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Lecture 1 is a quick review or recall of

“Introduction to Bivariant Theory, I, II, III”

which I gave for

“The 9th (Non-)Commutative Algebra and Topology”

February 18 - 20, 2020, Faculty of Science, Shinshu University.

“Bivariant Theory入門、I, II, III”

「第 9回（非）可換代数とトポロジー」
2020年 2月 18日～2月 20日、信州大学理学部

Bivariant Theory is one introduced by W. Fulton and R. MacPherson in

[FM] “Categorical frameworks for the study of singular spaces”

Mem. Amer. Math. Soc. 243 (1981)

Part I: Bivariant Theories (pp.1-117)
Part II: Products in Riemann-Roch (pp.119-161)
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§1 Hirzebruch–Riemann–Roch (HRR)
E , a holomorphic vector bundle on compact manifold X over C

χ(X ,E) :=
dim X∑
i=0

(−1)i dimC H i(X ,E) , Euler characteristic of E .

Serre’s conjecture (1953, 9/29, a letter to Kodaira-Spencer, IAS)
∃ a polynomial P(X ,E) of Chern classes of the tangent bundle TX and E
such that

χ(X ,E) =

∫
X

P(X ,E) ∩ [X ]

Hirzebruch–Riemann–Roch (HRR) (1953, 12/9, at IAS of Princeton):

χ(X ,E) =

∫
X
(td(TX ) ∪ ch(E)) ∩ [X ].

td(TX ) :=
dim X∏
j=1

βj

1 − e−βj
Todd class of TX , ch(E) =

rank E∑
i=1

eαi Chern

character. βj and αi are the Chern roots of TX and E respectively.

“private memo”：9/29
in 36 days−−−−−→ 11/4

in 35 days−−−−−→ 12/9. (In the very middle of the
birth of HRR!)
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§2. Grothendieck–Riemann–Roch (GRR)
Grothendieck said, “No, the Riemann-Roch theorem is not a theorem about
varieties, it’s a theorem about morphisms between varieties.”
He extended HRR to the natural transformation:

ch(−−) ∪ td(−) : K 0(−) → H∗(−)⊗Q.

K 0(Z ) is K-theory of vector bundles,H∗(Z ) is cohomology.
Namely, for a holomorphic map f : X → Y of algebraic manifolds
(=non-singular complex projective varieties) X and Y , the following diagram
is commutative:

K 0(X )
ch(−)∪td(TX)−−−−−−−−→ H∗(X )⊗Q

f!

y yf!

K 0(Y ) −−−−−−−−→
ch(−)∪td(TY )

H∗(Y )⊗Q.

Note K 0(−) and H∗(−) are contravariant! So f! are Gysin (wrong-way) maps.
Grothendieck gave 4 lectures (12 hours for 4 days) of his proof “Classes
de faisceaux et théorème de Riemann–Roch” (1957) at 1st Arbeitstagung
at Bonn in 1957 (founded by Friedrich Hirzebruch), published in SGA
6(1971), 20-71. His proof was also published by Borel-Serre in
Bull.Soc.Math. France (1958), p. 97-136.)
Borel said, “Grothendieck’s version of Riemann–Roch is a fantastic theorem.
This is really a masterpiece of mathematics.”
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Why is GRR an extension of HRR?
Because [GRR for aX : X → pt (a map to a point)] = HRR !!!
Indeed, let’s consider the following commutative diagram!

[GRR for aX : X → pt ] ===

K 0(X )
ch(−)∪td(TX)−−−−−−−−→ H∗(X )⊗Q

(aX )!

y y(aX )!

K 0(pt) −−−−−−−→
ch(−)∪td(pt)

H∗(pt)⊗Q.

Namely, for E ∈ K 0(X )

ch((aX )!E) ∪ td(pt) = (aX )! (ch(E) ∪ td(TX )).

ch((aX )!E) ∪ td(pt) = · · · · · · · · · · · · · · · · · · · · · · · · · · · = χ(X ,E)

(aX )! (ch(E) ∪ td(TX )) = · · · · · · · · · =
∫

X
(td(TX ) ∪ ch(E)) ∩ [X ].

Thus we have HRR:

χ(X ,E) =

∫
X
(td(X ) ∪ ch(E)) ∩ [X ].
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My guess: Probably Grothendieck thought as follows:
Note that for a vector space V , ch(V ) = dimV , so

χ(X ;E) =
dim X∑
i=0

(−1)i dimC H i(X ,E) =
dim X∑
i=0

(−1)ich(H i(X ,E))

= ch

(
dim X∑
i=0

(−1)iH i(X ,E)

)
∫

X
(td(TX ) ∪ ch(E)) ∩ [X ] = (aX )∗ ((td(TX ) ∪ ch(E)) ∩ [X ])

K 0(X )

“(aX )!”

��

td(TX)∪ch(−) // H∗(X )

(aX )!

��

−∩[X ]

∼=
// H∗(X )

(aX )∗

��
K 0(pt)

td(Tpt )∪ch(−)=ch(−)
// H∗(pt)

∩[pt]

∼= // H∗(pt)

E

“(aX )!”

��

td(TX)∪ch(−) // td(TX ) ∪ ch(E)

(aX )!

��∑dim X
i=0 (−1)iH i(X ,E)

ch(−)
// χ(X ;E)

9 / 40



K 0(X )
ch(−)∪td(TX) //

f!

��

Ω

∼= ##

H∗(X )⊗Q
∩[X ]

∼=ww

f!

��

K0(X )
ch(Ω−1(−))∪td(TX)∩[X ] //

f∗

��

H∗(X )⊗Q

f∗

��
K0(Y )

ch(Ω−1(−))∪td(TY )∩[X ]

// H∗(Y )⊗Q

K0(Y )

Ω

∼=
::

ch(−)∪td(TY )
// H∗(Y )⊗Q

∩[Y ]

∼=
gg

The commutativity of the outer square follows from that of the inner square.
K0(Z ) is K-theory of coherent sheaves on Z . f∗ : K0(X ) → K0(Y ) is defined
by f∗F :=

∑dim X
i=0 (−1)iR i f∗F . For X

aX−→ pt , (aX )∗E =
∑dim X

i=0 (−1)iH i(X ,E).
In fact,
K 0(X )

ch(−)∪td(TX)−−−−−−−−→ H∗(X )⊗Q

f!

y yf!

K 0(Y ) −−−−−−−−→
ch(−)∪td(TY )

H∗(Y )⊗Q.

is expressed as

K 0(X )
ch−−−−−→ H∗(X )⊗Q

f!

y yf!
(

td(Tf)∪−
)

K 0(Y ) −−−−−→
ch

H∗(Y )⊗Q,

Here Tf := TX − f ∗TY ∈ K 0(X ) and td(Tf ) =
td(TX )

f ∗td(TY )
∈ H∗(X )⊗Q
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Indeed, the left diagram means: for E ∈ K 0(X )

td(TY ) ∪ ch(f!E) = f!(td(TX ) ∪ ch(E))

f! = P−1
Y ◦ f∗ ◦ PX . Here PX = H∗(X ) ∼=

∩[X ] // H∗(X ) and

PY = H∗(Y ) ∼=

∩[Y ] // H∗(Y ) the Poincaré duality isomorphisms (since X and

Y are smooth). So, td(TY )∪ ch(f!E) = P−1
Y ◦ f∗ ◦ PX (td(TX )∪ ch(E)) can be

written as
(
td(TY ) ∪ ch(f!E)

)
∩[Y ] = f∗

((
td(TX ) ∪ ch(E)

)
∩[X ]

)
.

td(TY ) ∩
(
ch(f!E)∩[Y ]

)
= f∗

(
td(TX ) ∩

(
ch(E)∩[X ]

))
.

ch(f!E)∩[Y ] = 1
td(TY )

∩ f∗
(

td(TX ) ∩
(
ch(E)∩[X ]

))
.

By the projection formula, the tight-hand-side becomes as follows:

ch(f!E)∩[Y ] = f∗
(

f ∗
(

1
td(TY )

)
∩
(

td(TX ) ∩
(
ch(E)∩[X ]

)))
.

ch(f!E)∩[Y ] = f∗
(

1
f∗td(TY )

∩
(

td(TX ) ∩
(
ch(E)∩[X ]

)))
.

ch(f!E)∩[Y ] = f∗
((

td(TX)
f∗td(TY )

∪ ch(E)
)
∩[X ]

)))
ch(f!E)∩[Y ] = f∗

((
td(Tf ) ∪ ch(E)

)
∩[X ]

)))
.

ch(f!E) = P−1
Y ◦ f∗ ◦ PX

(
td(Tf ) ∪ ch(E)

)
,

ch(f!E) = f!
(

td(Tf )∪ch(E)
)
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GRR was extended to the following
“SGA 6”, 1971: For a proper and local complete intersection morphism
f : X → Y

K 0(X )
ch−−−−−→ H∗(X )⊗Q

f!

y yf!
(

td(Tf)∪−
)

K 0(Y ) −−−−−→
ch

H∗(Y )⊗Q,

Here Tf ∈ K 0(X ) is the relative tangent bundle of f . If f : X → Y is a map
of smooth manifolds, then Tf = TX − f ∗TY ∈ K 0(X ).

The inner commutative square was extended to singular varieties
“BFM–RR”(Baum–Fulton–MacPherson’s Riemann–Roch),
Publ.Math.IHES. 45 (1975), 101-145.”:
∃ a natural transformation

τBFM : K0(−) → H∗(−)⊗Q

such that if X is non-singular, τBFM(OX ) = td(TX ) ∩ [X ], the Poincaré dual of
the Todd class td(TX ) of TX : i.e., for a proper map f : X → Y

K0(X )
τBFM

−−−−−→ H∗(X )⊗Q

f∗

y yf∗

K0(Y ) −−−−−→
τBFM

H∗(Y )⊗Q,
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“BFM–RR” is motivated by MacPherson’s Chern class transformation
(Ann. Math, 100 (1974),423-432)

∃! c∗ : F (−) → H∗(−)

such that if X is nonsingular c∗(11X ) = c(TX ) ∩ [X ] the Poincaré dual of
the total Chern class of TX .
Here F (X ) is the abelian group of constructible functions of X .)

(NOTE: MacPherson’s Chern class transformation c∗ : F (−) → H∗(−) is a
“Grothendieck-Riemann-Roch”-type theorem for Chern classes for singular
varieties. However, in his paper there was no word of “Riemann-Roch”!)

“Verdier–RR”, Astérisque, 1983 (conjectured in BFM’s paper; proved by
Verdier): For a l.c.i. morphism f : X → Y we have the commutative diagram:

K0(Y )
τBFM

−−−−−→ H∗(Y )⊗Q

f !
y ytd(Tf)∩f !

K0(X ) −−−−−→
τBFM

H∗(X )⊗Q.
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§3. Fulton–MacPherson’s bivariant theory
Fulton-MacPherson introduced Bivariant Theory [FM] in order to
unify these “GRR”-type formulas, i.e.,“SGA6”,“BFM-RR”,“Verdier-RR”.

NOTE (important!): “SGA6” and “Verdier-RR” deal with Gysin maps
(wrong-way maps) for f : X → Y .: f! : K 0(X ) → K 0(Y ), f ! : K0(Y ) → K0(X ).
FM’s theorem ([FM] Part II:Products in Riemann-Roch (p.119-161)):
Let K(X −→ Y ) be a bivariant K -theory such that

(i) K(X −→ pt) = K0(X ) Grothendieck group of coherent sheaves,

(ii) K(X
idX−−→ X ) = K 0(X ) Grothendieck group of complex vector bundles.

Let H(X −→ Y ) be a bivariant homology theory such that

(i) H(X −→ pt) = H∗(X ) homology , (ii) H(X
idX−−→ X ) = H∗(X ) cohomology.

Then, there exists a Grothendieck transformation

γ : K(−) → H(−)⊗Q

such that
(i) γ : K(X → pt) → H(X → pt)⊗Q is BFM-RR τBFM : K0(X ) → H∗(X )⊗Q,
(ii) for a l.c.i. morphism f : X → Y

γ(θK(f )) = td(Tf ) • θH(f ) (Riemann–Roch formula) (not γ(θK(f )) = θH(f ))

θK(f ) ∈ K(X f−→ Y ), θH(f ) ∈ H(X f−→ Y ), td(Tf ) ∈ H(X
idX−−→ X ) = H∗(X )

This RR-formula implies “SGA6”,“BFM-RR”,“Verdier-RR”!!!
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§3.1. Ingredients of Fulton–MacPherson’s bivariant
theory

1. An underlying category V,

2. A map B assigning to each map f : X → Y ∈ V a graded abelian group
Bi(X f−→ Y ). (Note: sometimes it can be just a set (cf. §4.3 Differentiable
RR of [FM]))

an element α ∈ B(X f−→ Y ) is expressed as follows:

X
f

α⃝ // Y

3. A class C of maps in V, called “confined maps” (e.g., proper maps)

4. A class Ind of commutative squares in V, called “independent squares”
(e.g., fiber square)

X ′ g′
−−−−−→ Xyf ′

yf

Y ′ −−−−−→
g

Y
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Conditions on the classes C and Ind
1. The class C is closed under composition and base change and contain

all the identity maps.
2. The class Ind satisfies the following:

2.1 if the two inside squares in

X ′′ h′−−−−−→ X ′ g′
−−−−−→ Xyf ′′

yf ′
yf

Y ′′ −−−−−→
h

Y ′ −−−−−→
g

Y

are

independent, then the outside square is also independent,

2.2 for any f : X → Y ,

X
idX−−−−−→ X

f

y yf

Y −−−−−→
idY

Y

and

X f−−−−−→ Y

idX

y yidY

X −−−−−→
f

Y

are independent:

2.3 In an independent square

X ′ g′
−−−−−→ X

f ′
y yf

Y ′ −−−−−→
g

Y

, if f (resp., g) is

confined, then f ′ (resp., g′) is confined.
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A REMARK: Given an independent square

X ′ g′
−−−−−→ X

f ′
y yf

Y ′ −−−−−→
g

Y

, its transpose

X ′ f ′−−−−−→ Y ′

g′
y yg

X −−−−−→
f

Y

is not necessarily independent.

EXAMPLE: Consider the category of topological spaces and continuous
maps. Let any map be confined, and allow a fiber square

X ′ g′
−−−−−→ X

f ′
y yf

Y ′ −−−−−→
g

Y

to be independent only if g is proper (hence g′ is also proper). Then its
transpose is not independent unless f is proper.
NOTE: The pullback of a proper map by any (continuous) map is proper,
because “proper” is equivalent to “universally closed” (i.e., the pullback by
any map is closed.)
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§3.2. Bivariant operations on B
1. Product: For f : X → Y and g : Y → Z in V, the homomorphism

• : Bi(X f−→ Y )⊗ Bj(Y
g−→ Z ) → Bi+j(X

g◦f−−→ Z ), X
f

α⃝ //
g◦f

α • β⃝
��

Y

g

β⃝
��

Z

2. Pushforward: For X f−→ Y
g−→ Z in V with f confined, the homomorphism

f∗ : Bi(X
g◦f−−→ Z ) → Bi(Y

g−→ Z ), X
f //

g◦f

α⃝
��

Y

g

f∗α⃝
��

Z

3. Pullback : For an independent square

X′ g′
−−−−−−−→ X

f ′
y yf

Y ′ −−−−−−−→
g

Y ,

g∗ : Bi(X f−→ Y ) → Bi(X ′ f ′−→ Y ′), X ′ g′
//

f ′g∗α⃝
��

Y

f α⃝
��

Y ′ g // Y 18 / 40



§3.3. Seven axioms required on these 3 operations
1. (A1) Product is associative: for X f−→ Y

g−→ Z h−→ W with
α ∈ B(X f−→ Y ), β ∈ B(Y g−→ Z ), γ ∈ B(Z h−→ W ),

(α • β) • γ = α • (β • γ).

2. (A2) Pushforward is functorial : for X f−→ Y
g−→ Z h−→ W with f and g

confined and α ∈ B(X h◦g◦f−−−→ W )

(g ◦ f )∗(α) = g∗(f∗(α)).

3. (A3) Pullback is functorial: given independent squares

X ′′ h′−−−−−→ X ′ g′
−−−−−→ Xyf ′′

yf ′
yf

Y ′′ −−−−−→
h

Y ′ −−−−−→
g

Y

(g ◦ h)∗ = h∗ ◦ g∗.

4. (A12) Product and pushforward commute: for X f−→ Y
g−→ Z h−→ W with

f confined and α ∈ B(X g◦f−−→ Z ), β ∈ B(Z h−→ W ),

f∗(α • β) = f∗(α) • β ∈ B(Y h◦g−−→ W ).
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(A12) means the following:

X
α⃝

==

α • β⃝
CC

f // Y
g //

f∗(α • β)⃝
""

Z h

β⃝
// W

X
α⃝

==
f // Y g

f∗α⃝ //

f∗α • β⃝
��

Z
h

β⃝ // W

20 / 40



5. (A13) Product and pullback commute: given independent squares

X ′ h′′−−−−−→ X

f ′
y yf

Y ′ h′−−−−−→ Y

g′
y yg

Z ′ −−−−−→
h

Z

with α ∈ B(X f−→ Y ), β ∈ B(Y g−→ Z ),

h∗(α • β) = h′∗(α) • h∗(β) ∈ B(X ′ g′◦f ′−−−→ Z ′).

X ′ h′′ //

f ′ h∗α⃝
��

g′◦f ′h∗(α • β)⃝= h∗α • h′∗β⃝
&&

X

f α⃝
��

g◦f α • β⃝
vv

Y ′

g′ h′∗β⃝
��

h′ // Y

g β⃝
��

Z ′
h

// Z
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6. (A23) Pushforward and pullback commute:for independent squares

X ′ h′′−−−−−→ X

f ′
y yf

Y ′ h′−−−−−→ Y

g′
y yg

Z ′ −−−−−→
h

Z

with f confined and α ∈ B(X g◦f−−→ Z ),

f ′∗(h
∗(α)) = h∗(f∗(α)) ∈ B(Y ′ g′

−→ Z ′).

X ′ h′′ //

f ′

��
g′◦f ′h∗α⃝

##

X

f
��

g◦f α⃝

vv

Y ′

g′ f ′∗(h∗α)⃝= h∗(f∗α)⃝
��

h′ // Y

g f∗α⃝
��

Z ′
h

// Z
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7. (A123) Projection formula: given an independent square with g confined and

α ∈ B(X f−→ Y ), β ∈ B(Y ′ h◦g−−→ Z ), we have

g′
∗(g

∗α • β) = α • g∗β ∈ B(X h◦f−−→ Z ).

X ′ g′
//

f ′g∗α⃝
��

h◦f◦g′

g∗α • β⃝

��

X

f α⃝
��

h◦f

g′
∗(g∗α • β)⃝= α • g∗β⃝

!!
Y ′

β⃝

55g
// Y

h

g∗β⃝ // Z
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We also require the theory B to have multiplicative units:

(Units) For all X ∈ V, there is an element 1X ∈ B0(X
idX−−→ X ) such that

α • 1X = α for all morphisms W → X and all α ∈ B(W → X ), and such
that 1X • β = β for all morphisms X → Y and all β ∈ B(X → Y ), and
such that g∗1X = 1X ′ for all g : X ′ → X .
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§3.4. Grothendieck transformation

Let B,B′ be two bivariant theories on a category V.
A Grothendieck transformation from B to B′,

γ : B → B′

is a collection of homomorphisms

B(X → Y ) → B′(X → Y )

which preserves the above three basic operations:

1. γ(α •B β) = γ(α) •B′ γ(β),

2. γ(f∗α) = f∗γ(α),

3. γ(g∗α) = g∗γ(α).
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A remark

In FM’s book,a Grothendieck transformation is defined as follows.
Let − : V → V be a functor sending confined maps in V to confined maps in
V, and independent squares in V to independent squares in V.
Write X and f for the image in V of an object X and a map f in V. Let T be a
bivariant theory on V and U be a bivariant theory on V. Then a Grothendieck
transformation

t : T → U

is a collection of homomorphisms

t : T (X f−→ Y ) → U(X f−→ Y ),

which commutes with product, pushforward and pullback.
However, if we define

U(X f−→ Y ) := U(X f−→ Y )

then the bivariant theory U on V can be considered as a bivariant theory on
V, thus a Grothendieck transformation can be defined as above.
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§4. Associated covariant & contravariant functors
B∗,B∗

B unifies a covariant theory B∗ and a contravariant theory B∗:
1. Bi(X ) := B−i(X → pt) is covariant for confined maps:

f∗ : Bi(X ) → Bi(Y ) (for a confined map f : X → Y ), X f //

α⃝ ��

Y

f∗α⃝��
pt

(g ◦ f )∗ = g∗ ◦ f∗ follows from (A2) (the functoriality of pushforward).

2. Bi(X ) := Bi(X
idX−−→ X ) is contravariant for any morphisms: for g : X → Y

g∗ : Bj(Y ) → Bj(X ), X
g //

idXg∗α⃝
��

Y

idY α⃝
��

X
g

// Y

(g ◦ f )∗ = f ∗ ◦ g∗ follows from (A3) (the functoriality of pullback).
That is why B(X → Y ) is called a bivariant theory.
γ : B → B′ induces natural transformations γ : B∗ → B′

∗ and γ : B∗ → B′∗.
(Sometimes they are denoted γ∗ and γ∗ with ∗.)
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§5. Canonical orientation

Let S ′ be another class of maps in V, which is closed under compositions
and containing all identity maps. ( We keep the symbol S for another class
considered later)

NOTE: For the class C of confined maps, we require the stability of pullback,
i.e., the pullback of a confined map is confined. For this class S ′ we do not
require the stability of pullback.

If for f : X → Y ∈ S ′ there is assigned an element

θ(f ) ∈ B(X f−→ Y )

satisfying

(i) θ(g ◦ f ) = θ(f ) • θ(g)
(ii) θ(idX ) = 1X (the unit element).

Then θ(f ) is called a canonical orientation of f .
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§6. Gysin maps induced by bivariant elements
Any bivariant element θ ∈ Bi(X f−→ Y ) gives rise to Gysin (“wrong-way”
homomorphisms

1. θ! : Bj(Y ) → Bj−i(X ), i .e., θ! : B−j(Y → pt) → B−j+i(Y → pt)

defined by θ!(α) := θ•α, X
f

θ⃝ //

θ•α⃝ ��

Y

α⃝��
pt

For η ∈ Bj(Z
g−→ X ) and θ ∈ Bi(X f−→ Y ), (η • θ)! = η! ◦ θ!. Because

(η • θ)!(α) := (η • θ) • α = η • (θ • α) = η!(θ!(α)) = (η! ◦ θ!)(α).

2. θ! : Bj(X ) → Bj+i(Y ), i .e., θ! : Bj(X
idX−−→ X ) → Bj(Y

idY−−→ Y )

defined by (f : X → Y is a confined map)

θ!(α) := f∗(α•θ), X f //

idXα⃝
��

Y

idY f∗(α•θ)⃝
��

X f

θ⃝
// Y

(η • θ)! = θ! ◦ η!. Because (η • θ)!(α) := (f ◦ g)∗(α • (η • θ)) =
f∗(g∗((α • η) • θ)) = f∗(η!(α) • θ) = θ!(η!(α)) = (θ! ◦ η!)(α).
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§7. Gysin maps induced by canonical orientations
In particular, a canonical orientation θ(f ) (f ∈ S ′) makes

1. the covariant functor B∗(X ) contravariant for maps in S ′:
For f : X → Y ∈ S ′, f ! : B∗(Y ) → B∗(X ) defined by θ(f )!,i.e,

f !(α) := θ(f )!(α) = θ(f )•α, X
f

θ(f )⃝
//

θ(f )•α⃝ ��

Y

α⃝��
pt

(g ◦ f )! = θ(g ◦ f )! = (θ(f ) • θ(g))! = θ(f )! ◦ θ(g)! = f ! ◦ g!.

2. the contravariant functor B∗ covariant for maps in C ∩ S.
For f : X → Y ∈ C ∩ S ′, f! : B∗(X ) → B∗(Y ) defined by

f!(α) := f∗(α•θ(f )), X f //

idXα⃝
��

Y

idY f∗(α•θ(f ))⃝
��

X f

θ(f )⃝ // Y

(g ◦ f )! = θ(g ◦ f )! = (θ(f ) • θ(g))! = θ(g)! ◦ θ(f )! = g! ◦ f!.
f ! and f! should carry the data S ′ and θ, but usually omitted.
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§8. Riemann–Roch formula by Fulton-MacPherson
Let B,B′ be bivariant theories and let θB, θB′ be canonical orientations on
B,B′ for a class S ′. Let γ : B → B′ be a Grothendieck transformation. If there
exists a bivariant element uf ∈ B′(X

idX−−→ X ) for f : X → Y ∈ S such that

γ(θB(f )) = uf • θB′(f ), X
idX

uf⃝ //

γ(θB(f ))⃝ ��

X

θB′(f )⃝��
Y

it is called a Riemann–Roch formula for γ : B → B′ with respect to θB and θB′ .
In fact this RR-formula gives rise to the formulas of the following types

“BFM-RR”, “SGA6”, “Verdier-RR”.

Indeed
(1) The Grothendieck transformation γ : B → B′ gives us:
“BFM-RR” type formula: for a proper map f : X → Y

B∗(X )
γ−−−−−→ B′

∗(X )

f∗

y yf∗

B∗(Y ) −−−−−→
γ

B′
∗(Y ),
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(2) “SGA6” type formula: for a map f : X → Y ∈ C ∩ S′

B∗(X )
γ−−−−−→ B′∗(X )

f!

y yf!(−•uf )

B∗(Y ) −−−−−→
γ

B′∗(Y ),

γ(f!α) = γ(f∗ (α • θB(f ))) (by the definition of f!)

= f∗γ (α • θB(f ))

= f∗
(
γ(α) • γ(θB(f ))

)
= f∗

(
γ(α) •

(
uf • θB′(f )

))
(by RR-formula γ(θB(f )) = uf • θB′(f ) )

= f∗
((

γ(α) • uf

)
• θB′(f )

)
= f!(γ(α) • uf ) (by the definition of f!(−) := f∗

(
− • θB′(f )

)
)
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(3) “Verdier-RR” type formula: for a map f : X → Y ∈ S ′

B∗(Y )
γ−−−−−→ B′

∗(Y )

f !
y yuf •f !

B∗(X ) −−−−−→
γ

B′
∗(X ),

γ(f !α) = γ(θB(f ) • α)
= γ(θB(f )) • γ(α)

=
(

uf • θB′(f )
)
• γ(α) (by RR-formula γ(θB(f )) = uf • θB′(f ) )

= uf •
(
θB′(f ) • γ(α)

)
= uf • f !(γ(α)).
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So Fulton-MacPherson’s Grothendieck transformation

γ : K(−) → H(−)⊗Q

with Riemann–Roch formula γ(θK(f )) = td(Tf ) • θH(f ) implies
(1) BFM-RR:

B∗(X )
γ−−−−−→ B′

∗(X )

f∗

y yf∗

B∗(Y ) −−−−−→
γ

B′
∗(Y ),

==>

K0(X )
τBFM

−−−−−→ H∗(X )⊗Q

f∗

y yf∗

K0(Y ) −−−−−→
τBFM

H∗(Y )⊗Q,

(2) “SGA 6”:

B∗(X )
γ−−−−−→ B′∗(X )

f!

y yf!(−•uf )

B∗(Y ) −−−−−→
γ

B′∗(Y ),

==>

K 0(X )
ch−−−−−→ H∗(X )⊗Q

f!

y yf!(−∪td(Tf ))

K 0(Y ) −−−−−→
ch

H∗(Y )⊗Q,

(3) “Verdier-RR”

B∗(Y )
γ−−−−−→ B′

∗(Y )

f !
y yuf •f !

B∗(X ) −−−−−→
γ

B′
∗(X ),

==>

K0(Y )
τBFM

−−−−−→ H∗(Y )⊗Q

f !
y ytd(Tf )∩f !

K0(X ) −−−−−→
τBFM

H∗(X )⊗Q,
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§9. A remark on RR-formulas

1. “downstairs” Riemann–Roch formula (by S.Y.):

γ(θB(f )) = θB′(f ) • df , df ∈ B′(Y
idY−−→ Y ).

X
θB′(f )⃝

f��

γ(θB(f ))⃝
f ��

Y
idY

df⃝ // Y

X
idX

uf⃝ //

γ(θB(f ))⃝ ��

X

θB′(f )⃝��
Y

(MEMO:I suppose Fulton-MacPherson use “u” for “uf ”, indicating “unit”, not
“upstairs”.)

γ(θB(f )) = θB′(f ) • df implies the corresponding
“SGA6” (for f : X → Y ∈ C ∩ S ′) and “Verdier–RR” (for f : X → Y ∈ S ′)
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(i) “downstairs” “‘SGA6” type formula: for a map f : X → Y ∈ C ∩ S′

B∗(X )
γ−−−−−→ B′∗(X )

f!

y yf!(−)•df

B∗(Y ) −−−−−→
γ

B′∗(Y ),

γ(f!α) = γ(f∗ (α • θB(f )))
= f∗γ (α • θB(f ))

= f∗
(
γ(α) • γ(θB(f ))

)
= f∗

(
γ(α) •

(
θB′(f ) • df

))
(by d-RR-formula γ(θB(f )) = θB′(f ) • df )

= f∗
((

γ(α) • θB′(f )
)
• df

)
= f∗

(
γ(α) • θB′(f )

)
• df (by (A12:product and pushforward commutes)

= f!(γ(α)) • df (by the definition of f!(−) := f∗
(
− • θB′(f )

)
)
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(ii)“downstairs” “Verdier-RR” type formula: for a map f : X → Y ∈ S ′

B∗(Y )
γ−−−−−→ B′

∗(Y )

f !
y yf !(df •−)

B∗(X ) −−−−−→
γ

B′
∗(X ),

γ(f !α) = γ(θB(f ) • α)
= γ(θB(f )) • γ(α)

=
(
θB′(f ) • df

)
• γ(α) (by d-RR-formula γ(θB(f )) = θB′(f ) • df )

= θB′(f ) •
(

df • γ(α)
)

= f !(df • γ(α)).
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Summing up:

“‘SGA 6” type formulas (“upstairs” and “downstairs”)

B∗(X )
γ−−−−−→ B′∗(X )

f!

y yf!(−•uf )

B∗(Y ) −−−−−→
γ

B′∗(Y ),

B∗(X )
γ−−−−−→ B′∗(X )

f!

y yf!(−)•df

B∗(Y ) −−−−−→
γ

B′∗(Y ),

“Verdier-RR” type formulas (“upstairs” and “downstairs”)

B∗(Y )
γ−−−−−→ B′

∗(Y )

f !
y yuf •f !(−)

B∗(X ) −−−−−→
γ

B′
∗(X ),

B∗(Y )
γ−−−−−→ B′

∗(Y )

f !
y yf !(df •−)

B∗(X ) −−−−−→
γ

B′
∗(X ),
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2. Riemann–Roch “self” formula: Let B be a bivariant theory and θ, θ′ be
two canonical orientations of B for a class S ′:

1. (“upstairs” Riemann-Roch “self” formula (by S.Y.))

θ(f ) = uf • θ′(f ), uf ∈ B(X idX−−→ X ),

Letting f!! := θ′(f )!, f !! := θ′(f )!, we have f! = f!!(−•uf ) and f ! = uf•f !!.
2. (“downstairs” Riemann-Roch “self” formula (by S.Y.))

θ(f ) = θ′(f ) • df , df ∈ B(Y idY−−→ Y ).

As above, we have f! = f!!(−)•df and f ! = f !!(df•−)

In other words, we think
γ = id : B → B, id(θ(f )) = uf • θ′(f ), id(θ(f )) = θ′(f ) • df . Thus, we have
“‘SGA 6” type formulas (“upstairs” and “downstairs”)

B∗(X )
id−−−−−→ B∗(X )

f!

y yf!!(−•uf )

B∗(Y ) −−−−−→
id

B∗(Y ),

B∗(X )
id−−−−−→ B∗(X )

f!

y yf!!(−)•df

B∗(Y ) −−−−−→
id

B∗(Y ),

“Verdier-RR” type formulas (“upstairs” and “downstairs”)

B∗(Y )
id−−−−−→ B∗(Y )

f !
y yuf •f !(−)

B∗(X ) −−−−−→
id

B∗(X ),

B∗(Y )
id−−−−−→ B∗(Y )

f !
y yf !(df •−)

B∗(X ) −−−−−→
id

B∗(X ),
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Thank you very much for your attention!
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