H^{*}(X) \xrightarrow[\cong]{\curvearrowleft[X]} H_{*}(X)$ and
$\mathcal{P}_{Y}=H^{*}(Y) \xrightarrow[\cong]{\stackrel{n}{\cong}]} H_{*}(Y)$ the Poincaré duality isomorphisms (since X and
Y are smooth). So, $\operatorname{td}(T Y) \cup \operatorname{ch}\left(f_{!} E\right)=\mathcal{P}_{Y}^{-1} \circ f_{*} \circ \mathcal{P}_{X}(t d(T X) \cup c h(E))$ can be written as $\left(\operatorname{td}(T Y) \cup \operatorname{ch}\left(f_{!} E\right)\right) \cap[Y]=f_{*}((\operatorname{td}(T X) \cup \operatorname{ch}(E)) \cap[X])$.

$$
\begin{aligned}
& \operatorname{td}(T Y) \cap\left(\operatorname{ch}\left(f_{!} E\right) \cap[Y]\right)=f_{*}(t d(T X) \cap(\operatorname{ch}(E) \cap[X])) . \\
& \quad \operatorname{ch}\left(f_{!} E\right) \cap[Y]=\frac{1}{\operatorname{td}(T Y)} \cap f_{*}(\operatorname{td}(T X) \cap(\operatorname{ch}(E) \cap[X])) .
\end{aligned}
$$

By the projection formula, the tight-hand-side becomes as follows:

$$
\begin{aligned}
\operatorname{ch}\left(f_{!} E\right) \cap[Y] & =f_{*}\left(f^{*}\left(\frac{1}{f d(T Y)}\right) \cap(t d(T X) \cap(c h(E) \cap[X]))\right) . \\
\operatorname{ch}\left(f_{!} E\right) \cap[Y] & =f_{*}\left(\frac{1}{\left.f^{*}+d d T Y\right)} \cap(t d(T X) \cap(c h(E) \cap[X]))\right) . \\
\operatorname{ch}\left(f_{!} E\right) \cap[Y] & \left.\left.=f_{*}\left(\left(\frac{t d(T X)}{f^{*}+d(T Y)} \cup \operatorname{ch}(E)\right) \cap[X]\right)\right)\right) \\
\operatorname{ch}\left(f_{!} E\right) \cap[Y] & \left.\left.=f_{*}\left(\left(\operatorname{td}\left(T_{f}\right) \cup \operatorname{ch}(E)\right) \cap[X]\right)\right)\right) . \\
c h\left(f_{!} E\right) & =\mathcal{P}_{Y}^{-1} \circ f_{*} \circ \mathcal{P}_{X}\left(t d\left(T_{f}\right) \cup \operatorname{ch}(E)\right), \\
c h\left(f_{!} E\right) & =f_{!}\left(\operatorname{td}\left(T_{f}\right) \cup c h(E)\right) .
\end{aligned}
$$

GRR was extended to the following
"SGA 6", 1971: For a proper and local complete intersection morphism $f: X \rightarrow Y$

$$
\begin{array}{ll}
K^{0}(X) \xrightarrow{c h} & H^{*}(X) \otimes \mathbb{Q} \\
f_{!} \mid & \downarrow f_{!}\left(\mathbf{t d}\left(\mathbf{T}_{\mathbf{f}}\right) \cup-\right) \\
K^{0}(Y) \xrightarrow[c h]{ } & H^{*}(Y) \otimes \mathbb{Q}
\end{array}
$$

Here $T_{f} \in K^{0}(X)$ is the relative tangent bundle of f. If $f: X \rightarrow Y$ is a map of smooth manifolds, then $T_{f}=T X-f^{*} T Y \in K^{0}(X)$.

The inner commutative square was extended to singular varieties
"BFM-RR"(Baum-Fulton-MacPherson's Riemann-Roch), Publ.Math.IHES. 45 (1975), 101-145.":
\exists a natural transformation

$$
\tau^{\mathrm{BFM}}: K_{0}(-) \rightarrow H_{*}(-) \otimes \mathbb{Q}
$$

such that if X is non-singular, $\tau^{\mathrm{BFM}}\left(\mathcal{O}_{X}\right)=t d(T X) \cap[X]$, the Poincaré dual of the Todd class $t d(T X)$ of $T X$: i.e., for a proper map $f: X \rightarrow Y$

$$
\begin{gathered}
K_{0}(X) \xrightarrow{\tau^{\mathrm{BFM}}} H_{*}(X) \otimes \mathbb{Q} \\
f_{*} \downarrow \\
K_{0}(Y) \xrightarrow[\tau_{*}]{\mathrm{BFM}} H_{*}(Y) \otimes \mathbb{Q},
\end{gathered}
$$

"BFM-RR" is motivated by MacPherson's Chern class transformation (Ann. Math, 100 (1974),423-432)

$$
\exists!c_{*}: F(-) \rightarrow H_{*}(-)
$$

such that if X is nonsingular $c_{*}\left(\mathbb{1}_{x}\right)=c(T X) \cap[X]$ the Poincaré dual of the total Chern class of $T X$.
Here $F(X)$ is the abelian group of constructible functions of X.)
(NOTE: MacPherson's Chern class transformation $c_{*}: F(-) \rightarrow H_{*}(-)$ is a "Grothendieck-Riemann-Roch"-type theorem for Chern classes for singular varieties. However, in his paper there was no word of "Riemann-Roch"!)
"Verdier-RR", Astérisque, 1983 (conjectured in BFM's paper; proved by Verdier): For a I.c.i. morphism $f: X \rightarrow Y$ we have the commutative diagram:

$$
\begin{array}{ll}
K_{0}(Y) \xrightarrow{\tau^{\mathrm{BFM}}} H_{*}(Y) \otimes \mathbb{Q} \\
f^{\prime} \downarrow & \\
K_{0}(X) \xrightarrow[\tau \mathrm{BFM}]{ } & H_{*}(X) \otimes \mathbb{Q}\left(T_{\mathrm{t}}\right) \cap f^{\prime} .
\end{array}
$$

§3. Fulton-MacPherson's bivariant theory

Fulton-MacPherson introduced Bivariant Theory [FM] in order to unify these "GRR"-type formulas, i.e.,"SGA6","BFM-RR","Verdier-RR".

NOTE (important!): "SGA6" and "Verdier-RR" deal with Gysin maps (wrong-way maps) for $f: X \rightarrow Y .: f_{!}: K^{0}(X) \rightarrow K^{0}(Y), f^{!}: K_{0}(Y) \rightarrow K_{0}(X)$. FM's theorem ([FM] Part II:Products in Riemann-Roch (p.119-161)):
Let $\mathbb{K}(X \rightarrow Y)$ be a bivariant K-theory such that
(i) $\mathbb{K}(X \rightarrow p t)=K_{0}(X)$ Grothendieck group of coherent sheaves,
(ii) $\mathbb{K}(X \xrightarrow{\text { id } X} X)=K^{0}(X)$ Grothendieck group of complex vector bundles.

Let $\mathbb{H}(X \rightarrow Y)$ be a bivariant homology theory such that
(i) $\mathbb{H}(X \rightarrow p t)=H_{*}(X)$ homology, (ii) $\mathbb{H}(X \xrightarrow{\text { id } X} X)=H^{*}(X)$ cohomology.

Then, there exists a Grothendieck transformation

$$
\gamma: \mathbb{K}(-) \rightarrow \mathbb{H}(-) \otimes \mathbb{Q}
$$

such that
(i) $\gamma: \mathbb{K}(X \rightarrow p t) \rightarrow \mathbb{H}(X \rightarrow p t) \otimes \mathbb{Q}$ is BFM-RR $\tau^{B F M}: K_{0}(X) \rightarrow H_{*}(X) \otimes \mathbb{Q}$,
(ii) for a l.c.i. morphism $f: X \rightarrow Y$
$\gamma\left(\theta_{\mathbb{K}}(f)\right)=t d\left(T_{f}\right) \bullet \theta_{\mathbb{H}}(f) \quad$ (Riemann-Roch formula) $\left(\operatorname{not} \gamma\left(\theta_{\mathbb{K}}(f)\right)=\theta_{\mathbb{H}}(f)\right)$
$\theta_{\mathbb{K}}(f) \in \mathbb{K}(X \xrightarrow{f} Y), \theta_{\mathbb{H}}(f) \in \mathbb{H}(X \xrightarrow{f} Y), t d\left(T_{f}\right) \in \mathbb{H}(X \xrightarrow{\text { id } X} X)=H^{*}(X)$
This RR-formula implies "SGA6","BFM-RR","Verdier-RR"'!!

§3.1. Ingredients of Fulton-MacPherson’s bivariant theory

1. An underlying category \mathcal{V},
2. A map \mathbb{B} assigning to each map $f: X \rightarrow Y \in \mathcal{V}$ a graded abelian group $\mathbb{B}^{i}(X \xrightarrow{f} Y)$. (Note: sometimes it can be just a set (cf. §4.3 Differentiable RR of [FM]))
an element $\alpha \in \mathbb{B}(X \xrightarrow{f} Y)$ is expressed as follows:

3. A class \mathcal{C} of maps in \mathcal{V}, called "confined maps" (e.g., proper maps)
4. A class \mathcal{I} nd of commutative squares in \mathcal{V}, called "independent squares" (e.g., fiber square)

Conditions on the classes \mathcal{C} and $\mathcal{I n d}$

1. The class \mathcal{C} is closed under composition and base change and contain all the identity maps.
2. The class \mathcal{I} nd satisfies the following:

$$
X^{\prime \prime} \xrightarrow{h^{\prime}} X^{\prime} \xrightarrow{g^{\prime}} X
$$

2.1 if the two inside squares in $\downarrow^{\prime \prime} \quad \downarrow^{\prime} \quad \downarrow^{\prime}$ are

$$
Y^{\prime \prime} \longrightarrow{ }_{h} Y^{\prime} \longrightarrow{ }_{g} Y
$$

independent, then the outside square is also independent,

$$
X \xrightarrow{\text { id } X} X \quad X \xrightarrow{f} Y
$$

2.2 for any $f: X \rightarrow Y, \quad f \downarrow \quad \downarrow f$ and id $X \downarrow \quad$ id $_{Y}$

$$
Y \xrightarrow[\text { id }_{Y}]{ } Y \quad X \xrightarrow[f]{\longrightarrow} Y
$$

are independent:

$$
X^{\prime} \xrightarrow{g^{\prime}} X
$$

2.3 In an independent square $f^{\prime} \downarrow \downarrow f, \quad$ if f (resp., g) is $Y^{\prime} \longrightarrow \quad Y$
confined, then f^{\prime} (resp., g^{\prime}) is confined.

$$
X^{\prime} \xrightarrow{g^{\prime}} X
$$

A REMARK: Given an independent square

$$
\begin{array}{cc}
f^{\prime} \downarrow & \\
Y^{\prime} \xrightarrow{ } \longrightarrow & \\
\end{array}
$$

$X^{\prime} \xrightarrow{f^{\prime}} Y^{\prime}$
$g^{\prime} \downarrow \quad \downarrow g$ is not necessarily independent. $X \longrightarrow Y$
EXAMPLE: Consider the category of topological spaces and continuous maps. Let any map be confined, and allow a fiber square

to be independent only if g is proper (hence g^{\prime} is also proper). Then its transpose is not independent unless f is proper.
NOTE: The pullback of a proper map by any (continuous) map is proper, because "proper" is equivalent to "universally closed" (i.e., the pullback by any map is closed.)

§3.2. Bivariant operations on \mathbb{B}

1. Product: For $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ in \mathcal{V}, the homomorphism
$\bullet: \mathbb{B}^{i}(X \xrightarrow{f} Y) \otimes \mathbb{B}^{j}(Y \xrightarrow{g} Z) \rightarrow \mathbb{B}^{i+j}(X \xrightarrow{\text { gof }} Z)$,

2. Pushforward: For $X \xrightarrow{f} Y \xrightarrow{g} Z$ in \mathcal{V} with f confined, the homomorphism

$$
f_{*}: \mathbb{B}^{i}(X \xrightarrow{\text { gof }} Z) \rightarrow \mathbb{B}^{i}(Y \xrightarrow{g} Z),
$$

$$
x^{\prime} \xrightarrow{g^{\prime}} x
$$

3. Pullback : For an independent square

$$
g^{*}: \mathbb{B}^{i}(X \xrightarrow{f} Y) \rightarrow \mathbb{B}^{i}\left(X^{\prime} \xrightarrow{f^{\prime}} Y^{\prime}\right), \quad \quad X^{\prime} \xrightarrow{g^{\prime}} Y
$$

§3.3. Seven axioms required on these 3 operations

1. $\left(A_{1}\right)$ Product is associative: for $X \xrightarrow{f} Y \xrightarrow{g} Z \xrightarrow{h} W$ with $\alpha \in \mathbb{B}(X \xrightarrow{f} Y), \beta \in \mathbb{B}(Y \xrightarrow{g} Z), \gamma \in \mathbb{B}(Z \xrightarrow{h} W)$,

$$
(\alpha \bullet \beta) \bullet \gamma=\alpha \bullet(\beta \bullet \gamma) .
$$

2. $\left(A_{2}\right)$ Pushforward is functorial : for $X \xrightarrow{f} Y \xrightarrow{g} Z \xrightarrow{h} W$ with f and g confined and $\alpha \in \mathbb{B}(X \xrightarrow{\text { hogof }} W)$

$$
(g \circ f)_{*}(\alpha)=g_{*}\left(f_{*}(\alpha)\right) .
$$

3. $\left(A_{3}\right)$ Pullback is functorial: given independent squares

$$
\begin{array}{cc}
X^{\prime \prime} \xrightarrow{h^{\prime}} X^{\prime} \xrightarrow{g^{\prime}} & X \\
l^{\prime \prime \prime} & \downarrow_{f^{\prime}} \\
Y^{\prime \prime} \xrightarrow[h]{\longrightarrow} & Y^{\prime} \xrightarrow{l} \\
Y^{\prime \prime} & Y \\
(g \circ h)^{*}=h^{*} \circ g^{*} .
\end{array}
$$

4. $\left(A_{12}\right)$ Product and pushforward commute: for $X \xrightarrow{f} Y \xrightarrow{g} Z \xrightarrow{n} W$ with f confined and $\alpha \in \mathbb{B}(X \xrightarrow{\text { gof }} Z), \beta \in \mathbb{B}(Z \xrightarrow{h} W)$,

$$
f_{*}(\alpha \bullet \beta)=f_{*}(\alpha) \bullet \beta \in \mathbb{B}(Y \xrightarrow{n \circ g} W) .
$$

$\left(A_{12}\right)$ means the following:

5. $\left(A_{13}\right)$ Product and pullback commute: given independent squares

$$
\begin{aligned}
X^{\prime} \xrightarrow{h^{\prime \prime}} & X \\
f^{\prime} \downarrow & \\
Y^{\prime} \xrightarrow{h^{\prime}} & Y \\
g^{\prime} \downarrow & \\
Z^{\prime} \xrightarrow{ } \xrightarrow{ } & \\
& \\
&
\end{aligned}
$$

with $\alpha \in \mathbb{B}(X \xrightarrow{f} Y), \beta \in \mathbb{B}(Y \xrightarrow{g} Z)$,

$$
h^{*}(\alpha \bullet \beta)=h^{\prime *}(\alpha) \bullet h^{*}(\beta) \in \mathbb{B}\left(X^{\prime} \xrightarrow{g^{\prime} \circ f^{\prime}} Z^{\prime}\right) .
$$

6. $\left(A_{23}\right)$ Pushforward and pullback commute:for independent squares

$$
\begin{aligned}
& X^{\prime} \xrightarrow{h^{\prime \prime}} X \\
& f^{\prime} \downarrow \\
& \\
& Y^{\prime} \xrightarrow{h^{\prime}} \\
& \\
& g^{\prime} \downarrow \\
& Z^{\prime} \xrightarrow{l} \xrightarrow{l} \\
& \\
& \\
& \hline
\end{aligned}
$$

with f confined and $\alpha \in \mathbb{B}(X \xrightarrow{\text { gof }} Z)$,

$$
f_{*}^{\prime}\left(h^{*}(\alpha)\right)=h^{*}\left(f_{*}(\alpha)\right) \in \mathbb{B}\left(Y^{\prime} \xrightarrow{g^{\prime}} Z^{\prime}\right)
$$

7. (A_{123}) Projection formula: given an independent square with g confined and $\alpha \in \mathbb{B}(X \xrightarrow{f} Y), \beta \in \mathbb{B}\left(Y^{\prime} \xrightarrow{\text { hog }} Z\right)$, we have

$$
g_{*}^{\prime}\left(g^{*} \alpha \bullet \beta\right)=\alpha \bullet g_{*} \beta \in \mathbb{B}(X \xrightarrow{\text { hof }} Z) .
$$

We also require the theory \mathbb{B} to have multiplicative units:
(Units) For all $X \in \mathcal{V}$, there is an element $1_{X} \in \mathbb{B}^{0}(X \xrightarrow{\text { id }} X)$ such that $\alpha \bullet 1_{X}=\alpha$ for all morphisms $W \rightarrow X$ and all $\alpha \in \mathbb{B}(W \rightarrow X)$, and such that $1_{X} \bullet \beta=\beta$ for all morphisms $X \rightarrow Y$ and all $\beta \in \mathbb{B}(X \rightarrow Y)$, and such that $g^{*} 1_{X}=1_{X^{\prime}}$ for all $g: X^{\prime} \rightarrow X$.

§3.4. Grothendieck transformation

Let $\mathbb{B}, \mathbb{B}^{\prime}$ be two bivariant theories on a category \mathcal{V}. A Grothendieck transformation from \mathbb{B} to \mathbb{B}^{\prime},

$$
\gamma: \mathbb{B} \rightarrow \mathbb{B}^{\prime}
$$

is a collection of homomorphisms

$$
\mathbb{B}(X \rightarrow Y) \rightarrow \mathbb{B}^{\prime}(X \rightarrow Y)
$$

which preserves the above three basic operations:

1. $\gamma\left(\alpha \bullet_{\mathbb{B}} \beta\right)=\gamma(\alpha) \bullet_{\mathbb{B}^{\prime}} \gamma(\beta)$,
2. $\gamma\left(f_{*} \alpha\right)=f_{*} \gamma(\alpha)$,
3. $\gamma\left(g^{*} \alpha\right)=g^{*} \gamma(\alpha)$.

A remark

In FM's book, a Grothendieck transformation is defined as follows.
Let $-: \mathcal{V} \rightarrow \overline{\mathcal{V}}$ be a functor sending confined maps in \mathcal{V} to confined maps in $\overline{\mathcal{V}}$, and independent squares in \mathcal{V} to independent squares in $\overline{\mathcal{V}}$.
Write \bar{X} and \bar{f} for the image in $\overline{\mathcal{V}}$ of an object X and a map f in \mathcal{V}. Let T be a bivariant theory on \mathcal{V} and U be a bivariant theory on $\overline{\mathcal{V}}$. Then a Grothendieck transformation

$$
t: T \rightarrow U
$$

is a collection of homomorphisms

$$
t: T(X \xrightarrow{f} Y) \rightarrow U(\bar{X} \xrightarrow{\bar{f}} \bar{Y}),
$$

which commutes with product, pushforward and pullback. However, if we define

$$
U(X \xrightarrow{f} Y):=U(\bar{X} \xrightarrow{\bar{f}} \bar{Y})
$$

then the bivariant theory U on $\overline{\mathcal{V}}$ can be considered as a bivariant theory on \mathcal{V}, thus a Grothendieck transformation can be defined as above.

§4. Associated covariant \& contravariant functors

$\mathbb{B}_{*}, \mathbb{B}^{*}$

\mathbb{B} unifies a covariant theory \mathbb{B}_{*} and a contravariant theory \mathbb{B}^{*} :

1. $\mathbb{B}_{i}(X):=\mathbb{B}^{-i}(X \rightarrow p t)$ is covariant for confined maps:
$f_{*}: \mathbb{B}_{i}(X) \rightarrow \mathbb{B}_{i}(Y)$ (for a confined map $\left.f: X \rightarrow Y\right)$,

$(g \circ f)_{*}=g_{*} \circ f_{*}$ follows from $\left(A_{2}\right)$ (the functoriality of pushforward).
2. $\mathbb{B}^{i}(X):=\mathbb{B}^{i}(X \xrightarrow{\mathrm{id} X} X)$ is contravariant for any morphisms: for $g: X \rightarrow Y$
$(g \circ f)^{*}=f^{*} \circ g^{*}$ follows from $\left(A_{3}\right)$ (the functoriality of pullback).
That is why $\mathbb{B}(X \rightarrow Y)$ is called a bivariant theory.
$\gamma: \mathbb{B} \rightarrow \mathbb{B}^{\prime}$ induces natural transformations $\gamma: \mathbb{B}_{*} \rightarrow \mathbb{B}_{*}^{\prime}$ and $\gamma: \mathbb{B}^{*} \rightarrow \mathbb{B}^{\prime *}$.
(Sometimes they are denoted γ_{*} and γ^{*} with $*_{\text {.) }}$

§5. Canonical orientation

Let \mathcal{S}^{\prime} be another class of maps in \mathcal{V}, which is closed under compositions and containing all identity maps. (We keep the symbol \mathcal{S} for another class considered later)

NOTE: For the class \mathcal{C} of confined maps, we require the stability of pullback, i.e., the pullback of a confined map is confined. For this class \mathcal{S}^{\prime} we do not require the stability of pullback.

If for $f: X \rightarrow Y \in \mathcal{S}^{\prime}$ there is assigned an element

$$
\theta(f) \in \mathbb{B}(X \xrightarrow{f} Y)
$$

satisfying
(i) $\theta(g \circ f)=\theta(f) \bullet \theta(g)$
(ii) $\theta\left(\mathrm{id}_{X}\right)=1_{X}$ (the unit element).

Then $\theta(f)$ is called a canonical orientation of f.

§6. Gysin maps induced by bivariant elements

 Any bivariant element $\theta \in \mathbb{B}^{i}(X \xrightarrow{t} Y)$ gives rise to Gysin ("wrong-way" homomorphisms1. $\theta^{!}: \mathbb{B}_{j}(Y) \rightarrow \mathbb{B}_{j-i}(X), \quad$ i.e., $\quad \theta^{!}: \mathbb{B}^{-j}(Y \rightarrow p t) \rightarrow \mathbb{B}^{-j+i}(Y \rightarrow p t)$
defined by $\theta^{!}(\alpha):=\theta \bullet \alpha$,

For $\eta \in \mathbb{B}^{j}(Z \xrightarrow{g} X)$ and $\theta \in \mathbb{B}^{i}(X \xrightarrow{f} Y),(\eta \bullet \theta)^{!}=\eta^{!} \circ \theta^{!}$. Because $(\eta \bullet \theta)^{!}(\alpha):=(\eta \bullet \theta) \bullet \alpha=\eta \bullet(\theta \bullet \alpha)=\eta^{!}\left(\theta^{!}(\alpha)\right)=\left(\eta^{!} \circ \theta^{!}\right)(\alpha)$.
2. $\theta_{!}: \mathbb{B}^{j}(X) \rightarrow \mathbb{B}^{j+i}(Y), \quad$ i.e., $\quad \theta_{!}: \mathbb{B}^{j}\left(X \xrightarrow{\text { id }_{X}} X\right) \rightarrow \mathbb{B}^{j}\left(Y \xrightarrow{\text { id }_{Y}} Y\right)$ defined by $(f: X \rightarrow Y$ is a confined map)
$\theta_{!}(\alpha):=f_{*}(\alpha \bullet \theta)$,

$(\eta \bullet \theta)_{!}=\theta_{!} \circ \eta_{!}$. Because $(\eta \bullet \theta)_{!}(\alpha):=(f \circ g)_{*}(\alpha \bullet(\eta \bullet \theta))=$ $f_{*}\left(g_{*}((\alpha \bullet \eta) \bullet \theta)\right)=f_{*}\left(\eta_{!}(\alpha) \bullet \theta\right)=\theta_{!}\left(\eta_{!}(\alpha)\right)=\left(\theta_{!} \circ \eta_{!}\right)(\alpha)$.

§7. Gysin maps induced by canonical orientations

 In particular, a canonical orientation $\theta(f)\left(f \in \mathcal{S}^{\prime}\right)$ makes1. the covariant functor $\mathbb{B}_{*}(X)$ contravariant for maps in \mathcal{S}^{\prime} :

For $f: X \rightarrow Y \in \mathcal{S}^{\prime}, f^{\prime}: \mathbb{B}_{*}(Y) \rightarrow \mathbb{B}_{*}(X)$ defined by $\theta(f)^{\prime}$,i.e,

$$
f^{\prime}(\alpha):=\theta(f)^{\prime}(\alpha)=\theta(f) \bullet \alpha,
$$

$$
(g \circ f)^{!}=\theta(g \circ f)^{!}=(\theta(f) \bullet \theta(g))^{!}=\theta(f)^{!} \circ \theta(g)^{!}=f^{\prime} \circ g^{\prime} .
$$

2. the contravariant functor \mathbb{B}^{*} covariant for maps in $\mathcal{C} \cap \mathcal{S}$.

For $f: X \rightarrow Y \in \mathcal{C} \cap \mathcal{S}^{\prime}, f_{!}: \mathbb{B}^{*}(X) \rightarrow \mathbb{B}^{*}(Y)$ defined by

$$
f_{!}(\alpha):=f_{*}(\alpha \bullet \theta(f)),
$$

$(g \circ f)!=\theta(g \circ f)!=(\theta(f) \bullet \theta(g))!=\theta(g)!\circ \theta(f)!=g!\circ f$.
$f^{!}$and $f_{!}$should carry the data \mathcal{S}^{\prime} and θ, but usually omitted

§8. Riemann-Roch formula by Fulton-MacPherson

 Let $\mathbb{B}, \mathbb{B}^{\prime}$ be bivariant theories and let $\theta_{\mathbb{B}}, \theta_{\mathbb{B}^{\prime}}$ be canonical orientations on $\mathbb{B}, \mathbb{B}^{\prime}$ for a class \mathcal{S}^{\prime}. Let $\gamma: \mathbb{B} \rightarrow \mathbb{B}^{\prime}$ be a Grothendieck transformation. If there exists a bivariant element $u_{f} \in \mathbb{B}^{\prime}\left(X \xrightarrow{\text { id }{ }_{X}} X\right)$ for $f: X \rightarrow Y \in \mathcal{S}$ such that$$
\gamma\left(\theta_{\mathbb{B}}(f)\right)=u_{f} \bullet \theta_{\mathbb{B}^{\prime}}(f), \quad X \xrightarrow{u_{f}}
$$

it is called a Riemann-Roch formula for $\gamma: \mathbb{B} \rightarrow \mathbb{B}^{\prime}$ with respect to $\theta_{\mathbb{B}}$ and $\theta_{\mathbb{B}^{\prime}}$. In fact this RR-formula gives rise to the formulas of the following types
"BFM-RR", "SGA6", "Verdier-RR".

Indeed
(1) The Grothendieck transformation $\gamma: \mathbb{B} \rightarrow \mathbb{B}^{\prime}$ gives us:
"BFM-RR" type formula: for a proper map $f: X \rightarrow Y$

This is due to $\gamma\left(f_{*} \alpha\right)=f_{*} \gamma(\alpha)$.
(2) "SGA6" type formula: for a map $f: X \rightarrow Y \in \mathcal{C} \cap S^{\prime}$

$$
\begin{gathered}
\mathbb{B}^{*}(X) \xrightarrow{\gamma} \mathbb{B}^{\prime *}(X) \\
{ }_{f} \downarrow \\
\\
\mathbb{B}^{*}(Y) \xrightarrow[\gamma]{\longrightarrow} \mathbb{B}^{\prime *}(Y),
\end{gathered}
$$

$$
\begin{aligned}
\gamma\left(f_{!} \alpha\right) & =\gamma\left(f_{*}\left(\alpha \bullet \theta_{\mathbb{B}}(f)\right)\right) \quad\left(\text { by the definition of } f_{!}\right) \\
& =f_{*} \gamma\left(\alpha \bullet \theta_{\mathbb{B}}(f)\right) \\
& =f_{*}\left(\gamma(\alpha) \bullet \gamma\left(\theta_{\mathbb{B}}(f)\right)\right) \\
& =f_{*}\left(\gamma(\alpha) \bullet\left(u_{f} \bullet \theta_{\mathbb{B}^{\prime}}(f)\right)\right) \quad\left(\text { by RR-formula } \gamma\left(\theta_{\mathbb{B}}(f)\right)=u_{f} \bullet \theta_{\mathbb{B}^{\prime}}(f)\right) \\
& =f_{*}\left(\left(\gamma(\alpha) \bullet u_{f}\right) \bullet \theta_{\mathbb{B}^{\prime}}(f)\right) \\
& =f_{!}\left(\gamma(\alpha) \bullet u_{f}\right) \quad\left(\text { by the definition of } f_{!}(-):=f_{*}\left(-\bullet \theta_{\mathbb{B}^{\prime}}(f)\right)\right)
\end{aligned}
$$

(3) "Verdier-RR" type formula: for a map $f: X \rightarrow Y \in \mathcal{S}^{\prime}$

$$
\begin{gathered}
\mathbb{B}_{*}(Y) \longrightarrow \mathbb{B}_{*}^{\prime}(Y) \\
f^{\prime} \downarrow \\
\mathbb{B}_{*}(X) \longrightarrow{ }_{\gamma}^{\longrightarrow} \mathbb{B}_{*}^{\prime}(X),
\end{gathered}
$$

$$
\begin{aligned}
\gamma\left(f^{!} \alpha\right) & =\gamma\left(\theta_{\mathbb{B}}(f) \bullet \alpha\right) \\
& =\gamma\left(\theta_{\mathbb{B}}(f)\right) \bullet \gamma(\alpha) \\
& \left.=\left(u_{f} \bullet \theta_{\mathbb{B}^{\prime}}(f)\right) \bullet \gamma(\alpha) \quad \text { (by RR-formula } \gamma\left(\theta_{\mathbb{B}}(f)\right)=u_{f} \bullet \theta_{\mathbb{B}^{\prime}}(f)\right) \\
& =u_{f} \bullet\left(\theta_{\mathbb{B}^{\prime}}(f) \bullet \gamma(\alpha)\right) \\
& =u_{f} \bullet f^{!}(\gamma(\alpha)) .
\end{aligned}
$$

So Fulton-MacPherson's Grothendieck transformation

$$
\gamma: \mathbb{K}(-) \rightarrow \mathbb{H}(-) \otimes \mathbb{Q}
$$

with Riemann-Roch formula $\gamma\left(\theta_{\mathbb{K}}(f)\right)=t d\left(T_{f}\right) \bullet \theta_{\mathbb{H}}(f)$ implies
(1) BFM-RR:

$$
\begin{array}{ccc}
\mathbb{B}_{*}(X) \xrightarrow{\gamma} & \mathbb{B}_{*}^{\prime}(X) \\
f_{*} \downarrow & \downarrow_{f_{*}} & ==> \\
f_{*} \downarrow \\
\mathbb{B}_{*}(Y) \xrightarrow[\gamma]{\longrightarrow} \mathbb{B}_{*}^{\prime}(Y), & & H_{*}(X) \otimes \mathbb{Q} \\
K_{0}(Y) \xrightarrow[\tau^{B F M}]{\longrightarrow}
\end{array}
$$

(2) "SGA 6":

$$
\begin{aligned}
& \mathbb{B}^{*}(X) \xrightarrow{\gamma} \mathbb{B}^{\prime *}(X) \quad K^{0}(X) \xrightarrow{\text { ch }} H^{*}(X) \otimes \mathbb{Q} \\
& f_{1} \downarrow \quad \downarrow f_{i}\left(-\bullet u_{f}\right)=>\quad f_{1} \downarrow \quad \downarrow f_{1}\left(-\cup \operatorname{td}\left(T_{f}\right)\right) \\
& \mathbb{B}^{*}(Y) \underset{\gamma}{\longrightarrow} \mathbb{B}^{\prime *}(Y), \\
& K^{0}(Y) \xrightarrow[c h]{ } H^{*}(Y) \otimes \mathbb{Q},
\end{aligned}
$$

(3) "Verdier-RR"

$$
\begin{gathered}
\mathbb{B}_{*}(Y) \xrightarrow{\gamma} \mathbb{B}_{*}^{\prime}(Y) \\
f^{\prime} \downarrow \\
\downarrow u_{\bullet} \circ f^{\prime} \\
\mathbb{B}_{*}(X) \xrightarrow[\gamma]{\longrightarrow} \mathbb{B}_{*}^{\prime}(X),
\end{gathered}
$$

§9. A remark on RR-formulas

1. "downstairs" Riemann-Roch formula (by S.Y.):

$$
\gamma\left(\theta_{\mathbb{B}}(f)\right)=\theta_{\mathbb{B}^{\prime}}(f) \bullet d_{f}, \quad d_{f} \in \mathbb{B}^{\prime}\left(Y \xrightarrow{\mathrm{id}_{Y}} Y\right) .
$$

(MEMO:I suppose Fulton-MacPherson use " u " for " u_{f} ", indicating "unit", not "upstairs".)
$\gamma\left(\theta_{\mathbb{B}}(f)\right)=\theta_{\mathbb{B}^{\prime}}(f) \bullet d_{f}$ implies the corresponding "SGA6" (for $f: X \rightarrow Y \in \mathcal{C} \cap \mathcal{S}^{\prime}$) and "Verdier-RR" (for $f: X \rightarrow Y \in \mathcal{S}^{\prime}$)
(i) "downstairs" "SGA6" type formula: for a map $f: X \rightarrow Y \in \mathcal{C} \cap S^{\prime}$

$$
\begin{aligned}
& \mathbb{B}^{*}(X) \longrightarrow \\
&{ }_{f} \downarrow \mathbb{B}^{\prime *}(X) \\
& \downarrow_{i}(-) \bullet d_{f} \\
& \mathbb{B}^{*}(Y) \longrightarrow{ }_{\gamma} \longrightarrow \mathbb{B}^{\prime *}(Y),
\end{aligned}
$$

$$
\begin{aligned}
\gamma\left(f_{i} \alpha\right) & =\gamma\left(f_{*}\left(\alpha \bullet \theta_{\mathbb{B}}(f)\right)\right) \\
& =f_{*} \gamma\left(\alpha \bullet \theta_{\mathbb{B}}(f)\right) \\
& =f_{*}\left(\gamma(\alpha) \bullet \gamma\left(\theta_{\mathbb{B}}(f)\right)\right) \\
& =f_{*}\left(\gamma(\alpha) \bullet\left(\theta_{\mathbb{B}^{\prime}}(f) \bullet d_{f}\right)\right) \quad\left(\text { by d-RR-formula } \gamma\left(\theta_{\mathbb{B}}(f)\right)=\theta_{\mathbb{B}^{\prime}}(f) \bullet d_{f}\right) \\
& =f_{*}\left(\left(\gamma(\alpha) \bullet \theta_{\mathbb{B}^{\prime}}(f)\right) \bullet d_{f}\right) \\
& =f_{*}\left(\gamma(\alpha) \bullet \theta_{\mathbb{B}^{\prime}}(f)\right) \bullet d_{f} \quad\left(\text { by }\left(A_{12}: \text { product and pushforward commutes }\right)\right. \\
& =f_{!}(\gamma(\alpha)) \bullet d_{f} \quad\left(\text { by the definition of } f_{!}(-):=f_{*}\left(-\bullet \theta_{\mathbb{B}^{\prime}}(f)\right)\right)
\end{aligned}
$$

(ii)"downstairs" "Verdier-RR" type formula: for a map $f: X \rightarrow Y \in \mathcal{S}^{\prime}$

$$
\begin{aligned}
\mathbb{B}_{*}(Y) \xrightarrow{\gamma} & \mathbb{B}_{*}^{\prime}(Y) \\
f^{!} \downarrow & \\
& \downarrow f^{!}\left(d_{f} \bullet-\right) \\
\mathbb{B}_{*}(X) \xrightarrow[\gamma]{ } & \mathbb{B}_{*}^{\prime}(X),
\end{aligned}
$$

$$
\begin{aligned}
\gamma\left(f^{!} \alpha\right) & =\gamma\left(\theta_{\mathbb{B}}(f) \bullet \alpha\right) \\
& =\gamma\left(\theta_{\mathbb{B}}(f)\right) \bullet \gamma(\alpha) \\
& \left.=\left(\theta_{\mathbb{B}^{\prime}}(f) \bullet d_{f}\right) \bullet \gamma(\alpha) \quad \text { (by d-RR-formula } \gamma\left(\theta_{\mathbb{B}}(f)\right)=\theta_{\mathbb{B}^{\prime}}(f) \bullet d_{f}\right) \\
& =\theta_{\mathbb{B}^{\prime}}(f) \bullet\left(d_{f} \bullet \gamma(\alpha)\right) \\
& =f^{!}\left(d_{f} \bullet \gamma(\alpha)\right)
\end{aligned}
$$

Summing up:
"'SGA 6" type formulas ("upstairs" and "downstairs")

$$
\begin{array}{ccc}
\mathbb{B}^{*}(X) \xrightarrow{\gamma} & \mathbb{B}^{\prime *}(X) & \mathbb{B}^{*}(X) \xrightarrow{\gamma} \mathbb{B}^{\prime *}(X) \\
{ }_{4} \downarrow & \downarrow_{!}\left(-\bullet u_{f}\right) & f_{!} \downarrow
\end{array}
$$

"Verdier-RR" type formulas ("upstairs" and "downstairs")

$$
\begin{gathered}
\mathbb{B}_{*}(Y) \xrightarrow{\gamma} \mathbb{B}_{*}^{\prime}(Y) \\
\\
f^{\prime} \downarrow \\
\mathbb{B}_{*}(X) \xrightarrow[\gamma]{\longrightarrow} \mathbb{B}_{*}^{\prime}(X),
\end{gathered}
$$

$$
\mathbb{B}_{*}(Y) \xrightarrow{\gamma} \mathbb{B}_{*}^{\prime}(Y)
$$

$$
f^{\prime} \downarrow \quad f^{\prime}\left(d_{f} \bullet-\right)
$$

$$
\mathbb{B}_{*}(X) \xrightarrow[\gamma]{\longrightarrow} \mathbb{B}_{*}^{\prime}(X),
$$

2. Riemann-Roch "self" formula: Let \mathbb{B} be a bivariant theory and θ, θ^{\prime} be two canonical orientations of \mathbb{B} for a class \mathcal{S}^{\prime} :
3. ("upstairs" Riemann-Roch "self" formula (by S.Y.))

$$
\theta(f)=u_{f} \bullet \theta^{\prime}(f), \quad u_{f} \in \mathbb{B}(X \xrightarrow{\text { id } x} X)
$$

Letting $f_{!!}:=\theta^{\prime}(f)!, f^{!!}:=\theta^{\prime}(f)^{!}$, we have $f_{!}=f_{!!}\left(-\bullet u_{f}\right)$ and $f^{!}=u_{f} \bullet f^{!!}$.
2. ("downstairs" Riemann-Roch "self" formula (by S.Y.))

$$
\theta(f)=\theta^{\prime}(f) \bullet d_{f}, \quad d_{f} \in \mathbb{B}\left(Y \xrightarrow{\mathrm{id}_{Y}} Y\right) .
$$

As above, we have $f_{!}=f_{!!}(-) \bullet d_{f}$ and $f^{!}=f^{!!}\left(d_{f} \bullet-\right)$
In other words, we think
$\gamma=\mathrm{id}: \mathbb{B} \rightarrow \mathbb{B}, \operatorname{id}(\theta(f))=u_{f} \bullet \theta^{\prime}(f), \operatorname{id}(\theta(f))=\theta^{\prime}(f) \bullet d_{f}$. Thus, we have
"'SGA 6" type formulas ("upstairs" and "downstairs")

$$
\begin{array}{cccc}
\mathbb{B}^{*}(X) \xrightarrow{\text { id }} \mathbb{B}^{*}(X) \quad \mathbb{B}^{*}(X) \xrightarrow{\text { id }} \mathbb{B}^{*}(X) \\
& \downarrow_{!!}^{f_{!}\left(-\bullet u_{f}\right)} & f_{!} \downarrow & \downarrow^{f_{!!}(-) \bullet d_{f}} \\
f_{!} \downarrow & \mathbb{B}^{*}(Y), & \mathbb{B}^{*}(Y) \xrightarrow[\text { id }]{ } & \mathbb{B}^{*}(Y),
\end{array}
$$

"Verdier-RR" type formulas ("upstairs" and "downstairs")

$$
\begin{aligned}
& \mathbb{B}_{*}(Y) \xrightarrow{\text { id }} \mathbb{B}_{*}(Y) \quad \mathbb{B}_{*}(Y) \xrightarrow{\text { id }} \mathbb{B}_{*}(Y) \\
& f^{\prime} \downarrow \quad \downarrow u_{f} \bullet f^{\prime}(-) \quad f^{\prime} \downarrow \quad \downarrow f^{\prime}\left(d_{f} \bullet-\right) \\
& \mathbb{B}_{*}(X) \xrightarrow[\text { id }]{ } \mathbb{B}_{*}(X), \quad \mathbb{B}_{*}(X) \xrightarrow[\text { id }]{\longrightarrow} \mathbb{B}_{*}(X),
\end{aligned}
$$

Thank you very much for your attention!

