Lecture 2:
 A universal bivariant theory and Riemann-Roch formulas

Shoji Yokura

Kagoshima University

December 5, 2020

Menu

§1. A universal bivariant theory and Riemann-Roch formulas §1.1. A universal bivariant theory
§1.2. Riemann-Roch formulas for the universal BT $\mathbb{M}_{\mathcal{S}}^{\mathcal{C}}$
§1.3. A very naive universal bivariant theory
$\S 2$ Simple examples of bivariant theories and Riemann-Roch formulas

§1. A universal bivariant theory and Riemann-Roch formulas

1. Let \mathcal{S} be another class of maps called "specialized maps" (e.g., smooth maps in algebraic geometry), which is

§1. A universal bivariant theory and Riemann-Roch formulas

1. Let \mathcal{S} be another class of maps called "specialized maps" (e.g., smooth maps in algebraic geometry), which is
1.1 closed under composition, $X \xrightarrow{f} Y, Y \xrightarrow{g} Z \in \mathcal{S} \Longrightarrow g \circ f \in \mathcal{S}$

§1. A universal bivariant theory and Riemann-Roch formulas

1. Let \mathcal{S} be another class of maps called "specialized maps" (e.g., smooth maps in algebraic geometry), which is
1.1 closed under composition, $X \xrightarrow{f} Y, Y \xrightarrow{g} Z \in \mathcal{S} \Longrightarrow g \circ f \in \mathcal{S}$
1.2 closed under base change (i.e., stable by pullback) (NOTE:this condition is not required on the above class \mathcal{S}^{\prime}.)

§1. A universal bivariant theory and Riemann-Roch formulas

1. Let \mathcal{S} be another class of maps called "specialized maps" (e.g., smooth maps in algebraic geometry), which is
1.1 closed under composition, $X \xrightarrow{f} Y, Y \xrightarrow{g} Z \in \mathcal{S} \Longrightarrow g \circ f \in \mathcal{S}$
1.2 closed under base change (i.e., stable by pullback) (NOTE:this condition is not required on the above class \mathcal{S}^{\prime}.)
1.3 and containing all identity maps, $X \xrightarrow{\text { id } x} X \in \mathcal{S}$.

§1. A universal bivariant theory and Riemann-Roch formulas

1. Let \mathcal{S} be another class of maps called "specialized maps" (e.g., smooth maps in algebraic geometry), which is
1.1 closed under composition, $X \xrightarrow{f} Y, Y \xrightarrow{g} Z \in \mathcal{S} \Longrightarrow g \circ f \in \mathcal{S}$
1.2 closed under base change (i.e., stable by pullback) (NOTE:this condition is not required on the above class \mathcal{S}^{\prime}.)
1.3 and containing all identity maps, $X \xrightarrow{\text { id } X} X \in \mathcal{S}$.
2. Let \mathcal{S} be as above. If the orientation θ on \mathcal{S} is stable by pullback,

§1. A universal bivariant theory and Riemann-Roch formulas

1. Let \mathcal{S} be another class of maps called "specialized maps" (e.g., smooth maps in algebraic geometry), which is
1.1 closed under composition, $X \xrightarrow{f} Y, Y \xrightarrow{g} Z \in \mathcal{S} \Longrightarrow g \circ f \in \mathcal{S}$
1.2 closed under base change (i.e., stable by pullback) (NOTE:this condition is not required on the above class \mathcal{S}^{\prime}.)
1.3 and containing all identity maps, $X \xrightarrow{\text { id } X} X \in \mathcal{S}$.
2. Let \mathcal{S} be as above. If the orientation θ on \mathcal{S} is stable by pullback,

§1. A universal bivariant theory and Riemann-Roch formulas

1. Let \mathcal{S} be another class of maps called "specialized maps" (e.g., smooth maps in algebraic geometry), which is
1.1 closed under composition, $X \xrightarrow{f} Y, Y \xrightarrow{g} Z \in \mathcal{S} \Longrightarrow g \circ f \in \mathcal{S}$
1.2 closed under base change (i.e., stable by pullback) (NOTE:this condition is not required on the above class \mathcal{S}^{\prime}.)
1.3 and containing all identity maps, $X \xrightarrow{\text { id } X} X \in \mathcal{S}$.
2. Let \mathcal{S} be as above. If the orientation θ on \mathcal{S} is stable by pullback, i.e., satisfies

$$
\theta\left(f^{\prime}\right)=g^{*} \theta(f)
$$

for an independent square with $f \in \mathcal{S}$

§1. A universal bivariant theory and Riemann-Roch formulas

1. Let \mathcal{S} be another class of maps called "specialized maps" (e.g., smooth maps in algebraic geometry), which is
1.1 closed under composition, $X \xrightarrow{f} Y, Y \xrightarrow{g} Z \in \mathcal{S} \Longrightarrow g \circ f \in \mathcal{S}$
1.2 closed under base change (i.e., stable by pullback) (NOTE:this condition is not required on the above class \mathcal{S}^{\prime}.)
1.3 and containing all identity maps, $X \xrightarrow{\text { id } X} X \in \mathcal{S}$.
2. Let \mathcal{S} be as above. If the orientation θ on \mathcal{S} is stable by pullback, i.e., satisfies

$$
\theta\left(f^{\prime}\right)=g^{*} \theta(f)
$$

for an independent square with $f \in \mathcal{S}$

θ is called a nice canonical orientation of \mathbb{B}.

§1.1. A universal bivariant theory

From now on we assume that our category \mathcal{V} satisfies that any fiber square

with f being confined, i.e., $f \in \mathcal{C}$, is an independent square.

§1.1. A universal bivariant theory

From now on we assume that our category \mathcal{V} satisfies that any fiber square

with f being confined, i.e., $f \in \mathcal{C}$, is an independent square.
Theorem
(S. Y., "Oriented bivariant theory, l", Int. J. Math. 20 (2009), 1305-1334), in fact a work of 2005-2006.)

§1.1. A universal bivariant theory

From now on we assume that our category \mathcal{V} satisfies that any fiber square

with f being confined, i.e., $f \in \mathcal{C}$, is an independent square.
Theorem
(S. Y., "Oriented bivariant theory, l", Int. J. Math. 20 (2009), 1305-1334), in fact a work of 2005-2006.)

§1.1. A universal bivariant theory

From now on we assume that our category \mathcal{V} satisfies that any fiber square

with f being confined, i.e., $f \in \mathcal{C}$, is an independent square.
Theorem
(S. Y., "Oriented bivariant theory, l", Int. J. Math. 20 (2009), 1305-1334), in fact a work of 2005-2006.)
Let \mathcal{V} be a category with a class \mathcal{C} of confined maps, a class Ind of independent squares and a class \mathcal{S} of specialized maps.

§1.1. A universal bivariant theory

From now on we assume that our category \mathcal{V} satisfies that any fiber square

with f being confined, i.e., $f \in \mathcal{C}$, is an independent square.
Theorem
(S. Y., "Oriented bivariant theory, l", Int. J. Math. 20 (2009), 1305-1334), in fact a work of 2005-2006.)
Let \mathcal{V} be a category with a class \mathcal{C} of confined maps, a class Ind of independent squares and a class \mathcal{S} of specialized maps. Define

$$
\mathbb{M}_{\mathcal{S}}^{\mathcal{C}}(X \xrightarrow{f} Y)
$$

to be the free abelian group generated by the set of isomorphism classes of confined maps $h: W \rightarrow X$

§1.1. A universal bivariant theory

From now on we assume that our category \mathcal{V} satisfies that any fiber square

with f being confined, i.e., $f \in \mathcal{C}$, is an independent square.
Theorem
(S. Y., "Oriented bivariant theory, l", Int. J. Math. 20 (2009), 1305-1334), in fact a work of 2005-2006.)
Let \mathcal{V} be a category with a class \mathcal{C} of confined maps, a class Ind of independent squares and a class \mathcal{S} of specialized maps. Define

$$
\mathbb{M}_{\mathcal{S}}^{\mathcal{C}}(X \xrightarrow{f} Y)
$$

to be the free abelian group generated by the set of isomorphism classes of confined maps $h: W \rightarrow X$ such that

$$
f \circ h: W \rightarrow Y \in \mathcal{S} .
$$

§1.1. A universal bivariant theory

From now on we assume that our category \mathcal{V} satisfies that any fiber square

with f being confined, i.e., $f \in \mathcal{C}$, is an independent square.
Theorem
(S. Y., "Oriented bivariant theory, l", Int. J. Math. 20 (2009), 1305-1334), in fact a work of 2005-2006.)
Let \mathcal{V} be a category with a class \mathcal{C} of confined maps, a class Ind of independent squares and a class \mathcal{S} of specialized maps. Define

$$
\mathbb{M}_{\mathcal{S}}^{\mathcal{C}}(X \xrightarrow{f} Y)
$$

to be the free abelian group generated by the set of isomorphism classes of confined maps $h: W \rightarrow X$ such that

$$
f \circ h: W \rightarrow Y \in \mathcal{S} .
$$

(1) The association $\mathbb{M}_{\mathcal{S}}^{\mathcal{C}}$ is a bivariant theory, i.e., satisfies 7 axioms, if the bivariant operations are defined as follows:
(i). Product:

$$
\bullet: \mathbb{M}_{\mathcal{S}}^{\mathcal{C}}(X \xrightarrow{f} Y) \otimes \mathbb{M}_{\mathcal{S}}^{\mathcal{C}}(Y \xrightarrow{g} Z) \rightarrow \mathbb{M}_{\mathcal{S}}^{\mathcal{C}}(X \xrightarrow{\text { gof }} Z)
$$

is defined by

$$
[V \xrightarrow{h} X] \bullet[W \xrightarrow{k} Y]:=\left[V^{\prime} \xrightarrow{n \circ k^{\prime \prime}} X\right]
$$

and extended linearly, where

$$
\begin{aligned}
& V^{\prime} \xrightarrow{h^{\prime}} X^{\prime} \xrightarrow{f^{\prime}} W \\
& k^{\prime \prime} \downarrow \quad k^{\prime} \downarrow \quad k \downarrow \\
& V \longrightarrow{ }_{h} X \xrightarrow[t]{\longrightarrow} Z \text {. }
\end{aligned}
$$

(i). Product:

$$
\bullet: \mathbb{M}_{\mathcal{S}}^{\mathcal{C}}(X \xrightarrow{f} Y) \otimes \mathbb{M}_{\mathcal{S}}^{\mathcal{C}}(Y \xrightarrow{g} Z) \rightarrow \mathbb{M}_{\mathcal{S}}^{\mathcal{C}}(X \xrightarrow{g \circ f} Z)
$$

is defined by

$$
[V \xrightarrow{h} X] \bullet[W \xrightarrow{k} Y]:=\left[V^{\prime} \xrightarrow{h \circ k^{\prime \prime}} X\right]
$$

and extended linearly, where

(ii). Pushforward: For $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ with f confined,
$f_{*}: \mathbb{M}_{\mathcal{S}}^{\mathcal{C}}(X \xrightarrow{\text { gof }} Z) \rightarrow \mathbb{M}_{\mathcal{S}}^{\mathcal{C}}(Y \xrightarrow{g} Z) \quad$ is defined by $\quad f_{*}([V \xrightarrow{h} X]):=[V \xrightarrow{f \circ h} Y]$ and extended linearly.
(i). Product:

$$
\bullet: \mathbb{M}_{\mathcal{S}}^{\mathcal{C}}(X \xrightarrow{f} Y) \otimes \mathbb{M}_{\mathcal{S}}^{\mathcal{C}}(Y \xrightarrow{g} Z) \rightarrow \mathbb{M}_{\mathcal{S}}^{\mathcal{C}}(X \xrightarrow{g \circ f} Z)
$$

is defined by

$$
[V \xrightarrow{h} X] \bullet[W \xrightarrow{k} Y]:=\left[V^{\prime} \xrightarrow{h \circ k^{\prime \prime}} X\right]
$$

and extended linearly, where

$$
\begin{aligned}
& V^{\prime} \xrightarrow{h^{\prime}} X^{\prime} \xrightarrow{f^{\prime}} W \\
& k^{\prime \prime} \downarrow \quad k^{\prime} \downarrow \quad k \downarrow \\
& V \longrightarrow \quad X \xrightarrow{ } \quad X \underset{g}{\longrightarrow} Z .
\end{aligned}
$$

(ii). Pushforward: For $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ with f confined,
$f_{*}: \mathbb{M}_{\mathcal{S}}^{\mathcal{C}}(X \xrightarrow{\text { g॰f }} Z) \rightarrow \mathbb{M}_{\mathcal{S}}^{\mathcal{C}}(Y \xrightarrow{g} Z)$ is defined by $f_{*}([V \xrightarrow{h} X]):=[V \xrightarrow{f \circ h} Y]$ and extended linearly. $V \xrightarrow{h} X \xrightarrow{f} Y \xrightarrow{g} Z \Longrightarrow V \xrightarrow{n} X \xrightarrow{f} Y \xrightarrow{g} Z$
(i). Product:

$$
\bullet: \mathbb{M}_{\mathcal{S}}^{\mathcal{C}}(X \xrightarrow{f} Y) \otimes \mathbb{M}_{\mathcal{S}}^{\mathcal{C}}(Y \xrightarrow{g} Z) \rightarrow \mathbb{M}_{\mathcal{S}}^{\mathcal{C}}(X \xrightarrow{g \circ f} Z)
$$

is defined by

$$
[V \xrightarrow{h} X] \bullet[W \xrightarrow{k} Y]:=\left[V^{\prime} \xrightarrow{h \circ k^{\prime \prime}} X\right]
$$

and extended linearly, where

(ii). Pushforward: For $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ with f confined,
$f_{*}: \mathbb{M}_{\mathcal{S}}^{\mathcal{C}}(X \xrightarrow{\text { g॰f }} Z) \rightarrow \mathbb{M}_{\mathcal{S}}^{\mathcal{C}}(Y \xrightarrow{g} Z) \quad$ is defined by $\quad f_{*}([V \xrightarrow{h} X]):=[V \xrightarrow{f \circ h} Y]$ and extended linearly. $V \xrightarrow{h} X \xrightarrow{f} Y \xrightarrow{g} Z \Longrightarrow V \xrightarrow{n} X \xrightarrow{f} Y \xrightarrow{g} Z$

(iii).Pullback: For an independent square

$g^{*}: \mathbb{M}_{\mathcal{S}}^{\mathcal{C}}(X \xrightarrow{f} Y) \rightarrow \mathbb{M}_{\mathcal{S}}^{\mathcal{C}}\left(X^{\prime} \xrightarrow{f^{\prime}} Y^{\prime}\right) \quad$ is defined by $\quad g^{*}([V \xrightarrow{\text { h }} X]):=\left[V^{\prime} \xrightarrow{h^{\prime}} X^{\prime}\right]$
and extended linearly, where

and extended linearly, where

(2) For a specialized map $f: X \rightarrow Y \in \mathcal{S}$

$$
\theta_{\mathbb{M} \mathcal{S}}(f)=[X \xrightarrow{\mathrm{id} X} X] \in \mathbb{M}_{\mathcal{S}}^{\mathcal{C}}(X \xrightarrow{f} Y)
$$

is a nice canonical orientation of $\mathbb{M}_{\mathcal{S}}^{\mathcal{C}}$ for \mathcal{S}.
and extended linearly, where

(2) For a specialized map $f: X \rightarrow Y \in \mathcal{S}$

$$
\theta_{\mathbb{M}_{\mathcal{S}}^{\mathcal{C}}}(f)=[X \xrightarrow{\mathrm{id} X} X] \in \mathbb{M}_{\mathcal{S}}^{\mathcal{C}}(X \xrightarrow{f} Y)
$$

is a nice canonical orientation of $\mathbb{M}_{\mathcal{S}}^{\mathcal{C}}$ for $\mathcal{S} . \quad X \xrightarrow{\mathrm{id} X} X \xrightarrow{f} Y$
and extended linearly, where

(2) For a specialized map $f: X \rightarrow Y \in \mathcal{S}$

$$
\theta_{\mathbb{M} \mathcal{S}}(f)=[X \xrightarrow{i d x} X] \in \mathbb{M}_{\mathcal{S}}^{\mathcal{C}}(X \xrightarrow{f} Y)
$$

is a nice canonical orientation of $\mathbb{M}_{\mathcal{S}}^{\mathcal{C}}$ for $\mathcal{S} . \quad X \xrightarrow{i \mathrm{~d} X} X \xrightarrow{f} Y$
(3) (A universality of $\mathbb{M}_{\mathcal{S}}^{\mathcal{C}}$) Let \mathbb{B} be a bivariant theory on the same \mathcal{V} with the same \mathcal{C}, Ind and \mathcal{S}, and $\theta_{\mathbb{B}}$ a nice canonical orientation of \mathbb{B} for \mathcal{S}.
and extended linearly, where

(2) For a specialized map $f: X \rightarrow Y \in \mathcal{S}$

$$
\theta_{\mathbb{M}_{\mathcal{S}}^{\mathcal{C}}}(f)=[X \xrightarrow{i d x} X] \in \mathbb{M}_{\mathcal{S}}^{\mathcal{C}}(X \xrightarrow{f} Y)
$$

is a nice canonical orientation of $\mathbb{M}_{\mathcal{S}}^{\mathcal{C}}$ for $\mathcal{S} . \quad X \xrightarrow{i \mathrm{~d} X} X \xrightarrow{f} Y$
(3) (A universality of $\mathbb{M}_{\mathcal{S}}^{\mathcal{C}}$) Let \mathbb{B} be a bivariant theory on the same \mathcal{V} with the same \mathcal{C}, Ind and \mathcal{S}, and $\theta_{\mathbb{B}}$ a nice canonical orientation of \mathbb{B} for \mathcal{S}. Then there exists a unique Grothendieck transformation

$$
\gamma_{\mathbb{B}}: \mathbb{M}_{\mathcal{S}}^{\mathcal{C}} \rightarrow \mathbb{B}
$$

and extended linearly, where

(2) For a specialized map $f: X \rightarrow Y \in \mathcal{S}$

$$
\theta_{\mathbb{M}_{\mathcal{S}}^{\mathcal{C}}}(f)=[X \xrightarrow{\mathrm{id} X} X] \in \mathbb{M}_{\mathcal{S}}^{\mathcal{C}}(X \xrightarrow{f} Y)
$$

is a nice canonical orientation of $\mathbb{M}_{\mathcal{S}}^{\mathcal{C}}$ for $\mathcal{S} . \quad X \xrightarrow{\mathrm{id} X} X \xrightarrow{f} Y$
(3) (A universality of $\mathbb{M}_{\mathcal{S}}^{\mathcal{C}}$) Let \mathbb{B} be a bivariant theory on the same \mathcal{V} with the same \mathcal{C}, Ind and \mathcal{S}, and $\theta_{\mathbb{B}}$ a nice canonical orientation of \mathbb{B} for \mathcal{S}. Then there exists a unique Grothendieck transformation

$$
\gamma_{\mathbb{B}}: \mathbb{M}_{\mathcal{S}}^{\mathcal{C}} \rightarrow \mathbb{B}
$$

such that for $X \xrightarrow{f} Y \in \mathcal{S}, \gamma_{\mathbb{B}}: \mathbb{M}_{\mathcal{S}}^{\mathcal{C}}(X \xrightarrow{f} Y) \rightarrow \mathbb{B}(X \xrightarrow{f} Y)$ satisfies

$$
\gamma_{\mathbb{B}}\left(\theta_{\mathbb{M} \mathcal{S}}(f)\right)=\theta_{\mathbb{B}}(f) .
$$

and extended linearly, where

(2) For a specialized map $f: X \rightarrow Y \in \mathcal{S}$

$$
\theta_{\mathbb{M}_{\mathcal{S}}^{\mathcal{C}}}(f)=[X \xrightarrow{\mathrm{id} X} X] \in \mathbb{M}_{\mathcal{S}}^{\mathcal{C}}(X \xrightarrow{f} Y)
$$

is a nice canonical orientation of $\mathbb{M}_{\mathcal{S}}^{\mathcal{C}}$ for $\mathcal{S} . \quad X \xrightarrow{\mathrm{id} X} X \xrightarrow{f} Y$
(3) (A universality of $\mathbb{M}_{\mathcal{S}}^{\mathcal{C}}$) Let \mathbb{B} be a bivariant theory on the same \mathcal{V} with the same \mathcal{C}, Ind and \mathcal{S}, and $\theta_{\mathbb{B}}$ a nice canonical orientation of \mathbb{B} for \mathcal{S}. Then there exists a unique Grothendieck transformation

$$
\gamma_{\mathbb{B}}: \mathbb{M}_{\mathcal{S}}^{\mathcal{C}} \rightarrow \mathbb{B}
$$

such that for $X \xrightarrow{f} Y \in \mathcal{S}, \gamma_{\mathbb{B}}: \mathbb{M}_{\mathcal{S}}^{\mathcal{C}}(X \xrightarrow{f} Y) \rightarrow \mathbb{B}(X \xrightarrow{f} Y)$ satisfies

$$
\gamma_{\mathbb{B}}\left(\theta_{\mathbb{M} \mathcal{S}}(f)\right)=\theta_{\mathbb{B}}(f) .
$$

(In a sense, this is a RR-formula with $u_{f}=1_{x}$ or $d_{f}=F_{Y}$.)

Commutativity

$\mathbb{M}_{\mathcal{S}}^{\mathcal{C}}$ is commutative in the following sense: for the fiber square

$$
\begin{aligned}
X^{\prime} \xrightarrow{g^{\prime}} & X \\
f^{\prime} \downarrow & \\
& \\
Z^{\prime} \xrightarrow{\prime} \xrightarrow{ } & Z
\end{aligned}
$$

and $\forall \alpha \in \mathbb{M}_{\mathcal{S}}^{\mathcal{C}}(X \xrightarrow{f} Z), \forall \beta \in \mathbb{M}_{\mathcal{S}}^{\mathcal{C}}\left(Z^{\prime} \xrightarrow{g} Z\right)$ we have

$$
g^{*}(\alpha) \bullet \beta=f^{*}(\beta) \bullet \alpha .
$$

Commutativity

$\mathbb{M}_{\mathcal{S}}^{\mathcal{C}}$ is commutative in the following sense: for the fiber square

$$
\begin{aligned}
& X^{\prime} \xrightarrow{g^{\prime}} X \\
& f^{\prime} \downarrow \quad \downarrow t \\
& Z^{\prime} \xrightarrow[g]{ } Z,
\end{aligned}
$$

and $\forall \alpha \in \mathbb{M}_{\mathcal{S}}^{\mathcal{C}}(X \xrightarrow{f} Z), \forall \beta \in \mathbb{M}_{\mathcal{S}}^{\mathcal{C}}\left(Z^{\prime} \xrightarrow{g} Z\right)$ we have

$$
g^{*}(\alpha) \bullet \beta=f^{*}(\beta) \bullet \alpha .
$$

Commutativity

$\mathbb{M}_{\mathcal{S}}^{\mathcal{C}}$ is commutative in the following sense: for the fiber square

and $\forall \alpha \in \mathbb{M}_{\mathcal{S}}^{\mathcal{C}}(X \xrightarrow{f} Z), \forall \beta \in \mathbb{M}_{\mathcal{S}}^{\mathcal{C}}\left(Z^{\prime} \xrightarrow{g} Z\right)$ we have

$$
g^{*}(\alpha) \bullet \beta=f^{*}(\beta) \bullet \alpha .
$$

If $g^{*}(\alpha) \bullet \beta=(-1)^{\operatorname{deg}(\alpha) \operatorname{deg}(\beta)} f^{*}(\beta) \bullet \alpha$, it is called skew-commutative (see [Part I:Bivariant Theories] of Fulton-MacPherson's book).

Remark

The main purpose of introducing the UBT $\mathbb{M}_{\mathcal{S}}^{\mathcal{C}}(X \rightarrow Y)$

Remark

The main purpose of introducing the UBT $\mathbb{M}_{\mathcal{S}}^{\mathcal{C}}(X \rightarrow Y)$ was constructing a bivariant analogue

$$
\mathbb{B} \Omega(X \xrightarrow{f} Y)
$$

of Levine-Morel's algebraic cobordism $\Omega^{*}(X)$:

- Levine-Morel, "Algebraic Cobordism", Springer-Verlag (2007).
- Levine-Pandharipande, "Algebraic cobordism revisited", Invent. Math., 176 (2009), 63-130.

Remark

The main purpose of introducing the UBT $\mathbb{M}_{\mathcal{S}}^{\mathcal{C}}(X \rightarrow Y)$ was constructing a bivariant analogue

$$
\mathbb{B} \Omega(X \xrightarrow{f} Y)
$$

of Levine-Morel's algebraic cobordism $\Omega^{*}(X)$:

- Levine-Morel, "Algebraic Cobordism", Springer-Verlag (2007).
- Levine-Pandharipande, "Algebraic cobordism revisited", Invent. Math., 176 (2009), 63-130.
so that

1. $\mathbb{B} \Omega(X \rightarrow p t) \cong \Omega_{*}(X)$ Levine-Morel's "algebraic cobrodism"

Remark

The main purpose of introducing the UBT $\mathbb{M}_{\mathcal{S}}^{\mathcal{C}}(X \rightarrow Y)$ was constructing a bivariant analogue

$$
\mathbb{B} \Omega(X \xrightarrow{f} Y)
$$

of Levine-Morel's algebraic cobordism $\Omega^{*}(X)$:

- Levine-Morel, "Algebraic Cobordism", Springer-Verlag (2007).
- Levine-Pandharipande, "Algebraic cobordism revisited", Invent. Math., 176 (2009), 63-130.
so that

1. $\mathbb{B} \Omega(X \rightarrow p t) \cong \Omega_{*}(X)$ Levine-Morel's "algebraic cobrodism"

Remark

The main purpose of introducing the UBT $\mathbb{M}_{\mathcal{S}}^{\mathcal{C}}(X \rightarrow Y)$ was constructing a bivariant analogue

$$
\mathbb{B} \Omega(X \xrightarrow{f} Y)
$$

of Levine-Morel's algebraic cobordism $\Omega^{*}(X)$:

- Levine-Morel, "Algebraic Cobordism", Springer-Verlag (2007).
- Levine-Pandharipande, "Algebraic cobordism revisited", Invent. Math., 176 (2009), 63-130.
so that

1. $\mathbb{B} \Omega(X \rightarrow p t) \cong \Omega_{*}(X)$ Levine-Morel's "algebraic cobrodism" (NOTE:Levine-Morel's algebraic cobordism is in fact not "cobordism", but a "bordism" theory.)

Remark

The main purpose of introducing the UBT $\mathbb{M}_{\mathcal{S}}^{\mathcal{C}}(X \rightarrow Y)$ was constructing a bivariant analogue

$$
\mathbb{B} \Omega(X \xrightarrow{f} Y)
$$

of Levine-Morel's algebraic cobordism $\Omega^{*}(X)$:

- Levine-Morel, "Algebraic Cobordism", Springer-Verlag (2007).
- Levine-Pandharipande, "Algebraic cobordism revisited", Invent. Math., 176 (2009), 63-130.
so that

1. $\mathbb{B} \Omega(X \rightarrow p t) \cong \Omega_{*}(X)$ Levine-Morel's "algebraic cobrodism" (NOTE:Levine-Morel's algebraic cobordism is in fact not "cobordism", but a "bordism" theory.)
2. $\mathbb{B} \Omega(X \xrightarrow{\text { id } X} X)=: \mathbb{B} \Omega^{*}(X)$ is a new "algebraic cobrodism"

Remark

The main purpose of introducing the UBT $\mathbb{M}_{\mathcal{S}}^{\mathcal{C}}(X \rightarrow Y)$ was constructing a bivariant analogue

$$
\mathbb{B} \Omega(X \xrightarrow{f} Y)
$$

of Levine-Morel's algebraic cobordism $\Omega^{*}(X)$:

- Levine-Morel, "Algebraic Cobordism", Springer-Verlag (2007).
- Levine-Pandharipande, "Algebraic cobordism revisited", Invent. Math., 176 (2009), 63-130.
so that

1. $\mathbb{B} \Omega(X \rightarrow p t) \cong \Omega_{*}(X)$ Levine-Morel's "algebraic cobrodism" (NOTE:Levine-Morel's algebraic cobordism is in fact not "cobordism", but a "bordism" theory.)
2. $\mathbb{B} \Omega(X \xrightarrow{\text { id } X} X)=: \mathbb{B} \Omega^{*}(X)$ is a new "algebraic cobrodism"

Remark

The main purpose of introducing the UBT $\mathbb{M}_{\mathcal{S}}^{\mathcal{C}}(X \rightarrow Y)$ was constructing a bivariant analogue

$$
\mathbb{B} \Omega(X \xrightarrow{f} Y)
$$

of Levine-Morel's algebraic cobordism $\Omega^{*}(X)$:

- Levine-Morel, "Algebraic Cobordism", Springer-Verlag (2007).
- Levine-Pandharipande, "Algebraic cobordism revisited", Invent. Math., 176 (2009), 63-130.
so that

1. $\mathbb{B} \Omega(X \rightarrow p t) \cong \Omega_{*}(X)$ Levine-Morel's "algebraic cobrodism" (NOTE:Levine-Morel's algebraic cobordism is in fact not "cobordism", but a "bordism" theory.)
2. $\mathbb{B} \Omega(X \xrightarrow{\text { id } X} X)=: \mathbb{B} \Omega^{*}(X)$ is a new "algebraic cobrodism"

My plan was to mod out $\mathbb{M}_{\mathcal{S}}^{C}(X \rightarrow Y)$ by some subgroups $\mathcal{R}_{\mathcal{S}}^{C}(X \rightarrow Y)$
obtained by a "bivariant version" of Levine-Morel's relations: :

$$
\mathbb{B} \Omega(X \xrightarrow{f} Y):=\frac{\mathbb{M}_{\mathcal{S}}^{\mathcal{C}}(X \rightarrow Y)}{\mathcal{R}_{\mathcal{S}}^{\mathcal{C}}(X \rightarrow Y)} .
$$

Remark

The main purpose of introducing the UBT $\mathbb{M}_{\mathcal{S}}^{\mathcal{C}}(X \rightarrow Y)$ was constructing a bivariant analogue

$$
\mathbb{B} \Omega(X \xrightarrow{f} Y)
$$

of Levine-Morel's algebraic cobordism $\Omega^{*}(X)$:

- Levine-Morel, "Algebraic Cobordism", Springer-Verlag (2007).
- Levine-Pandharipande, "Algebraic cobordism revisited", Invent. Math., 176 (2009), 63-130.
so that

1. $\mathbb{B} \Omega(X \rightarrow p t) \cong \Omega_{*}(X)$ Levine-Morel's "algebraic cobrodism" (NOTE:Levine-Morel's algebraic cobordism is in fact not "cobordism", but a "bordism" theory.)
2. $\mathbb{B} \Omega(X \xrightarrow{\text { id } X} X)=: \mathbb{B} \Omega^{*}(X)$ is a new "algebraic cobrodism"

My plan was to mod out $\mathbb{M}_{\mathcal{S}}^{C}(X \rightarrow Y)$ by some subgroups $\mathcal{R}_{\mathcal{S}}^{\mathcal{C}}(X \rightarrow Y)$
obtained by a "bivariant version" of Levine-Morel's relations: :

$$
\mathbb{B} \Omega(X \xrightarrow{f} Y):=\frac{\mathbb{M}_{\mathcal{S}}^{\mathcal{C}}(X \rightarrow Y)}{\mathcal{R}_{\mathcal{S}}^{\mathcal{C}}(X \rightarrow Y)} .
$$

Toni Annala (Univ.British Columbia) succeeded in doing this:
"Bivariant derived algebraic cobordism", J. Algebraic Geometry, 2020. (50 pp)

Remark

The main purpose of introducing the UBT $\mathbb{M}_{\mathcal{S}}^{\mathcal{C}}(X \rightarrow Y)$ was constructing a bivariant analogue

$$
\mathbb{B} \Omega(X \xrightarrow{f} Y)
$$

of Levine-Morel's algebraic cobordism $\Omega^{*}(X)$:

- Levine-Morel, "Algebraic Cobordism", Springer-Verlag (2007).
- Levine-Pandharipande, "Algebraic cobordism revisited", Invent. Math., 176 (2009), 63-130.
so that

1. $\mathbb{B} \Omega(X \rightarrow p t) \cong \Omega_{*}(X)$ Levine-Morel's "algebraic cobrodism" (NOTE:Levine-Morel's algebraic cobordism is in fact not "cobordism", but a "bordism" theory.)
2. $\mathbb{B} \Omega(X \xrightarrow{\text { id } X} X)=: \mathbb{B} \Omega^{*}(X)$ is a new "algebraic cobrodism"

My plan was to mod out $\mathbb{M}_{\mathcal{S}}^{\mathcal{C}}(X \rightarrow Y)$ by some subgroups $\mathcal{R}_{\mathcal{S}}^{\mathcal{C}}(X \rightarrow Y)$
obtained by a "bivariant version" of Levine-Morel's relations: :

$$
\mathbb{B} \Omega(X \xrightarrow{f} Y):=\frac{\mathbb{M}_{\mathcal{S}}^{\mathcal{C}}(X \rightarrow Y)}{\mathcal{R}_{\mathcal{S}}^{\mathcal{C}}(X \rightarrow Y)} .
$$

Toni Annala (Univ.British Columbia) succeeded in doing this:
"Bivariant derived algebraic cobordism", J. Algebraic Geometry, 2020. (50 pp) using Lowrey-Schürg's "Derived algebraic cobordism", J. Inst. Math. Jussieu, 15 (2016),407-443" and UBT $\mathbb{M}_{\mathcal{S}}^{\mathcal{C}}$.

§1.2. Riemann-Roch formulas for the universal BT $\mathbb{M}_{\mathcal{S}}^{\mathcal{C}}$

We can define many (in fact, infinitely many) nice canonical orientations.

§1.2. Riemann-Roch formulas for the universal BT $\mathbb{M}_{\mathcal{S}}^{\mathcal{C}}$

We can define many (in fact, infinitely many) nice canonical orientations. First we define the following, motivated by the relative dim. reldim (f) of a smooth map $f: X \rightarrow Y$ in algebraic geometry:

§1.2. Riemann-Roch formulas for the universal BT $\mathbb{M}_{\mathcal{S}}^{\mathcal{C}}$

We can define many (in fact, infinitely many) nice canonical orientations.
First we define the following, motivated by the relative dim. reldim (f) of a smooth map $f: X \rightarrow Y$ in algebraic geometry:

Definition

If there is an assignment reldim (f) for a specialized map $f: X \rightarrow Y$ such that

§1.2. Riemann-Roch formulas for the universal BT $\mathbb{M}_{\mathcal{S}}^{\mathcal{C}}$

We can define many (in fact, infinitely many) nice canonical orientations.
First we define the following, motivated by the relative dim. reldim (f) of a smooth map $f: X \rightarrow Y$ in algebraic geometry:

Definition

If there is an assignment reldim (f) for a specialized map $f: X \rightarrow Y$ such that

1. reldim (f) is a non-negative integer and

§1.2. Riemann-Roch formulas for the universal BT $\mathbb{M}_{\mathcal{S}}^{\mathcal{C}}$

We can define many (in fact, infinitely many) nice canonical orientations.
First we define the following, motivated by the relative dim. reldim (f) of a smooth map $f: X \rightarrow Y$ in algebraic geometry:

Definition

If there is an assignment reldim (f) for a specialized map $f: X \rightarrow Y$ such that

1. reldim (f) is a non-negative integer and
2. it satisfies the following conditions

§1.2. Riemann-Roch formulas for the universal BT $\mathbb{M}_{\mathcal{S}}^{\mathcal{C}}$

We can define many (in fact, infinitely many) nice canonical orientations.
First we define the following, motivated by the relative dim. reldim (f) of a smooth map $f: X \rightarrow Y$ in algebraic geometry:

Definition

If there is an assignment reldim (f) for a specialized map $f: X \rightarrow Y$ such that

1. reldim (f) is a non-negative integer and
2. it satisfies the following conditions

$$
\begin{aligned}
& 2.1 \text { for } f: X \rightarrow Y, g: Y \rightarrow Z \in \mathcal{S} \\
& \qquad \quad \text { reldim }(g \circ f)=\operatorname{reldim}(g)+\operatorname{reldim}(f),
\end{aligned}
$$

§1.2. Riemann-Roch formulas for the universal BT $\mathbb{M}_{\mathcal{S}}^{\mathcal{C}}$

We can define many (in fact, infinitely many) nice canonical orientations.
First we define the following, motivated by the relative dim. reldim (f) of a smooth map $f: X \rightarrow Y$ in algebraic geometry:

Definition

If there is an assignment reldim (f) for a specialized map $f: X \rightarrow Y$ such that

1. reldim (f) is a non-negative integer and
2. it satisfies the following conditions
2.1 for $f: X \rightarrow Y, g: Y \rightarrow Z \in \mathcal{S}$

$$
\operatorname{reldim}(g \circ f)=\operatorname{reldim}(g)+\operatorname{reldim}(f)
$$

$2.2 \operatorname{reldim}(\operatorname{id} x)=0$.

§1.2. Riemann-Roch formulas for the universal BT $\mathbb{M}_{\mathcal{S}}^{\mathcal{C}}$

We can define many (in fact, infinitely many) nice canonical orientations.
First we define the following, motivated by the relative dim. reldim (f) of a smooth map $f: X \rightarrow Y$ in algebraic geometry:

Definition

If there is an assignment reldim (f) for a specialized map $f: X \rightarrow Y$ such that

1. reldim (f) is a non-negative integer and
2. it satisfies the following conditions
2.1 for $f: X \rightarrow Y, g: Y \rightarrow Z \in \mathcal{S}$

$$
\operatorname{reldim}(g \circ f)=\operatorname{reldim}(g)+\operatorname{reldim}(f)
$$

$2.2 \operatorname{reldim}(\operatorname{id} x)=0$.

2.3 for an independent square where $f, f^{\prime} \in \mathcal{S}, \quad f^{\prime} \downarrow \quad \downarrow^{f}$

$\operatorname{reldim}(f)=\operatorname{reldim}\left(f^{\prime}\right)$.

§1.2. Riemann-Roch formulas for the universal BT $\mathbb{M}_{\mathcal{S}}^{\mathcal{C}}$

We can define many (in fact, infinitely many) nice canonical orientations.
First we define the following, motivated by the relative dim. reldim (f) of a smooth map $f: X \rightarrow Y$ in algebraic geometry:

Definition

If there is an assignment reldim (f) for a specialized map $f: X \rightarrow Y$ such that

1. reldim (f) is a non-negative integer and
2. it satisfies the following conditions
2.1 for $f: X \rightarrow Y, g: Y \rightarrow Z \in \mathcal{S}$

$$
\operatorname{reldim}(g \circ f)=\operatorname{reldim}(g)+\operatorname{reldim}(f)
$$

$2.2 \operatorname{reldim}(\operatorname{id} x)=0$.

2.3 for an independent square where $f, f^{\prime} \in \mathcal{S}, \quad f^{\prime} \downarrow \quad \downarrow^{f}$

$\operatorname{reldim}(f)=\operatorname{reldim}\left(f^{\prime}\right)$.

§1.2. Riemann-Roch formulas for the universal BT $\mathbb{M}_{\mathcal{S}}^{\mathcal{C}}$

We can define many (in fact, infinitely many) nice canonical orientations.
First we define the following, motivated by the relative dim. reldim (f) of a smooth map $f: X \rightarrow Y$ in algebraic geometry:

Definition

If there is an assignment reldim (f) for a specialized map $f: X \rightarrow Y$ such that

1. reldim (f) is a non-negative integer and
2. it satisfies the following conditions
2.1 for $f: X \rightarrow Y, g: Y \rightarrow Z \in \mathcal{S}$

$$
\operatorname{reldim}(g \circ f)=\operatorname{reldim}(g)+\operatorname{reldim}(f)
$$

$2.2 \operatorname{reldim}(\operatorname{id} x)=0$.

2.3 for an independent square where $f, f^{\prime} \in \mathcal{S}, f^{\prime} \downarrow \quad \downarrow f$

reldim $(f)=\operatorname{reldim}\left(f^{\prime}\right)$.
then the integer reldim (f) is called a relative dimension of $f: X \rightarrow Y$.

§1.2. Riemann-Roch formulas for the universal BT $\mathbb{M}_{\mathcal{S}}^{\mathcal{C}}$

We can define many (in fact, infinitely many) nice canonical orientations.
First we define the following, motivated by the relative dim. reldim (f) of a smooth map $f: X \rightarrow Y$ in algebraic geometry:

Definition

If there is an assignment reldim (f) for a specialized map $f: X \rightarrow Y$ such that

1. reldim (f) is a non-negative integer and
2. it satisfies the following conditions
2.1 for $f: X \rightarrow Y, g: Y \rightarrow Z \in \mathcal{S}$

$$
\operatorname{reldim}(g \circ f)=\operatorname{reldim}(g)+\operatorname{reldim}(f)
$$

$2.2 \operatorname{reldim}(\operatorname{id} x)=0$.

2.3 for an independent square where $f, f^{\prime} \in \mathcal{S}, f^{\prime} \downarrow \quad \downarrow f$

reldim $(f)=\operatorname{reldim}\left(f^{\prime}\right)$.
then the integer reldim (f) is called a relative dimension of $f: X \rightarrow Y$.
REMARK: Cleary there is a very trivial one: $\operatorname{reldim}(f):=0$ for $\forall f \in \mathcal{S}$.

1. If $a_{F}: F \rightarrow p t$ is confined (e.g., a proper map), F is called confined (e.g., a compact space).
2. If $a_{F}: F \rightarrow p t$ is confined (e.g., a proper map), F is called confined (e.g., a compact space).
3. If $a_{F}: F \rightarrow p t$ is specialized (e.g., a smooth map), F is called specialized (e.g., a smooth variety).
4. If $a_{F}: F \rightarrow p t$ is confined (e.g., a proper map), F is called confined (e.g., a compact space).
5. If $a_{F}: F \rightarrow p t$ is specialized (e.g., a smooth map), F is called specialized (e.g., a smooth variety).
6. If $a_{F}: F \rightarrow p t$ is confined and specialized, F is called confined and specialized (e.g., a compact smooth variety).
7. If $a_{F}: F \rightarrow p t$ is confined (e.g., a proper map), F is called confined (e.g., a compact space).
8. If $a_{F}: F \rightarrow p t$ is specialized (e.g., a smooth map), F is called specialized (e.g., a smooth variety).
9. If $a_{F}: F \rightarrow p t$ is confined and specialized, F is called confined and specialized (e.g., a compact smooth variety).
10. If $a_{F}: F \rightarrow p t$ is confined (e.g., a proper map), F is called confined (e.g., a compact space).
11. If $a_{F}: F \rightarrow p t$ is specialized (e.g., a smooth map), F is called specialized (e.g., a smooth variety).
12. If $a_{F}: F \rightarrow p t$ is confined and specialized, F is called confined and specialized (e.g., a compact smooth variety).
Let F be confined and specialized. Hence $\left[F \xrightarrow{a{ }_{P}} p t\right] \in \mathbb{M}_{\mathcal{S}}^{\mathcal{C}}(p t \rightarrow p t)$. For $a_{X}: X \rightarrow p t$,

$$
\begin{array}{rl}
\left(a_{X}\right)^{*}\left[F \xrightarrow{a_{F}} p t\right] & =\left[X \times F \xrightarrow{p r_{1}} X\right] \in \mathbb{M}_{\mathcal{S}}^{\mathcal{C}}(X \xrightarrow{\mathrm{id} X} X) \\
X & \times F \longrightarrow \\
p r_{1} \downarrow & \downarrow{ }^{a_{F}} \\
X & \xrightarrow{a_{X}} p t \\
\text { idx } & \downarrow \\
X & \downarrow \\
& \\
a_{x} & p t .
\end{array}
$$

NOTE:for $\left[F \xrightarrow{a_{F}} p t\right] \in \mathbb{M}_{\mathcal{S}}^{\mathcal{C}}(p t \rightarrow p t)$

$$
\left[F \xrightarrow{a_{F}} p t\right] \bullet\left[F \xrightarrow{a_{F}} p t\right]=\left[F \times F \xrightarrow{a_{F \times F}} p t\right] \in \mathbb{M}_{\mathcal{S}}^{\mathcal{C}}(p t \rightarrow p t)
$$

by the definition of the bivariant product \bullet :

$$
\begin{aligned}
& F \times F \xrightarrow{p r_{2}} F \xrightarrow{i d_{F}} F \\
& p_{1} \downarrow \quad a_{F} \downarrow \quad a_{F} \downarrow \\
& F \quad \longrightarrow \quad a_{F} \longrightarrow p t \longrightarrow p t .
\end{aligned}
$$

Then we have

$$
\begin{aligned}
\left(\left[F \xrightarrow{a_{F}} p t\right] \bullet\left[F \xrightarrow{a_{F}} p t\right]\right) & \bullet\left[F \xrightarrow{a_{F}} p t\right] \\
& =\left[F \times F \xrightarrow{a_{F \times F}} p t\right] \bullet\left[F \xrightarrow{a_{F}} p t\right] \\
& =\left[F \times F \times F \xrightarrow{a_{F \times F \times F}} p t\right] \\
& =\left[F^{3} \xrightarrow{a_{F 3}} p t\right]
\end{aligned}
$$

Then we have

$$
\begin{aligned}
\left(\left[F \xrightarrow{a_{F}} p t\right] \bullet\left[F \xrightarrow{a_{F}} p t\right]\right) & \bullet\left[F \xrightarrow{a_{F}} p t\right] \\
& =\left[F \times F \xrightarrow{a_{F \times F}} p t\right] \bullet\left[F \xrightarrow{a_{F}} p t\right] \\
& =\left[F \times F \times F \xrightarrow{a_{F \times F \times F}} p t\right] \\
& =\left[F^{3} \xrightarrow{a_{F} 3} p t\right]
\end{aligned}
$$

By induction, for n we have

$$
\begin{aligned}
{\left[F \xrightarrow{a_{F}} p t\right]^{n} } & :=\overbrace{\left[F \xrightarrow{a_{F}} p t\right] \bullet \cdots \bullet\left[F \xrightarrow{a_{F}} p t\right]}^{n} \\
& =\left[F^{n} \xrightarrow{a_{F n}} p t\right]
\end{aligned}
$$

Then we have

$$
\begin{aligned}
&\left(\left[F \xrightarrow{a_{F}} p t\right] \bullet\left[F \xrightarrow{a_{F}} p t\right]\right) \bullet\left[F \xrightarrow{a_{F}} p t\right] \\
&=\left[F \times F \xrightarrow{a_{F \times F}} p t\right] \bullet\left[F \xrightarrow{a_{F}} p t\right] \\
&=\left[F \times F \times F \xrightarrow{a_{F \times F \times F}} p t\right] \\
&=\left[F^{3} \xrightarrow{a_{F 3}} p t\right]
\end{aligned}
$$

By induction, for n we have

$$
\begin{aligned}
{\left[F \xrightarrow{a_{F}} p t\right]^{n} } & :=\overbrace{\left[F \xrightarrow{a_{F}} p t\right] \bullet \cdots \bullet\left[F \xrightarrow{a_{F}} p t\right]}^{n} \\
& =\left[F^{n} \xrightarrow{a_{F n}} p t\right]
\end{aligned}
$$

Therefore we get

$$
\left(a_{X}\right)^{*}\left(\left[F \xrightarrow{a_{F}} p t\right]^{n}\right)=\left[X \times F^{n} \xrightarrow{p r_{1}} X\right] \in \mathbb{M}_{\mathcal{S}}^{\mathcal{C}}(X \xrightarrow{\mathrm{id} X} X)
$$

Then we have

$$
\begin{aligned}
&\left(\left[F \xrightarrow{a_{F}} p t\right] \bullet\left[F \xrightarrow{a_{F}} p t\right]\right) \bullet\left[F \xrightarrow{a_{F}} p t\right] \\
&=\left[F \times F \xrightarrow{a_{F \times F}} p t\right] \bullet\left[F \xrightarrow{a_{F}} p t\right] \\
&=\left[F \times F \times F \xrightarrow{a_{F \times F \times F}} p t\right] \\
&=\left[F^{3} \xrightarrow{a_{F 3}} p t\right]
\end{aligned}
$$

By induction, for n we have

$$
\begin{aligned}
{\left[F \xrightarrow{a_{F}} p t\right]^{n} } & :=\overbrace{\left[F \xrightarrow{a_{F}} p t\right] \bullet \cdots \bullet\left[F \xrightarrow{a_{F}} p t\right]}^{n} \\
& =\left[F^{n} \xrightarrow{a_{F n}} p t\right]
\end{aligned}
$$

Therefore we get

$$
\left(a_{X}\right)^{*}\left(\left[F \xrightarrow{a_{F}} p t\right]^{n}\right)=\left[X \times F^{n} \xrightarrow{p r_{1}} X\right] \in \mathbb{M}_{\mathcal{S}}^{\mathcal{C}}(X \xrightarrow{\mathrm{id} X} X)
$$

Convention: For $n=0$ we define $\left[F \xrightarrow{a_{F}} p t\right]^{0}:=[p t \rightarrow p t]$ and $F^{0}:=p t$.

By the above construction $X \times F^{n} \xrightarrow{p r_{1}} X$ is a confined and specialized map.

By the above construction $X \times F^{n} \xrightarrow{p r_{1}} X$ is a confined and specialized map. Hence, for a specialized map $f: X \rightarrow Y$,

$$
f \circ p r_{1}: X \times F^{n} \xrightarrow{p r_{1}} X \xrightarrow{f} Y
$$

becomes a specialized map,

By the above construction $X \times F^{n} \xrightarrow{p r_{1}} X$ is a confined and specialized map. Hence, for a specialized map $f: X \rightarrow Y$,

$$
f \circ p r_{1}: X \times F^{n} \xrightarrow{p r_{1}} X \xrightarrow{f} Y
$$

becomes a specialized map, hence we have

$$
\left[X \times F^{n} \xrightarrow{p r_{1}} X\right] \in \mathbb{M}_{\mathcal{S}}^{\mathcal{C}}(X \xrightarrow{f} Y) .
$$

By the above construction $X \times F^{n} \xrightarrow{p r_{1}} X$ is a confined and specialized map. Hence, for a specialized map $f: X \rightarrow Y$,

$$
f \circ p r_{1}: X \times F^{n} \xrightarrow{p r_{1}} X \xrightarrow{f} Y
$$

becomes a specialized map, hence we have

$$
\left[X \times F^{n} \xrightarrow{p r_{1}} X\right] \in \mathbb{M}_{\mathcal{S}}^{\mathcal{C}}(X \xrightarrow{f} Y) .
$$

Thus $\left[X \times F^{n} \xrightarrow{p r_{1}} X\right] \in \mathbb{M}_{\mathcal{S}}^{\mathcal{C}}(X \xrightarrow{\text { id } X} X)$ and $\left[X \times F^{n} \xrightarrow{p r_{1}} X\right] \in \mathbb{M}_{\mathcal{S}}^{\mathcal{C}}(X \xrightarrow{f} Y)$.

By the above construction $X \times F^{n} \xrightarrow{p r_{1}} X$ is a confined and specialized map. Hence, for a specialized map $f: X \rightarrow Y$,

$$
f \circ p r_{1}: X \times F^{n} \xrightarrow{p r_{1}} X \xrightarrow{f} Y
$$

becomes a specialized map, hence we have

$$
\left[X \times F^{n} \xrightarrow{p r_{1}} X\right] \in \mathbb{M}_{\mathcal{S}}^{\mathcal{C}}(X \xrightarrow{f} Y) .
$$

Thus $\left[X \times F^{n} \xrightarrow{p r_{1}} X\right] \in \mathbb{M}_{\mathcal{S}}^{\mathcal{C}}(X \xrightarrow{\text { id } X} X)$ and $\left[X \times F^{n} \xrightarrow{p r_{1}} X\right] \in \mathbb{M}_{\mathcal{S}}^{\mathcal{C}}(X \xrightarrow{f} Y)$. This difference can be captured as the following bivariant product:

$$
\begin{equation*}
\left[X \times F^{n} \xrightarrow{p r_{1}} X\right]=\left[X \times F^{n} \xrightarrow{p r_{1}} X\right] \bullet[X \xrightarrow{i d} X] \tag{1.1}
\end{equation*}
$$

By the above construction $X \times F^{n} \xrightarrow{p r_{1}} X$ is a confined and specialized map. Hence, for a specialized map $f: X \rightarrow Y$,

$$
f \circ p r_{1}: X \times F^{n} \xrightarrow{p r_{1}} X \xrightarrow{f} Y
$$

becomes a specialized map, hence we have

$$
\left[X \times F^{n} \xrightarrow{p r_{1}} X\right] \in \mathbb{M}_{\mathcal{S}}^{\mathcal{C}}(X \xrightarrow{f} Y) .
$$

Thus $\left[X \times F^{n} \xrightarrow{p r_{1}} X\right] \in \mathbb{M}_{\mathcal{S}}^{\mathcal{C}}(X \xrightarrow{\text { id } X} X)$ and $\left[X \times F^{n} \xrightarrow{p r_{1}} X\right] \in \mathbb{M}_{\mathcal{S}}^{\mathcal{C}}(X \xrightarrow{f} Y)$. This difference can be captured as the following bivariant product:

$$
\begin{equation*}
\left[X \times F^{n} \xrightarrow{p r_{1}} X\right]=\left[X \times F^{n} \xrightarrow{p r_{1}} X\right] \bullet[X \xrightarrow{i d} X] \tag{1.1}
\end{equation*}
$$

Here $[X \xrightarrow{\text { id } X} X] \in \mathbb{M}_{\mathcal{S}}^{\mathcal{C}}(X \xrightarrow{f} Y)$ is a canonical orientation $\theta_{\mathbb{M}_{\mathcal{S}}^{C}}(f)$. So, we can express the bivariant element $\left[X \times F^{n} \xrightarrow{p r_{1}} X\right] \in \mathbb{M}_{\mathcal{S}}^{\mathcal{C}}(X \xrightarrow{f} Y)$ by

$$
\left[X \times F^{n} \xrightarrow{p r_{1}} X\right]=\left[X \times F^{n} \xrightarrow{p r_{1}} X\right] \bullet \theta_{\mathbb{M}}^{\mathcal{S}}(f)=\left(a_{X}\right)^{*}\left(\left[F \xrightarrow{a_{F}} p t\right]^{n}\right) \bullet \theta_{\mathbb{M}}(f) .
$$

Theorem
Assume that we can define the integer reldim on a class \mathcal{S} of specialized maps.Let F be confined and specialized. For a specialized map $f: X \rightarrow Y$ we define

Theorem
Assume that we can define the integer reldim on a class \mathcal{S} of specialized maps.Let F be confined and specialized. For a specialized map $f: X \rightarrow Y$ we define

Theorem

Assume that we can define the integer reldim on a class \mathcal{S} of specialized maps.Let F be confined and specialized. For a specialized map $f: X \rightarrow Y$ we define

$$
\theta_{\mathbb{M}_{\mathcal{S}}^{\mathcal{C}}}^{F}(f):=\left(a_{x}\right)^{*}\left(\left[F \xrightarrow{a_{F}} p t\right]^{\text {reldim }(f)}\right) \bullet \theta_{\mathbb{M}_{\mathcal{S}}^{\mathcal{C}}}(f) \in \mathbb{M}_{\mathcal{S}}^{\mathcal{C}}(X \xrightarrow{f} Y) .
$$

Theorem

Assume that we can define the integer reldim on a class \mathcal{S} of specialized maps.Let F be confined and specialized. For a specialized map $f: X \rightarrow Y$ we define

$$
\theta_{\mathbb{M} \mathcal{S}}^{F}(f):=\left(a_{x}\right)^{*}\left(\left[F \xrightarrow{a_{F}} p t\right]^{\text {Ieldim }(f)}\right) \bullet \theta_{\mathbb{M}}^{\mathcal{C}}(f) \in \mathbb{M}_{\mathcal{S}}^{\mathcal{C}}(X \xrightarrow{t} Y) .
$$

$\theta_{\mathbb{M}}^{\mathcal{S}} \underset{\mathcal{S}}{\mathrm{F}}$ is a nice canonical orientation,

Theorem

Assume that we can define the integer reldim on a class \mathcal{S} of specialized maps.Let F be confined and specialized. For a specialized map $f: X \rightarrow Y$ we define

$$
\theta_{\mathbb{M}_{\mathcal{S}}^{\mathcal{C}}}^{F}(f):=\left(a_{X}\right)^{*}\left(\left[F \xrightarrow{a_{F}} p t\right]^{\mathrm{reldim}(f)}\right) \bullet \theta_{\mathbb{M}_{\mathcal{S}}^{\mathcal{C}}}(f) \in \mathbb{M}_{\mathcal{S}}^{\mathcal{C}}(X \xrightarrow{f} Y) .
$$

$\theta_{\mathbb{M}_{\mathcal{S}}^{\mathcal{C}}}^{F}$ is a nice canonical orientation, i.e., it satisfies the following:

1. $\theta_{\mathbb{M}_{\mathcal{S}}^{\mathcal{C}}}^{F}(g \circ f)=\theta_{\mathbb{M}_{\mathcal{S}}^{\mathcal{C}}}^{F}(f) \bullet \theta_{\mathbb{M}_{\mathcal{S}}^{\mathcal{C}}}^{F}(g)$ for $f: X \rightarrow Y, g: Y \rightarrow Z \in \mathcal{S}$.

Theorem

Assume that we can define the integer reldim on a class \mathcal{S} of specialized maps.Let F be confined and specialized. For a specialized map $f: X \rightarrow Y$ we define

$$
\theta_{\mathbb{M}_{\mathcal{S}}^{\mathcal{C}}}^{F}(f):=\left(a_{X}\right)^{*}\left(\left[F \xrightarrow{a_{F}} p t\right]^{\text {reldim }(f)}\right) \bullet \theta_{\mathbb{M}_{\mathcal{S}}^{\mathcal{C}}}(f) \in \mathbb{M}_{\mathcal{S}}^{\mathcal{C}}(X \xrightarrow{f} Y) .
$$

$\theta_{\mathbb{M}_{\mathcal{S}}^{\mathcal{C}}}^{F}$ is a nice canonical orientation, i.e., it satisfies the following:

1. $\theta_{\mathbb{M}_{\mathcal{S}}^{\mathcal{C}}}^{F}(g \circ f)=\theta_{\mathbb{M}_{\mathcal{S}}^{\mathcal{C}}}^{F}(f) \bullet \theta_{\mathbb{M}_{\mathcal{S}}^{\mathcal{C}}}^{F}(g)$ for $f: X \rightarrow Y, g: Y \rightarrow Z \in \mathcal{S}$.
2. $\theta_{\mathbb{M}_{\mathcal{S}}^{\mathcal{C}}}^{F}\left(\mathrm{id}_{X}\right)=1_{X}$.

Theorem

Assume that we can define the integer reldim on a class \mathcal{S} of specialized maps.Let F be confined and specialized. For a specialized map $f: X \rightarrow Y$ we define

$$
\theta_{\mathbb{M}_{\mathcal{S}}^{\mathcal{C}}}^{F}(f):=\left(a_{X}\right)^{*}\left(\left[F \xrightarrow{a_{F}} p t\right]^{\text {reldim }(f)}\right) \bullet \theta_{\mathbb{M}_{\mathcal{S}}^{\mathcal{C}}}(f) \in \mathbb{M}_{\mathcal{S}}^{\mathcal{C}}(X \xrightarrow{f} Y) .
$$

$\theta_{\mathbb{M} \mathcal{S}}^{F}$ is a nice canonical orientation, i.e., it satisfies the following:

1. $\theta_{\mathbb{M S}_{\mathcal{S}}^{\mathcal{C}}}^{F}(g \circ f)=\theta_{\mathbb{M}_{\mathcal{S}}^{\mathcal{C}}}^{F}(f) \bullet \theta_{\mathbb{M}_{\mathcal{S}}^{\mathcal{C}}}^{F}(g)$ for $f: X \rightarrow Y, g: Y \rightarrow Z \in \mathcal{S}$.
2. $\theta_{\mathrm{MC}}^{\mathrm{F}}(\mathrm{id} X)=1_{X}$.

$$
X^{\prime} \xrightarrow{g^{\prime}} X
$$

3. for an independent square where $f, f^{\prime} \in \mathcal{S}, f^{\prime} \downarrow \downarrow{ }^{\prime} \downarrow$ $Y^{\prime} \xrightarrow[g]{ } Y$,

$$
g^{*}\left(\theta_{\mathbb{M} \mathcal{S}_{\mathcal{S}}}^{F}(f)\right)=\theta_{\mathbb{M} \mathcal{S}}^{F}\left(f^{\prime}\right) .
$$

Theorem

Assume that we can define the integer reldim on a class \mathcal{S} of specialized maps.Let F be confined and specialized. For a specialized map $f: X \rightarrow Y$ we define

$$
\theta_{\mathbb{M}_{\mathcal{S}}^{\mathcal{C}}}^{F}(f):=\left(a_{X}\right)^{*}\left(\left[F \xrightarrow{a_{F}} p t\right]^{\text {reldim }(f)}\right) \bullet \theta_{\mathbb{M}_{\mathcal{S}}^{\mathcal{C}}}(f) \in \mathbb{M}_{\mathcal{S}}^{\mathcal{C}}(X \xrightarrow{f} Y) .
$$

$\theta_{\mathbb{M} \mathcal{S}}^{F}$ is a nice canonical orientation, i.e., it satisfies the following:

1. $\theta_{\mathbb{M S}_{\mathcal{S}}^{\mathcal{C}}}^{F}(g \circ f)=\theta_{\mathbb{M}_{\mathcal{S}}^{\mathcal{C}}}^{F}(f) \bullet \theta_{\mathbb{M}_{\mathcal{S}}^{\mathcal{C}}}^{F}(g)$ for $f: X \rightarrow Y, g: Y \rightarrow Z \in \mathcal{S}$.
2. $\theta_{\mathrm{MC}}^{\mathrm{F}}(\mathrm{id} X)=1_{X}$.

$$
X^{\prime} \xrightarrow{g^{\prime}} X
$$

3. for an independent square where $f, f^{\prime} \in \mathcal{S}, f^{\prime} \downarrow \downarrow{ }^{\prime} \downarrow$ $Y^{\prime} \xrightarrow[g]{ } Y$,

$$
g^{*}\left(\theta_{\mathbb{M} \mathcal{S}_{\mathcal{S}}}^{F}(f)\right)=\theta_{\mathbb{M} \mathcal{S}}^{F}\left(f^{\prime}\right) .
$$

Theorem

Assume that we can define the integer reldim on a class \mathcal{S} of specialized maps.Let F be confined and specialized. For a specialized map $f: X \rightarrow Y$ we define

$$
\theta_{\mathbb{M}_{\mathcal{S}}^{\mathcal{C}}}^{F}(f):=\left(a_{X}\right)^{*}\left(\left[F \xrightarrow{a_{F}} p t\right]^{\text {reldim }(f)}\right) \bullet \theta_{\mathbb{M}_{\mathcal{S}}^{\mathcal{C}}}(f) \in \mathbb{M}_{\mathcal{S}}^{\mathcal{C}}(X \xrightarrow{f} Y) .
$$

$\theta_{\mathrm{M}}^{\mathcal{M}} \underset{\mathcal{S}}{\mathrm{C}}$ is a nice canonical orientation, i.e., it satisfies the following:

1. $\theta_{\mathbb{M} \mathcal{S}}^{F}(g \circ f)=\theta_{\mathbb{M}_{\mathcal{S}}^{C}}^{F}(f) \bullet \theta_{\mathbb{M}_{\mathcal{S}}^{\mathcal{C}}}^{F}(g)$ for $f: X \rightarrow Y, g: Y \rightarrow Z \in \mathcal{S}$.
2. $\theta_{\mathrm{MC}}^{\mathrm{F}}(\mathrm{id} X)=1_{X}$.

$$
X^{\prime} \xrightarrow{g^{\prime}} X
$$

3. for an independent square where $f, f^{\prime} \in \mathcal{S}, f^{\prime} \downarrow \downarrow{ }^{\prime} \downarrow$ $Y^{\prime} \longrightarrow{ }_{g} Y$,

$$
g^{*}\left(\theta_{\mathbb{M} \mathcal{S}_{\mathcal{S}}}^{F}(f)\right)=\theta_{\mathbb{M} \mathcal{S}}^{F}\left(f^{\prime}\right) .
$$

In particular, when $F=p t$, we have that $\quad \theta_{\mathbb{M}_{\mathcal{S}}^{c}}^{p t}(f)=\theta_{\mathbb{M}_{\mathcal{S}}^{\mathcal{C}}}(f)$.

In fact, the above bivariant element $[F \rightarrow p t] \in \mathbb{M}_{\mathcal{S}}^{\mathcal{C}}(p t \rightarrow p t)$ can be replaced by any element

$$
\Delta \in \mathbb{M}_{\mathcal{S}}^{\mathcal{C}}(p t \rightarrow p t) .
$$

In fact, the above bivariant element $[F \rightarrow p t] \in \mathbb{M}_{\mathcal{S}}^{\mathcal{C}}(p t \rightarrow p t)$ can be replaced by any element

$$
\Delta \in \mathbb{M}_{\mathcal{S}}^{\mathcal{C}}(p t \rightarrow p t) .
$$

Hence we can show the following formula.

In fact, the above bivariant element $[F \rightarrow p t] \in \mathbb{M}_{\mathcal{S}}^{\mathcal{C}}(p t \rightarrow p t)$ can be replaced by any element

$$
\Delta \in \mathbb{M}_{\mathcal{S}}^{\mathcal{C}}(p t \rightarrow p t) .
$$

Hence we can show the following formula.
COROLLARY: Let $\Delta \in \mathbb{M}_{\mathcal{S}}^{\mathcal{C}}(p t \rightarrow p t)$.

1. ("upstairs" Riemann-Roch "self" formula)

$$
\theta_{\mathbb{M} \mathcal{S}}^{\Delta}(f)=\left(a_{x}\right)^{*}\left(\Delta^{\text {reldim }(f)}\right) \bullet \theta_{\mathbb{M} \mathbb{C}_{\mathcal{S}}^{\mathcal{C}}}(f)
$$

is a nice canonical orientation, where $\left(a_{X}\right)^{*}\left(\Delta^{\text {reldim }(f)}\right) \in \mathbb{M}_{\mathcal{S}}^{\mathcal{C}}(X \xrightarrow{\mathrm{id} X} X)$.

In fact, the above bivariant element $[F \rightarrow p t] \in \mathbb{M}_{\mathcal{S}}^{\mathcal{C}}(p t \rightarrow p t)$ can be replaced by any element

$$
\Delta \in \mathbb{M}_{\mathcal{S}}^{\mathcal{C}}(p t \rightarrow p t)
$$

Hence we can show the following formula.
COROLLARY: Let $\Delta \in \mathbb{M}_{\mathcal{S}}^{\mathcal{C}}(p t \rightarrow p t)$.

1. ("upstairs" Riemann-Roch "self" formula)

$$
\theta_{\mathbb{M}_{\mathcal{S}}^{\mathcal{C}}}^{\Delta}(f)=\left(a_{x}\right)^{*}\left(\Delta^{\text {reldim(f) }}\right) \bullet \theta_{\mathbb{M}_{\mathcal{S}}^{\mathcal{C}}}(f)
$$

is a nice canonical orientation, where $\left(a_{X}\right)^{*}\left(\Delta^{\text {reldim }(f)}\right) \in \mathbb{M}_{\mathcal{S}}^{\mathcal{C}}(X \xrightarrow{\mathrm{id} X} X)$.
2. ("downstairs" Riemann-Roch "self" formula)

$$
\Delta_{\mathbb{M}_{\mathcal{S}}^{\mathcal{C}}}(f)=\theta_{\mathbb{M} \mathcal{S}}(f) \bullet\left(a_{Y}\right)^{*}\left(\Delta^{\text {reldim }(f)}\right)
$$

is a nice canonical orientation, where $\left(a_{Y}\right)^{*}\left(\Delta^{\text {reldim }(f)}\right) \in \mathbb{M}_{\mathcal{S}}^{\mathcal{C}}(Y \xrightarrow{i d \gamma} Y)$.

In fact, the above bivariant element $[F \rightarrow p t] \in \mathbb{M}_{\mathcal{S}}^{\mathcal{C}}(p t \rightarrow p t)$ can be replaced by any element

$$
\Delta \in \mathbb{M}_{\mathcal{S}}^{\mathcal{C}}(p t \rightarrow p t)
$$

Hence we can show the following formula.
COROLLARY: Let $\Delta \in \mathbb{M}_{\mathcal{S}}^{\mathcal{C}}(p t \rightarrow p t)$.

1. ("upstairs" Riemann-Roch "self" formula)

$$
\theta_{\mathbb{M}_{\mathcal{S}}^{\mathcal{C}}}^{\Delta}(f)=\left(a_{x}\right)^{*}\left(\Delta^{\text {reldim(f) }}\right) \bullet \theta_{\mathbb{M}_{\mathcal{S}}^{\mathcal{C}}}(f)
$$

is a nice canonical orientation, where $\left(a_{X}\right)^{*}\left(\Delta^{\text {reldim }(f)}\right) \in \mathbb{M}_{\mathcal{S}}^{\mathcal{C}}(X \xrightarrow{\mathrm{id} X} X)$.
2. ("downstairs" Riemann-Roch "self" formula)

$$
\Delta_{\mathbb{M}_{\mathcal{S}}^{\mathcal{C}}}(f)=\theta_{\mathbb{M} \mathcal{S}}(f) \bullet\left(a_{Y}\right)^{*}\left(\Delta^{\text {reldim }(f)}\right)
$$

is a nice canonical orientation, where $\left(a_{Y}\right)^{*}\left(\Delta^{\text {reldim }(f)}\right) \in \mathbb{M}_{\mathcal{S}}^{\mathcal{C}}(Y \xrightarrow{i d \gamma} Y)$.

In fact, the above bivariant element $[F \rightarrow p t] \in \mathbb{M}_{\mathcal{S}}^{\mathcal{C}}(p t \rightarrow p t)$ can be replaced by any element

$$
\Delta \in \mathbb{M}_{\mathcal{S}}^{\mathcal{C}}(p t \rightarrow p t)
$$

Hence we can show the following formula.
COROLLARY: Let $\Delta \in \mathbb{M}_{\mathcal{S}}^{\mathcal{C}}(p t \rightarrow p t)$.

1. ("upstairs" Riemann-Roch "self" formula)

$$
\theta_{\mathbb{M} \mathcal{S}}^{\Delta}(f)=\left(a_{x}\right)^{*}\left(\Delta^{\text {reldim }(f)}\right) \bullet \theta_{\mathbb{M}_{\mathcal{S}}^{\mathcal{C}}}(f)
$$

is a nice canonical orientation, where $\left(a_{X}\right)^{*}\left(\Delta^{\text {reldim }(f)}\right) \in \mathbb{M}_{\mathcal{S}}^{\mathcal{C}}\left(X \xrightarrow{i d_{X}} X\right)$.
2. ("downstairs" Riemann-Roch "self" formula)

$$
\Delta \theta_{\mathbb{M} \mathcal{S}}(f)=\theta_{\mathbb{M} \mathcal{S}}(f) \bullet\left(a_{Y}\right)^{*}\left(\Delta^{\text {reldim(f) }}\right)
$$

is a nice canonical orientation, where $\left(a_{Y}\right)^{*}\left(\Delta^{\text {reldim }(f)}\right) \in \mathbb{M}_{\mathcal{S}}^{\mathcal{C}}(Y \xrightarrow{\text { id }} Y)$. It turns out that in this case

$$
\left(a_{X}\right)^{*}\left(\Delta^{\text {reldim }(f)}\right) \bullet \theta_{\mathbb{M} \mathcal{S}}(f)=\theta_{\mathbb{M} \mathbb{S}}(f) \bullet\left(a_{Y}\right)^{*}\left(\Delta^{\text {reldim }(f)}\right),
$$

which follows from Commutativity!

In fact, the above bivariant element $[F \rightarrow p t] \in \mathbb{M}_{\mathcal{S}}^{\mathcal{C}}(p t \rightarrow p t)$ can be replaced by any element

$$
\Delta \in \mathbb{M}_{\mathcal{S}}^{\mathcal{C}}(p t \rightarrow p t)
$$

Hence we can show the following formula.
COROLLARY: Let $\Delta \in \mathbb{M}_{\mathcal{S}}^{\mathcal{C}}(p t \rightarrow p t)$.

1. ("upstairs" Riemann-Roch "self" formula)

$$
\theta_{\mathbb{M} \mathcal{S}}^{\Delta}(f)=\left(a_{x}\right)^{*}\left(\Delta^{\text {reldim }(f)}\right) \bullet \theta_{\mathbb{M}_{\mathcal{S}}^{\mathcal{C}}}(f)
$$

is a nice canonical orientation, where $\left(a_{X}\right)^{*}\left(\Delta^{\text {reldim }(f)}\right) \in \mathbb{M}_{\mathcal{S}}^{\mathcal{C}}\left(X \xrightarrow{i d_{X}} X\right)$.
2. ("downstairs" Riemann-Roch "self" formula)

$$
\Delta \theta_{\mathbb{M} \mathcal{S}}(f)=\theta_{\mathbb{M} \mathcal{S}}(f) \bullet\left(a_{Y}\right)^{*}\left(\Delta^{\text {reldim(f) }}\right)
$$

is a nice canonical orientation, where $\left(a_{Y}\right)^{*}\left(\Delta^{\text {reldim }(f)}\right) \in \mathbb{M}_{\mathcal{S}}^{\mathcal{C}}(Y \xrightarrow{\text { id }} Y)$. It turns out that in this case

$$
\left(a_{X}\right)^{*}\left(\Delta^{\text {reldim }(f)}\right) \bullet \theta_{\mathbb{M} \mathcal{S}}(f)=\theta_{\mathbb{M} \mathbb{S}}(f) \bullet\left(a_{Y}\right)^{*}\left(\Delta^{\text {reldim }(f)}\right),
$$

which follows from Commutativity! Thus $\theta_{\mathbb{M} \mathcal{S}}^{\Delta}(f)=\Delta \theta_{\mathbb{M} \mathcal{S}}(f)$.

We also get the following, which follows from the universality of UBT:

Corollary

Let $\Delta \in \mathbb{M}_{\mathcal{S}}^{\mathcal{C}}(p t \rightarrow p t)$. \exists a unique Grothendieck (auto-)transformation

$$
\gamma^{\Delta}: \mathbb{M}_{\mathcal{S}}^{\mathcal{C}} \rightarrow \mathbb{M}_{\mathcal{S}}^{\mathcal{C}}
$$

such that $\gamma^{\Delta}\left(\theta_{\mathbb{M} \mathcal{S}}(f)\right)=\theta_{\mathbb{M}_{\mathcal{S}}^{\mathcal{C}}}^{\Delta}(f)=\left(a_{x}\right)^{*}\left(\Delta^{\text {reldim(f) }}\right) \bullet \theta_{\mathbb{M} \mathcal{S}}(f)$ for a specialized map $f: X \rightarrow Y$. (Because $\theta_{\operatorname{ME}_{\mathcal{S}}^{\mathcal{C}}}^{\Delta}(f)$ is a nice canonical orientation.)

We also get the following, which follows from the universality of UBT:

Corollary

Let $\Delta \in \mathbb{M}_{\mathcal{S}}^{\mathcal{C}}(p t \rightarrow p t)$. \exists a unique Grothendieck (auto-)transformation

$$
\gamma^{\Delta}: \mathbb{M}_{\mathcal{S}}^{\mathcal{C}} \rightarrow \mathbb{M}_{\mathcal{S}}^{\mathcal{C}}
$$

such that $\gamma^{\Delta}\left(\theta_{\mathbb{M} \mathcal{S}}(f)\right)=\theta_{\mathbb{M}_{\mathcal{S}}^{\mathcal{C}}}^{\Delta}(f)=\left(a_{x}\right)^{*}\left(\Delta^{\text {reldim(f) }}\right) \bullet \theta_{\mathbb{M} \mathcal{S}}(f)$ for a specialized map $f: X \rightarrow Y$. (Because $\theta_{\operatorname{ME}_{\mathcal{S}}^{\mathcal{C}}}^{\Delta}(f)$ is a nice canonical orientation.)

We also get the following, which follows from the universality of UBT:

Corollary

Let $\Delta \in \mathbb{M}_{\mathcal{S}}^{\mathcal{C}}(p t \rightarrow p t)$. \exists a unique Grothendieck (auto-)transformation

$$
\gamma^{\Delta}: \mathbb{M}_{\mathcal{S}}^{\mathcal{C}} \rightarrow \mathbb{M}_{\mathcal{S}}^{\mathcal{C}}
$$

such that $\gamma^{\Delta}\left(\theta_{\mathbb{M} \mathcal{S}}(f)\right)=\theta_{\mathbb{M}_{\mathcal{S}}^{\mathcal{C}}}^{\Delta}(f)=\left(a_{x}\right)^{*}\left(\Delta^{\text {reldim(f) }}\right) \bullet \theta_{\mathbb{M} \mathcal{S}}(f)$ for a specialized map $f: X \rightarrow Y$. (Because $\theta_{\mathbb{M} \mathcal{S}}^{\Delta}(f)$ is a nice canonical orientation.) In particular, we have "SGA6", "BFM-RR" and "Verdier-RR": (Note:
$\mathbb{M}_{\mathcal{S}}^{\mathcal{C}}(Z):=\mathbb{M}_{\mathcal{S}}^{\mathcal{C}}(Z \xrightarrow{\mathrm{id} \mathcal{Z}} Z)$ and $\mathbb{M}_{\mathcal{S}_{*}}^{\mathcal{C}}(Z):=\mathbb{M}_{\mathcal{S}}^{\mathcal{C}}(Z \rightarrow p t)$

We also get the following, which follows from the universality of UBT:

Corollary

Let $\Delta \in \mathbb{M}_{\mathcal{S}}^{\mathcal{C}}(p t \rightarrow p t) . \exists$ a unique Grothendieck (auto-)transformation

$$
\gamma^{\Delta}: \mathbb{M}_{\mathcal{S}}^{\mathcal{C}} \rightarrow \mathbb{M}_{\mathcal{S}}^{\mathcal{C}}
$$

such that $\gamma^{\Delta}\left(\theta_{\mathbb{M} \mathcal{S}}(f)\right)=\theta_{\mathbb{M}_{\mathcal{S}}^{\mathcal{C}}}^{\Delta}(f)=\left(a_{x}\right)^{*}\left(\Delta^{\text {reldim(f) })}\right) \bullet \theta_{\mathbb{M S}_{\mathcal{S}}}(f)$ for a specialized map $f: X \rightarrow Y$. (Because $\theta_{\mathbb{M} \mathcal{S}}^{\Delta}(f)$ is a nice canonical orientation.) In particular, we have "SGA6", "BFM-RR" and "Verdier-RR": (Note:
$\mathbb{M}_{\mathcal{S}}^{\mathcal{C}}(Z):=\mathbb{M}_{\mathcal{S}}^{\mathcal{C}}(Z \xrightarrow{\mathrm{id} \mathcal{Z}} Z)$ and $\mathbb{M}_{\mathcal{S}_{*}^{\mathcal{C}}}^{\mathcal{C}}(Z):=\mathbb{M}_{\mathcal{S}}^{\mathcal{C}}(Z \rightarrow p t)$

1. "SGA6":For a confined and specialized map $f: X \rightarrow Y$ we have the following commutative diagram:

$$
\begin{aligned}
& \mathbb{M}_{\mathcal{S}}^{\mathcal{C}}{ }^{*}(X) \xrightarrow{\gamma^{\Delta}} \mathbb{M}_{\mathcal{S}}^{\mathcal{C}}{ }^{*}(X) \\
& f_{i} \downarrow \quad \downarrow_{i}\left(\left(a_{x}\right)^{*}\left(\Delta^{\text {redidim }(f)}\right) \bullet-\right)=\hbar_{1}(-) \bullet\left(a_{Y}\right)^{*}\left(\Delta^{\text {redim }(f)}\right) \\
& \mathbb{M}_{\mathcal{S}}^{\mathcal{C}}{ }^{*}(Y) \xrightarrow[\gamma^{\Delta}]{\longrightarrow} \mathbb{M}_{\mathcal{S}}^{\mathcal{C}}(Y),
\end{aligned}
$$

1. "BFM-RR": For a confined map $f: X \rightarrow Y$ we have the following commutative diagram:

$$
\begin{gathered}
\mathbb{M}_{\mathcal{S}_{*}}^{\mathcal{C}}(X) \xrightarrow{\gamma^{\Delta}} \mathbb{M}_{\mathcal{S}_{*}}^{\mathcal{C}}(X) \\
\quad{ }_{* *} \downarrow \\
\mathbb{M}_{\mathcal{S}_{*}}^{\mathcal{C}}(Y) \underset{\gamma^{\Delta}}{ } \mathbb{M}_{\mathcal{S}_{*}}^{\mathcal{C}^{\prime}}(Y)
\end{gathered}
$$

1. "BFM-RR": For a confined map $f: X \rightarrow Y$ we have the following commutative diagram:

$$
\begin{gathered}
\mathbb{M}_{\mathcal{S}_{*}}^{\mathcal{C}}(X) \xrightarrow{\gamma^{\Delta}} \mathbb{M}_{\mathcal{S}_{*}}^{\mathcal{C}}(X) \\
\quad{ }_{f_{*}} \downarrow \\
\mathbb{M}_{\mathcal{S}_{*}}^{\mathcal{C}}(Y) \underset{\gamma^{\Delta}}{ } \mathbb{M}_{\mathcal{S}_{*}}^{\mathcal{C}_{*}}(Y)
\end{gathered}
$$

2. "Verdier-RR": For a specialized map $f: X \rightarrow Y$ the following diagram commute:

$$
\begin{array}{ll}
\mathbb{M}_{\mathcal{S} *}^{\mathcal{C}}(Y) \xrightarrow{\gamma^{\Delta}} & \mathbb{M}_{\mathcal{S}}^{\mathcal{C}}(Y) \\
\quad f^{!} \downarrow \\
& \quad \downarrow\left(a_{X}\right)^{*}\left(\Delta^{\text {reldim(f) })} \bullet^{\prime} f^{!}=f^{!}\left(\left(a_{Y}\right)^{*}\left(\Delta^{\text {reldim(f) })} \bullet-\right)\right.\right. \\
\mathbb{M}_{\mathcal{S}_{*}}^{\mathcal{C}}(X) \xrightarrow[\gamma^{\Delta}]{ } & \mathbb{M}_{\mathcal{S}_{*}}^{\mathcal{C}}(X)
\end{array}
$$

§1.3. A very naive universal bivariant theory

We give another very naive and simple universal bivariant theory \mathbb{M}^{C} without using the class \mathcal{S} of specialized maps.
THEOREM (A very naive universal bivariant theory) Let \mathcal{V} be a category with a class \mathcal{C} of confined maps and a class of independent squares. Define

$$
\mathbb{M}^{\mathcal{C}}(X \xrightarrow{f} Y)
$$

to be the free abelian group generated by the set of isomorphism classes of confined morphisms $h: W \rightarrow X$.
(1) The association $\mathbb{M}^{\mathcal{C}}$ is a bivariant theory if the three bivariant operations are defined exactly in the same way as in UBT above.
(i). Product: For morphisms $f: X \rightarrow Y$ and $g: Y \rightarrow Z$, the product operation

$$
\bullet: \mathbb{M}^{\mathcal{C}}(X \xrightarrow{f} Y) \otimes \mathbb{M}^{\mathcal{C}}(Y \xrightarrow{g} Z) \rightarrow \mathbb{M}^{\mathcal{C}}(X \xrightarrow{g f} Z) .
$$

(ii). Pushforward: For morphisms $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ with f confined, the pushforward operation

$$
f_{*}: \mathbb{M}^{\mathcal{C}}(X \xrightarrow{g f} Z) \rightarrow \mathbb{M}^{\mathcal{C}}(Y \xrightarrow{g} Z) .
$$

(iii). Pullback: For an independent square

the pullback operation

$$
g^{*}: \mathbb{M}^{\mathcal{C}}(X \xrightarrow{f} Y) \rightarrow \mathbb{M}^{\mathcal{C}}\left(X^{\prime} \xrightarrow{f^{\prime}} Y^{\prime}\right) .
$$

(2). (A very naive universality of $\mathbb{M}^{\mathcal{C}}$) Let \mathbb{B} be a bivariant theory on the same category \mathcal{V} with the same class \mathcal{C} of confined morphisms and the same lass of independent squares. Let $\theta_{\mathbb{B}}$ be a canonical orientation for all maps in \mathcal{V}. Then there exists a unique Grothendieck transformation

$$
\gamma_{\mathbb{B}}: \mathbb{M}^{\mathcal{C}} \rightarrow \mathbb{B}
$$

such that $\gamma_{\mathbb{B}}: \mathbb{M}^{\mathcal{C}}(X \xrightarrow{f} Y) \rightarrow \mathbb{B}(X \xrightarrow{f} Y)$ satisfies the normalization condition that for any map $f: X \rightarrow Y$ in \mathcal{C}

$$
\gamma_{\mathbb{B}}([X \xrightarrow{\text { id } X} X])=\theta_{\mathbb{B}}(f) .
$$

§2 Simple examples of bivariant theories and Riemann-Roch formulas

§2 Simple examples of bivariant theories and Riemann-Roch formulas

Let's consider the category \mathcal{F} of finite sets as an easy example.

§2 Simple examples of bivariant theories and Riemann-Roch formulas

Let's consider the category \mathcal{F} of finite sets as an easy example. DEFINITION (cf.[§6.1 The bivariant theory \mathbb{F} and $\S 10.1 .2$ The Frobenius] of FM.) For \mathcal{F}, let any map be confined and any fiber square be independent.

§2 Simple examples of bivariant theories and Riemann-Roch formulas

Let's consider the category \mathcal{F} of finite sets as an easy example.
DEFINITION (cf.[§6.1 The bivariant theory \mathbb{F} and $\S 10.1 .2$ The Frobenius] of FM.) For \mathcal{F}, let any map be confined and any fiber square be independent. For a map $f: X \rightarrow Y$ we define

$$
\mathbb{F}(X \xrightarrow{f} Y):=\mathbb{F}^{0}(X \xrightarrow{f} Y)
$$

to be the abelian group of \mathbb{R}-valued functions on X.

§2 Simple examples of bivariant theories and Riemann-Roch formulas

Let's consider the category \mathcal{F} of finite sets as an easy example.
DEFINITION (cf.[§6.1 The bivariant theory \mathbb{F} and $\S 10.1 .2$ The Frobenius] of FM.) For \mathcal{F}, let any map be confined and any fiber square be independent. For a map $f: X \rightarrow Y$ we define

$$
\mathbb{F}(X \xrightarrow{f} Y):=\mathbb{F}^{0}(X \xrightarrow{f} Y)
$$

to be the abelian group of \mathbb{R}-valued functions on X.

1. (product)

$$
\bullet: \mathbb{F}(X \xrightarrow{f} Y) \otimes \mathbb{F}(Y \xrightarrow{g} Z) \rightarrow \mathbb{F}(X \xrightarrow{g \circ f} Z)
$$

for $\alpha \in \mathbb{F}(X \xrightarrow{f} Y), \beta \in \mathbb{F}(Y \xrightarrow{g} Z)$ and for $x \in X$

$$
(\alpha \bullet \beta)(x):=\alpha(x) \cdot \beta(f(x))
$$

§2 Simple examples of bivariant theories and Riemann-Roch formulas

Let's consider the category \mathcal{F} of finite sets as an easy example.
DEFINITION (cf.[§6.1 The bivariant theory \mathbb{F} and $\S 10.1 .2$ The Frobenius] of FM.) For \mathcal{F}, let any map be confined and any fiber square be independent. For a map $f: X \rightarrow Y$ we define

$$
\mathbb{F}(X \xrightarrow{f} Y):=\mathbb{F}^{0}(X \xrightarrow{f} Y)
$$

to be the abelian group of \mathbb{R}-valued functions on X.

1. (product)

$$
\text { - }: \mathbb{F}(X \xrightarrow{f} Y) \otimes \mathbb{F}(Y \xrightarrow{g} Z) \rightarrow \mathbb{F}(X \xrightarrow{g \circ f} Z)
$$

for $\alpha \in \mathbb{F}(X \xrightarrow{f} Y), \beta \in \mathbb{F}(Y \xrightarrow{g} Z)$ and for $x \in X$

$$
(\alpha \bullet \beta)(x):=\alpha(x) \cdot \beta(f(x))
$$

2. (pushforward) for any map $f: X \rightarrow Y$ (note that any map is confined)

$$
f_{*}: \mathbb{F}(X \xrightarrow{g \circ f} Z) \rightarrow \mathbb{F}(Y \xrightarrow{g} Z)
$$

for $y \in Y$

$$
f_{*}(\alpha)(y):=\sum_{x \in f^{-1}(y)} \alpha(x)
$$

1. (pullback) For a fiber square

$$
\begin{gathered}
X^{\prime} \xrightarrow{g^{\prime}} X \\
f^{\prime} \downarrow \\
Y^{\prime} \xrightarrow[g]{ } \downarrow^{\prime} \\
g^{*}: \mathbb{F}(X \xrightarrow{f} Y) \rightarrow \mathbb{F}\left(X^{\prime} \xrightarrow{f^{\prime}} Y^{\prime}\right)
\end{gathered}
$$

is defined by (the usual functional pullback)

$$
\left(g^{*} \alpha\right)\left(x^{\prime}\right):=\alpha\left(g^{\prime}\left(x^{\prime}\right)\right)
$$

 $22 / 31$

The following is obvious:

The following is obvious:
Lemma For any map $f: X \rightarrow Y$ we define

$$
\theta_{1}(f):=1_{X} \in \mathbb{F}(X \xrightarrow{f} Y)
$$

the characteristic function, i.e., $1_{x}(x)=1$.

The following is obvious:
Lemma For any map $f: X \rightarrow Y$ we define

$$
\theta_{1}(f):=1_{X} \in \mathbb{F}(X \xrightarrow{f} Y)
$$

the characteristic function, i.e., $1_{x}(x)=1$. Then θ_{1} is a canonical orientation for all maps and it is a nice canonical orientation,

The following is obvious:
Lemma For any map $f: X \rightarrow Y$ we define

$$
\theta_{1}(f):=1_{X} \in \mathbb{F}(X \xrightarrow{f} Y)
$$

the characteristic function, i.e., $1_{x}(x)=1$. Then θ_{1} is a canonical orientation for all maps and it is a nice canonical orientation, i.e., we have

1. $\theta_{1}(g \circ f)=\theta_{1}(f) \bullet \theta_{1}(g)$ for ay maps $f: X \rightarrow Y$ and $g: Y \rightarrow Z$,

The following is obvious:
Lemma For any map $f: X \rightarrow Y$ we define

$$
\theta_{1}(f):=1_{X} \in \mathbb{F}(X \xrightarrow{f} Y)
$$

the characteristic function, i.e., $1_{x}(x)=1$. Then θ_{1} is a canonical orientation for all maps and it is a nice canonical orientation, i.e., we have

1. $\theta_{1}(g \circ f)=\theta_{1}(f) \bullet \theta_{1}(g)$ for ay maps $f: X \rightarrow Y$ and $g: Y \rightarrow Z$,
2. $\theta_{1}\left(\mathrm{id}_{\mathrm{x}}\right)=1_{x}$.

The following is obvious:
Lemma For any map $f: X \rightarrow Y$ we define

$$
\theta_{1}(f):=1_{X} \in \mathbb{F}(X \xrightarrow{f} Y)
$$

the characteristic function, i.e., $1_{x}(x)=1$. Then θ_{1} is a canonical orientation for all maps and it is a nice canonical orientation, i.e., we have

1. $\theta_{1}(g \circ f)=\theta_{1}(f) \bullet \theta_{1}(g)$ for ay maps $f: X \rightarrow Y$ and $g: Y \rightarrow Z$,
2. $\theta_{1}\left(\mathrm{id}_{\mathrm{x}}\right)=1_{x}$.
3. θ_{1} is a nice canonical orientation.

The following is obvious:
Lemma For any map $f: X \rightarrow Y$ we define

$$
\theta_{1}(f):=1_{X} \in \mathbb{F}(X \xrightarrow{f} Y)
$$

the characteristic function, i.e., $1_{x}(x)=1$. Then θ_{1} is a canonical orientation for all maps and it is a nice canonical orientation, i.e., we have

1. $\theta_{1}(g \circ f)=\theta_{1}(f) \bullet \theta_{1}(g)$ for ay maps $f: X \rightarrow Y$ and $g: Y \rightarrow Z$,
2. $\theta_{1}\left(\mathrm{id}_{\mathrm{x}}\right)=1_{x}$.
3. θ_{1} is a nice canonical orientation.

The following is obvious:
Lemma For any map $f: X \rightarrow Y$ we define

$$
\theta_{1}(f):=1_{X} \in \mathbb{F}(X \xrightarrow{f} Y)
$$

the characteristic function, i.e., $1_{x}(x)=1$. Then θ_{1} is a canonical orientation for all maps and it is a nice canonical orientation, i.e., we have

1. $\theta_{1}(g \circ f)=\theta_{1}(f) \bullet \theta_{1}(g)$ for ay maps $f: X \rightarrow Y$ and $g: Y \rightarrow Z$,
2. $\theta_{1}\left(\mathrm{id}_{\mathrm{x}}\right)=1_{x}$.
3. θ_{1} is a nice canonical orientation.

REMARK: Let $r \in \mathbb{R} \backslash\{0\}$. For any map $f: X \rightarrow Y$ we can define

$$
\theta_{r}(f):=r^{|X|-|Y|} \theta_{1}(f)=r^{|X|-|Y|} 1_{X} .
$$

Here $|Z|$ denotes the number of element of a finite set.

The following is obvious:
Lemma For any map $f: X \rightarrow Y$ we define

$$
\theta_{1}(f):=1_{X} \in \mathbb{F}(X \xrightarrow{f} Y)
$$

the characteristic function, i.e., $1_{x}(x)=1$. Then θ_{1} is a canonical orientation for all maps and it is a nice canonical orientation, i.e., we have

1. $\theta_{1}(g \circ f)=\theta_{1}(f) \bullet \theta_{1}(g)$ for ay maps $f: X \rightarrow Y$ and $g: Y \rightarrow Z$,
2. $\theta_{1}\left(\mathrm{id}_{\mathrm{x}}\right)=1_{x}$.
3. θ_{1} is a nice canonical orientation.

REMARK: Let $r \in \mathbb{R} \backslash\{0\}$. For any map $f: X \rightarrow Y$ we can define

$$
\theta_{r}(f):=r^{|X|-|Y|} \theta_{1}(f)=r^{|X|-|Y|} 1_{X} .
$$

Here $|Z|$ denotes the number of element of a finite set. Then we have

1. $\theta_{r}(g \circ f)=\theta_{r}(f) \bullet \theta_{r}(g)$ for $f: X \rightarrow Y$ and $g: Y \rightarrow Z$,

The following is obvious:
Lemma For any map $f: X \rightarrow Y$ we define

$$
\theta_{1}(f):=1_{X} \in \mathbb{F}(X \xrightarrow{f} Y)
$$

the characteristic function, i.e., $1_{x}(x)=1$. Then θ_{1} is a canonical orientation for all maps and it is a nice canonical orientation, i.e., we have

1. $\theta_{1}(g \circ f)=\theta_{1}(f) \bullet \theta_{1}(g)$ for ay maps $f: X \rightarrow Y$ and $g: Y \rightarrow Z$,
2. $\theta_{1}\left(\mathrm{id}_{\mathrm{x}}\right)=1_{x}$.
3. θ_{1} is a nice canonical orientation.

REMARK: Let $r \in \mathbb{R} \backslash\{0\}$. For any map $f: X \rightarrow Y$ we can define

$$
\theta_{r}(f):=r^{|X|-|Y|} \theta_{1}(f)=r^{|X|-|Y|} 1_{X} .
$$

Here $|Z|$ denotes the number of element of a finite set. Then we have

1. $\theta_{r}(g \circ f)=\theta_{r}(f) \bullet \theta_{r}(g)$ for $f: X \rightarrow Y$ and $g: Y \rightarrow Z$,
2. $\theta_{r}(\mathrm{idx})=1_{x}$.

The following is obvious:
Lemma For any map $f: X \rightarrow Y$ we define

$$
\theta_{1}(f):=1_{X} \in \mathbb{F}(X \xrightarrow{f} Y)
$$

the characteristic function, i.e., $1_{x}(x)=1$. Then θ_{1} is a canonical orientation for all maps and it is a nice canonical orientation, i.e., we have

1. $\theta_{1}(g \circ f)=\theta_{1}(f) \bullet \theta_{1}(g)$ for ay maps $f: X \rightarrow Y$ and $g: Y \rightarrow Z$,
2. $\theta_{1}\left(\mathrm{id}_{\mathrm{x}}\right)=1_{x}$.
3. θ_{1} is a nice canonical orientation.

REMARK: Let $r \in \mathbb{R} \backslash\{0\}$. For any map $f: X \rightarrow Y$ we can define

$$
\theta_{r}(f):=r^{|X|-|Y|} \theta_{1}(f)=r^{|X|-|Y|} 1_{X} .
$$

Here $|Z|$ denotes the number of element of a finite set. Then we have

1. $\theta_{r}(g \circ f)=\theta_{r}(f) \bullet \theta_{r}(g)$ for $f: X \rightarrow Y$ and $g: Y \rightarrow Z$,
2. $\theta_{r}(\mathrm{idx})=1_{x}$.

The following is obvious:
Lemma For any map $f: X \rightarrow Y$ we define

$$
\theta_{1}(f):=1_{X} \in \mathbb{F}(X \xrightarrow{f} Y)
$$

the characteristic function, i.e., $1_{x}(x)=1$. Then θ_{1} is a canonical orientation for all maps and it is a nice canonical orientation, i.e., we have

1. $\theta_{1}(g \circ f)=\theta_{1}(f) \bullet \theta_{1}(g)$ for ay maps $f: X \rightarrow Y$ and $g: Y \rightarrow Z$,
2. $\theta_{1}\left(\mathrm{id}_{\mathrm{x}}\right)=1_{x}$.
3. θ_{1} is a nice canonical orientation.

REMARK: Let $r \in \mathbb{R} \backslash\{0\}$. For any map $f: X \rightarrow Y$ we can define

$$
\theta_{r}(f):=r^{|X|-|Y|} \theta_{1}(f)=r^{|X|-|Y|} 1_{X} .
$$

Here $|Z|$ denotes the number of element of a finite set. Then we have

1. $\theta_{r}(g \circ f)=\theta_{r}(f) \bullet \theta_{r}(g)$ for $f: X \rightarrow Y$ and $g: Y \rightarrow Z$,
2. $\theta_{r}(\mathrm{idx})=1_{x}$.
3. if $r \neq 1$, then θ_{r} is not a nice canonical orientation.

The following theorem follows from the theorems of UBT:

The following theorem follows from the theorems of UBT:
Theorem
For the category \mathcal{F} of finite sets there exists a unique Grothendieck transformation

$$
\gamma_{\mathbb{F}}: \mathbb{M}^{\mathcal{C}} \rightarrow \mathbb{F}
$$

such that for any map $f: X \rightarrow Y$

$$
\gamma_{\mathbb{F}}\left(\theta_{\mathbb{M}^{\mathcal{C}}}(f)\right)=\theta_{1}(f)
$$

Note $\theta_{\mathbb{M}^{\mathcal{C}}}(f)=[X \xrightarrow{\mathrm{id} X} X] \in \mathbb{M}^{\mathcal{C}}(X \xrightarrow{f} Y)$ and $\theta_{1}(f)=1_{X} \in \mathbb{F}(X \xrightarrow{f} Y)$.

The following theorem follows from the theorems of UBT:
Theorem
For the category \mathcal{F} of finite sets there exists a unique Grothendieck transformation

$$
\gamma_{\mathbb{F}}: \mathbb{M}^{\mathcal{C}} \rightarrow \mathbb{F}
$$

such that for any map $f: X \rightarrow Y$

$$
\gamma_{\mathbb{F}}\left(\theta_{\mathbb{M}^{\mathcal{C}}}(f)\right)=\theta_{1}(f)
$$

Note $\theta_{\mathbb{M}^{\mathcal{C}}}(f)=[X \xrightarrow{\mathrm{id} X} X] \in \mathbb{M}^{\mathcal{C}}(X \xrightarrow{f} Y)$ and $\theta_{1}(f)=1_{X} \in \mathbb{F}(X \xrightarrow{f} Y)$.

The following theorem follows from the theorems of UBT:

Theorem

For the category \mathcal{F} of finite sets there exists a unique Grothendieck transformation

$$
\gamma_{\mathbb{F}}: \mathbb{M}^{\mathcal{C}} \rightarrow \mathbb{F}
$$

such that for any map $f: X \rightarrow Y$

$$
\gamma_{\mathbb{F}}\left(\theta_{\mathbb{M}^{\mathcal{C}}}(f)\right)=\theta_{1}(f)
$$

Note $\theta_{\mathbb{M}^{\mathcal{C}}}(f)=\left[X \xrightarrow{\mathrm{id} \mathrm{d}_{X}} X\right] \in \mathbb{M}^{\mathcal{C}}(X \xrightarrow{f} Y)$ and $\theta_{1}(f)=1_{X} \in \mathbb{F}(X \xrightarrow{f} Y)$.
REMARK: The "SGA 6", "BFM-RR" and "Verdier-RR" of $\gamma_{F}: \mathbb{M}^{\mathcal{C}} \rightarrow \mathbb{F}$ become the following respectively:
(1) "SGA 6" (for any map $f: X \rightarrow Y$):

$$
\begin{gathered}
\mathbb{M}^{\mathcal{C}}(X \xrightarrow{\text { id } X} X) \xrightarrow{\gamma_{\mathbb{F}}} \mathbb{F}(X \xrightarrow{\text { id } X} X) \\
\quad{ }_{f_{*}=f_{1}}{ }_{\mathbb{I}_{!}=f_{*}} \\
\mathbb{M}^{\mathcal{C}}(Y \xrightarrow{\text { id } Y} Y) \xrightarrow[\gamma_{\mathbb{F}}]{ } \mathbb{F}(Y \xrightarrow{\text { id } Y} Y),
\end{gathered}
$$

$f_{!}([V \xrightarrow{h} X])=[V \xrightarrow{\text { foh }} Y], \gamma_{\mathbb{F}}([V \xrightarrow{h} X])=h_{*} 1_{V}$ for $[V \xrightarrow{h} X] \in \mathbb{M}^{C}(X \xrightarrow{\text { id } X} X)$.
For $\alpha \in \mathbb{F}\left(X \xrightarrow{\mathrm{id}_{X}} X\right) f_{!} \alpha=f_{*} \alpha$.
(2) "BFM-RR" (for any map $f: X \rightarrow Y$):

$$
\begin{gathered}
\mathbb{M}^{\mathcal{C}}(X \rightarrow p t) \xrightarrow{\gamma_{\mathbb{E}}} \mathbb{F}(X \rightarrow p t) \\
\quad f_{*} \downarrow \\
\mathbb{M}^{\mathcal{C}}(Y \rightarrow p t) \xrightarrow[\gamma_{\mathbb{E}}]{\longrightarrow} \mathbb{F}(Y \rightarrow p t),
\end{gathered}
$$

$f_{*}([V \xrightarrow{n} X])=[V \xrightarrow{\text { foh }} Y], \gamma_{\mathbb{F}}([V \xrightarrow{h} X])=h_{*} 1 V$ for $[V \xrightarrow{h} X] \in \mathbb{M}^{\mathcal{C}}(X \xrightarrow{\mathrm{id} X} X)$.
(2) "BFM-RR" (for any map $f: X \rightarrow Y$):

$$
\begin{gathered}
\mathbb{M}^{\mathcal{C}}(X \rightarrow p t) \xrightarrow{\gamma_{\mathbb{F}}} \mathbb{F}(X \rightarrow p t) \\
\quad{ }_{f_{*}} \downarrow \\
\mathbb{M}^{\mathcal{C}}(Y \rightarrow p t) \xrightarrow[\gamma_{\mathbb{F}}]{ } \mathbb{F}(Y \rightarrow p t),
\end{gathered}
$$

$f_{*}([V \xrightarrow{h} X])=[V \xrightarrow{f \circ h} Y], \gamma_{\mathbb{F}}([V \xrightarrow{h} X])=h_{*} 1_{V}$ for $[V \xrightarrow{h} X] \in \mathbb{M}^{\mathcal{C}}(X \xrightarrow{\text { id }} X)$. So, "SGA6" and "BFM-RR" are the same.
(2) "BFM-RR" (for any map $f: X \rightarrow Y$):

$$
\begin{array}{cc}
\mathbb{M}^{\mathcal{C}}(X \rightarrow p t) \xrightarrow{\gamma_{\mathbb{F}}} & \mathbb{F}(X \rightarrow p t) \\
f_{*} \downarrow & \downarrow_{f_{*}} \\
\mathbb{M}^{\mathcal{C}}(Y \rightarrow p t) \xrightarrow[\gamma_{\mathbb{F}}]{ } \mathbb{F}(Y \rightarrow p t),
\end{array}
$$

$f_{*}([V \xrightarrow{h} X])=[V \xrightarrow{\text { foh }} Y], \gamma_{\mathbb{F}}([V \xrightarrow{h} X])=h_{*} 1_{V}$ for $[V \xrightarrow{h} X] \in \mathbb{M}^{\mathcal{C}}(X \xrightarrow{\text { id } X} X)$. So, "SGA6" and "BFM-RR" are the same.
(3) "Verdier-RR" (for any map $f: X \rightarrow Y$):

$$
\begin{gathered}
\mathbb{M}^{\mathcal{C}}(Y \rightarrow p t) \xrightarrow{\gamma_{\mathbb{F}}} \mathbb{F}(Y \rightarrow p t) \\
\quad f^{\prime} \downarrow \\
\mathbb{M}^{\mathcal{C}}(X \rightarrow p t) \xrightarrow[\gamma_{\mathbb{F}}]{ } \mathbb{f}(X \rightarrow p t),
\end{gathered}
$$

DEFINITION: If a map $f: X \rightarrow Y$ satisfies that each fiber has the same finite number of points, namely, $X \cong Y \times F$ with a finite set F, then f is called a "specialized" map.

DEFINITION: If a map $f: X \rightarrow Y$ satisfies that each fiber has the same finite number of points, namely, $X \cong Y \times F$ with a finite set F, then f is called a "specialized" map. The finite number $|F|$ is called the "Euler number" of f, denoted $\chi(f)$.

DEFINITION: If a map $f: X \rightarrow Y$ satisfies that each fiber has the same finite number of points, namely, $X \cong Y \times F$ with a finite set F, then f is called a "specialized" map. The finite number $|F|$ is called the "Euler number" of f, denoted $\chi(f)$. (NOTE: $f: X \rightarrow Y$ is isomorphic to the projection $p r_{1}: Y \times F \rightarrow Y$, thus a specialized map is a projection, but we stick to the above naming. Also $\chi(f)=|F|=\frac{|X|}{|Y|}$.)

DEFINITION: If a map $f: X \rightarrow Y$ satisfies that each fiber has the same finite number of points, namely, $X \cong Y \times F$ with a finite set F, then f is called a "specialized" map. The finite number $|F|$ is called the "Euler number" of f, denoted $\chi(f)$. (NOTE: $f: X \rightarrow Y$ is isomorphic to the projection $p r_{1}: Y \times F \rightarrow Y$, thus a specialized map is a projection, but we stick to the above naming. Also $\chi(f)=|F|=\frac{|X|}{|Y|}$.)
LEMMA: For two specialized maps $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ we have

$$
\chi(g \circ f)=\chi(g) \chi(f)
$$

DEFINITION: If a map $f: X \rightarrow Y$ satisfies that each fiber has the same finite number of points, namely, $X \cong Y \times F$ with a finite set F, then f is called a "specialized" map. The finite number $|F|$ is called the "Euler number" of f, denoted $\chi(f)$. (NOTE: $f: X \rightarrow Y$ is isomorphic to the projection $p r_{1}: Y \times F \rightarrow Y$, thus a specialized map is a projection, but we stick to the above naming. Also $\chi(f)=|F|=\frac{|X|}{|Y|}$.)
LEMMA: For two specialized maps $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ we have

$$
\chi(g \circ f)=\chi(g) \chi(f)
$$

LEMMA: Let \mathcal{S} be the set of all specialized maps. For a specialized map $f: X \rightarrow Y \in \mathcal{S}$, we define

$$
\theta_{\mathcal{S}}(f):=\chi(f) 1_{x}=\chi(f) \theta_{1}(f)
$$

DEFINITION: If a map $f: X \rightarrow Y$ satisfies that each fiber has the same finite number of points, namely, $X \cong Y \times F$ with a finite set F, then f is called a "specialized" map. The finite number $|F|$ is called the "Euler number" of f, denoted $\chi(f)$. (NOTE: $f: X \rightarrow Y$ is isomorphic to the projection $p r_{1}: Y \times F \rightarrow Y$, thus a specialized map is a projection, but we stick to the above naming. Also $\chi(f)=|F|=\frac{|X|}{|Y|}$.)
LEMMA: For two specialized maps $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ we have

$$
\chi(g \circ f)=\chi(g) \chi(f)
$$

LEMMA: Let \mathcal{S} be the set of all specialized maps. For a specialized map $f: X \rightarrow Y \in \mathcal{S}$, we define

$$
\theta_{\mathcal{S}}(f):=\chi(f) 1_{X}=\chi(f) \theta_{1}(f)
$$

Then $\theta_{\mathcal{S}}$ is a nice canonical orientation, i.e., we have

1. $\theta_{\mathcal{S}}(g \circ f)=\theta_{\mathcal{S}}(f) \bullet \theta_{\mathcal{S}}(g)$ for $f: X \rightarrow Y, g: Y \rightarrow Z \in \mathcal{S}$,

DEFINITION: If a map $f: X \rightarrow Y$ satisfies that each fiber has the same finite number of points, namely, $X \cong Y \times F$ with a finite set F, then f is called a "specialized" map. The finite number $|F|$ is called the "Euler number" of f, denoted $\chi(f)$. (NOTE: $f: X \rightarrow Y$ is isomorphic to the projection $p r_{1}: Y \times F \rightarrow Y$, thus a specialized map is a projection, but we stick to the above naming. Also $\chi(f)=|F|=\frac{|X|}{|Y|}$.)
LEMMA: For two specialized maps $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ we have

$$
\chi(g \circ f)=\chi(g) \chi(f)
$$

LEMMA: Let \mathcal{S} be the set of all specialized maps. For a specialized map $f: X \rightarrow Y \in \mathcal{S}$, we define

$$
\theta_{\mathcal{S}}(f):=\chi(f) 1_{X}=\chi(f) \theta_{1}(f)
$$

Then $\theta_{\mathcal{S}}$ is a nice canonical orientation, i.e., we have

1. $\theta_{\mathcal{S}}(g \circ f)=\theta_{\mathcal{S}}(f) \bullet \theta_{\mathcal{S}}(g)$ for $f: X \rightarrow Y, g: Y \rightarrow Z \in \mathcal{S}$,
2. $\theta_{\mathcal{S}}\left(\mathrm{id}_{\mathrm{X}}\right)=1_{X}$,

DEFINITION: If a map $f: X \rightarrow Y$ satisfies that each fiber has the same finite number of points, namely, $X \cong Y \times F$ with a finite set F, then f is called a "specialized" map. The finite number $|F|$ is called the "Euler number" of f, denoted $\chi(f)$. (NOTE: $f: X \rightarrow Y$ is isomorphic to the projection $p r_{1}: Y \times F \rightarrow Y$, thus a specialized map is a projection, but we stick to the above naming. Also $\chi(f)=|F|=\frac{|X|}{|Y|}$.)
LEMMA: For two specialized maps $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ we have

$$
\chi(g \circ f)=\chi(g) \chi(f)
$$

LEMMA: Let \mathcal{S} be the set of all specialized maps. For a specialized map $f: X \rightarrow Y \in \mathcal{S}$, we define

$$
\theta_{\mathcal{S}}(f):=\chi(f) 1_{X}=\chi(f) \theta_{1}(f)
$$

Then $\theta_{\mathcal{S}}$ is a nice canonical orientation, i.e., we have

1. $\theta_{\mathcal{S}}(g \circ f)=\theta_{\mathcal{S}}(f) \bullet \theta_{\mathcal{S}}(g)$ for $f: X \rightarrow Y, g: Y \rightarrow Z \in \mathcal{S}$,
2. $\theta_{\mathcal{S}}\left(\mathrm{id}_{\mathrm{x}}\right)=1_{X}$,
3. for the following fiber square

$$
g^{*}\left(\theta_{\mathcal{S}}(f)\right):=\theta_{\mathcal{S}}\left(f^{\prime}\right)
$$

The following theorem follows from the theorems of UBT:
THEOREM: Let the situation be as above. On the category \mathcal{F} of finite sets there exists a unique Grothendieck transformation

$$
\gamma_{F}: \mathbb{M}_{\mathcal{S}}^{\mathcal{C}} \rightarrow \mathbb{F}
$$

such that for any $f: X \rightarrow Y \in \mathcal{S}$

$$
\gamma_{\mathbb{F}}\left(\theta_{\mathbb{M}_{\mathcal{S}}^{\mathcal{C}}}(f)\right)=\theta_{\mathcal{S}}(f)=\chi(f) \theta_{1}(f)
$$

The following theorem follows from the theorems of UBT:
THEOREM: Let the situation be as above. On the category \mathcal{F} of finite sets there exists a unique Grothendieck transformation

$$
\gamma_{F}: \mathbb{M}_{\mathcal{S}}^{\mathcal{C}} \rightarrow \mathbb{F}
$$

such that for any $f: X \rightarrow Y \in \mathcal{S}$

$$
\gamma_{\mathbb{F}}\left(\theta_{\mathbb{M} \mathcal{S}}(f)\right)=\theta_{\mathcal{S}}(f)=\chi(f) \theta_{1}(f)
$$

REMARK: As to the abelian group $\mathbb{M}_{\mathcal{S}}^{\mathcal{C}}(X \xrightarrow{f} Y)$, we note that if $f: X \rightarrow Y$ is not surjective, then $\mathbb{M}_{\mathcal{S}}^{\mathcal{C}}(X \xrightarrow{f} Y)=0$.

The following theorem follows from the theorems of UBT:
THEOREM: Let the situation be as above. On the category \mathcal{F} of finite sets there exists a unique Grothendieck transformation

$$
\gamma_{F}: \mathbb{M}_{\mathcal{S}}^{\mathcal{C}} \rightarrow \mathbb{F}
$$

such that for any $f: X \rightarrow Y \in \mathcal{S}$

$$
\gamma_{\mathbb{F}}\left(\theta_{\mathbb{M}_{\mathcal{S}}^{\mathcal{C}}}(f)\right)=\theta_{\mathcal{S}}(f)=\chi(f) \theta_{1}(f)
$$

REMARK: As to the abelian group $\mathbb{M}_{\mathcal{S}}^{\mathcal{C}}(X \xrightarrow{f} Y)$, we note that if $f: X \rightarrow Y$ is not surjective, then $\mathbb{M}_{\mathcal{S}}^{\mathcal{C}}(X \xrightarrow{f} Y)=0$. Note that this kind of thing happens,

The following theorem follows from the theorems of UBT:
THEOREM: Let the situation be as above. On the category \mathcal{F} of finite sets there exists a unique Grothendieck transformation

$$
\gamma_{F}: \mathbb{M}_{\mathcal{S}}^{\mathcal{C}} \rightarrow \mathbb{F}
$$

such that for any $f: X \rightarrow Y \in \mathcal{S}$

$$
\gamma_{\mathbb{F}}\left(\theta_{\mathbb{M}_{\mathcal{S}}^{\mathcal{C}}}(f)\right)=\theta_{\mathcal{S}}(f)=\chi(f) \theta_{1}(f)
$$

REMARK: As to the abelian group $\mathbb{M}_{\mathcal{S}}^{\mathcal{C}}(X \xrightarrow{f} Y)$, we note that if $f: X \rightarrow Y$ is not surjective, then $\mathbb{M}_{\mathcal{S}}^{\mathcal{C}}(X \xrightarrow{f} Y)=0$. Note that this kind of thing happens, for example, in the case of bivariant theory \mathbb{F} of constructible functions (see [§6.1.2 Definition of \mathbb{F}, Remarks., p.62] of FM).

REMARK: The above equality

$$
\gamma_{\mathbb{F}}\left(\theta_{\mathbb{M} \mathcal{S}}(f)\right)=\chi(f) \theta_{1}(f)
$$

is a Riemann-Roch formula for the Grothendieck transformation

$$
\gamma_{\mathbb{F}}: \mathbb{M}_{\mathcal{S}}^{\mathcal{C}} \rightarrow \mathbb{F}
$$

with respect to the canonical orientations $\theta_{\mathbb{M} \mathcal{C}}$ on $\mathbb{M}_{\mathcal{S}}^{\mathcal{C}}$ and θ_{1} on \mathbb{F}.

REMARK: The above equality

$$
\gamma_{\mathbb{F}}\left(\theta_{\mathbb{M} \mathcal{S}}(f)\right)=\chi(f) \theta_{1}(f)
$$

is a Riemann-Roch formula for the Grothendieck transformation

$$
\gamma_{\mathbb{F}}: \mathbb{M}_{\mathcal{S}}^{\mathcal{C}} \rightarrow \mathbb{F}
$$

with respect to the canonical orientations $\theta_{\mathbb{M}_{\mathcal{S}}^{\mathcal{C}}}$ on $\mathbb{M}_{\mathcal{S}}^{\mathcal{C}}$ and θ_{1} on \mathbb{F}.
The "modifier" $\chi(f)$ can be considered as a bivariant element
$u_{f}:=\chi(f) 1_{x} \in \mathbb{F}(X \xrightarrow{\text { id } x} X)$ and we have $\chi(f) \theta_{1}(f)=u_{f} \bullet \theta_{1}(f)$.

REMARK: The above equality

$$
\gamma_{\mathbb{F}}\left(\theta_{\mathbb{M}_{\mathcal{S}}^{\mathcal{C}}}(f)\right)=\chi(f) \theta_{1}(f)
$$

is a Riemann-Roch formula for the Grothendieck transformation

$$
\gamma_{\mathbb{F}}: \mathbb{M}_{\mathcal{S}}^{\mathcal{C}} \rightarrow \mathbb{F}
$$

with respect to the canonical orientations $\theta_{\mathbb{M}_{\mathcal{S}}^{\mathcal{C}}}$ on $\mathbb{M}_{\mathcal{S}}^{\mathcal{C}}$ and θ_{1} on \mathbb{F}.
The "modifier" $\chi(f)$ can be considered as a bivariant element
$u_{f}:=\chi(f) 1_{x} \in \mathbb{F}(X \xrightarrow{\mathrm{id} x} X)$ and we have $\chi(f) \theta_{1}(f)=u_{f} \bullet \theta_{1}(f)$.
Or, it can be also considered as a bivariant element
$d_{f}:=\chi(f) 1_{Y} \in \mathbb{F}\left(Y \xrightarrow{\mathrm{id}_{Y}} Y\right)$ and we have $\chi(f) \theta_{1}(f)=\theta_{1}(f) \bullet d_{f}$.

REMARK: The above equality

$$
\gamma_{\mathbb{F}}\left(\theta_{\mathbb{M} \mathcal{S}}^{\mathcal{S}}(f)\right)=\chi(f) \theta_{1}(f)
$$

is a Riemann-Roch formula for the Grothendieck transformation

$$
\gamma_{\mathbb{F}}: \mathbb{M}_{\mathcal{S}}^{\mathcal{C}} \rightarrow \mathbb{F}
$$

with respect to the canonical orientations $\theta_{\mathbb{M}} \mathcal{C}$ on $\mathbb{M}_{\mathcal{S}}^{\mathcal{C}}$ and θ_{1} on \mathbb{F}.
The "modifier" $\chi(f)$ can be considered as a bivariant element
$u_{f}:=\chi(f) 1_{X} \in \mathbb{F}(X \xrightarrow{\text { id } x} X)$ and we have $\chi(f) \theta_{1}(f)=u_{f} \bullet \theta_{1}(f)$.
Or, it can be also considered as a bivariant element
$d_{f}:=\chi(f) 1_{Y} \in \mathbb{F}\left(Y \xrightarrow{\text { id }_{Y}} Y\right)$ and we have $\chi(f) \theta_{1}(f)=\theta_{1}(f) \bullet d_{f}$.
Furthermore from this Riemann-Roch formula we can get the following "SGA 6", "BFM-RR" and "Verdier-RR":
(1) "SGA 6" (for a specialized map $f: X \rightarrow Y$):

$$
\begin{aligned}
& \mathbb{M}_{\mathcal{S}}^{\mathcal{C}}{ }^{*}(X) \xrightarrow{\gamma_{\mathbb{F}}} \mathbb{F}^{*}(X) \\
& f_{1} \downarrow \quad\left\lfloor f_{1}\left(\chi(f) 1_{x} \bullet-\right)=\chi(f) f_{*}\right. \\
& \mathbb{M}_{\mathcal{S}}^{\mathcal{C}^{*}}(Y) \xrightarrow[\gamma_{\mathbb{F}}]{ } \mathbb{F}^{*}(X),
\end{aligned}
$$

(2) "BFM-RR" (for any map $f: X \rightarrow Y$):

$$
\begin{gathered}
\mathbb{M}_{\mathcal{S}_{*}}^{\mathcal{C}}(X) \xrightarrow{\gamma_{\mathbb{F}}} \mathbb{F}_{*}(X) \\
f_{*} \downarrow \\
\mathbb{M}_{\mathcal{S}_{*}}^{\mathcal{C}}(Y) \xrightarrow[\gamma_{\mathbb{R}}]{\longrightarrow} \mathbb{F}_{*}(Y),
\end{gathered}
$$

(3) "Verdier-RR" (for a specialized map $f: X \rightarrow Y$):

$$
\begin{aligned}
& \mathbb{M}_{\mathcal{S}_{*}}^{\mathcal{C}}(Y) \xrightarrow{\gamma_{\mathbb{F}}} \mathbb{F}_{*}(Y) \\
& \\
& f^{\prime} \downarrow \\
& \mathbb{M}_{\mathcal{S}_{*}}^{\mathcal{C}}(X) \xrightarrow[\gamma_{\mathbb{F}}]{\longrightarrow} \\
& \mathbb{F}_{*}(X),
\end{aligned}
$$

REMARK: The above bivariant theory \mathbb{F} is considered as the target of a Grohendieck transformation

$$
\operatorname{tr}: K(X \xrightarrow{f} Y) \rightarrow \mathbb{F}(X \xrightarrow{f} Y)
$$

in [Part I: Bivariant Theories, $\S 10.1$ Fixed point theorems for coherent sheaves] of [FM].

REMARK: The above bivariant theory \mathbb{F} is considered as the target of a Grohendieck transformation

$$
\operatorname{tr}: K(X \xrightarrow{f} Y) \rightarrow \mathbb{F}(X \xrightarrow{f} Y)
$$

in [Part I: Bivariant Theories, $\S 10.1$ Fixed point theorems for coherent sheaves] of [FM]. (The definition of $K(X \xrightarrow{t} Y)$ is complicated, see $\S 10.1$ of [FM]).

REMARK: The above bivariant theory \mathbb{F} is considered as the target of a Grohendieck transformation

$$
\operatorname{tr}: K(X \xrightarrow{f} Y) \rightarrow \mathbb{F}(X \xrightarrow{f} Y)
$$

in [Part I: Bivariant Theories, $\S 10.1$ Fixed point theorems for coherent sheaves] of [FM]. (The definition of $K(X \xrightarrow{f} Y)$ is complicated, see $\S 10.1$ of [FM]). It remains to see whether one could use the universal bivariant theory $\mathbb{M}_{\mathcal{S}}^{\mathcal{C}}$ or some modified version for some fixed point problem.

REMARK: The above bivariant theory \mathbb{F} is considered as the target of a Grohendieck transformation

$$
\operatorname{tr}: K(X \xrightarrow{f} Y) \rightarrow \mathbb{F}(X \xrightarrow{f} Y)
$$

in [Part I: Bivariant Theories, $\S 10.1$ Fixed point theorems for coherent sheaves] of [FM]. (The definition of $K(X \xrightarrow{t} Y)$ is complicated, see $\S 10.1$ of [FM]). It remains to see whether one could use the universal bivariant theory $\mathbb{M}_{\mathcal{S}}^{\mathcal{C}}$ or some modified version for some fixed point problem.

So far we consider the category of finite sets, but we can extend the above arguments to the category $\mathcal{E N S}$ of sets, namely, infinite sets can be allowed. In this case, we need to define a confined map and a specialized map.

REMARK: The above bivariant theory \mathbb{F} is considered as the target of a Grohendieck transformation

$$
\operatorname{tr}: K(X \xrightarrow{f} Y) \rightarrow \mathbb{F}(X \xrightarrow{f} Y)
$$

in [Part I: Bivariant Theories, $\S 10.1$ Fixed point theorems for coherent sheaves] of [FM]. (The definition of $K(X \xrightarrow{t} Y)$ is complicated, see $\S 10.1$ of [FM]). It remains to see whether one could use the universal bivariant theory $\mathbb{M}_{\mathcal{S}}^{\mathcal{C}}$ or some modified version for some fixed point problem.

So far we consider the category of finite sets, but we can extend the above arguments to the category $\mathcal{E N S}$ of sets, namely, infinite sets can be allowed. In this case, we need to define a confined map and a specialized map.

DEFINITION: For the category $\mathcal{E N S}$ of sets,

1. a map $f: X \rightarrow Y$ is called confined if the inverse image of a finite subset of Y is finite, equivalently, if every fiber is a finite set.

REMARK: The above bivariant theory \mathbb{F} is considered as the target of a Grohendieck transformation

$$
\operatorname{tr}: K(X \xrightarrow{f} Y) \rightarrow \mathbb{F}(X \xrightarrow{f} Y)
$$

in [Part I: Bivariant Theories, $\S 10.1$ Fixed point theorems for coherent sheaves] of [FM]. (The definition of $K(X \xrightarrow{t} Y)$ is complicated, see $\S 10.1$ of [FM]). It remains to see whether one could use the universal bivariant theory $\mathbb{M}_{\mathcal{S}}^{\mathcal{C}}$ or some modified version for some fixed point problem.

So far we consider the category of finite sets, but we can extend the above arguments to the category $\mathcal{E N S}$ of sets, namely, infinite sets can be allowed. In this case, we need to define a confined map and a specialized map.

DEFINITION: For the category $\mathcal{E N S}$ of sets,

1. a map $f: X \rightarrow Y$ is called confined if the inverse image of a finite subset of Y is finite, equivalently, if every fiber is a finite set.
2. a map $f: X \rightarrow Y$ is called specialized if each fiber is finite and the number of elements of the fiber is the same at each element of Y. In other words, $X \cong Y \times F$ with a finite set F and $f: X \rightarrow Y$ is isomorphic to the projection $p r_{1}: Y \times F \rightarrow Y$.

Theorem
For $\mathcal{E N S}, \mathcal{C}$ of confined maps, \mathcal{S} of specialized maps,

Theorem

For $\mathcal{E N S}, \mathcal{C}$ of confined maps, \mathcal{S} of specialized maps,

1. There exists a unique Grothendieck transformation

$$
\gamma_{\mathbb{F}}: \mathbb{M}_{\mathcal{S}}^{\mathcal{C}} \rightarrow \mathbb{F}
$$

such that for any $f: X \rightarrow Y \in \mathcal{S}, \gamma_{\mathbb{F}}\left(\theta_{\mathbb{M}_{\mathcal{S}}^{\mathcal{C}}}(f)\right)=\theta_{\mathcal{S}}(f)=\chi(f) \theta_{1}(f)$.

Theorem

For $\mathcal{E N S}, \mathcal{C}$ of confined maps, \mathcal{S} of specialized maps,

1. There exists a unique Grothendieck transformation

$$
\gamma_{\mathbb{F}}: \mathbb{M}_{\mathcal{S}}^{\mathcal{C}} \rightarrow \mathbb{F}
$$

such that for any $f: X \rightarrow Y \in \mathcal{S}, \gamma_{\mathbb{F}}\left(\theta_{\mathbb{M} \mathcal{S}}(f)\right)=\theta_{\mathcal{S}}(f)=\chi(f) \theta_{1}(f)$.
2. We get the same "SGA 6", "BFM-RR" and "Verdier-RR" as above.

Theorem

For $\mathcal{E N S}, \mathcal{C}$ of confined maps, \mathcal{S} of specialized maps,

1. There exists a unique Grothendieck transformation

$$
\gamma_{\mathbb{F}}: \mathbb{M}_{\mathcal{S}}^{\mathcal{C}} \rightarrow \mathbb{F}
$$

such that for any $f: X \rightarrow Y \in \mathcal{S}, \gamma_{\mathbb{F}}\left(\theta_{\mathbb{M} \mathcal{S}}(f)\right)=\theta_{\mathcal{S}}(f)=\chi(f) \theta_{1}(f)$.
2. We get the same "SGA 6", "BFM-RR" and "Verdier-RR" as above.

Theorem

For $\mathcal{E N S}, \mathcal{C}$ of confined maps, \mathcal{S} of specialized maps,

1. There exists a unique Grothendieck transformation

$$
\gamma_{\mathbb{F}}: \mathbb{M}_{\mathcal{S}}^{\mathcal{C}} \rightarrow \mathbb{F}
$$

such that for any $f: X \rightarrow Y \in \mathcal{S}, \gamma_{\mathbb{F}}\left(\theta_{\mathbb{M} \mathcal{S}}(f)\right)=\theta_{\mathcal{S}}(f)=\chi(f) \theta_{1}(f)$.
2. We get the same "SGA 6", "BFM-RR" and "Verdier-RR" as above.

For more examples of bivariant theories and Riemann-Roch formulas, see

- Fulton-MacPherson's book [FM] (Mem. AMS.)

Theorem

For $\mathcal{E N S}, \mathcal{C}$ of confined maps, \mathcal{S} of specialized maps,

1. There exists a unique Grothendieck transformation

$$
\gamma_{\mathbb{F}}: \mathbb{M}_{\mathcal{S}}^{\mathcal{C}} \rightarrow \mathbb{F}
$$

such that for any $f: X \rightarrow Y \in \mathcal{S}, \gamma_{\mathbb{F}}\left(\theta_{\mathbb{M} \mathcal{S}}(f)\right)=\theta_{\mathcal{S}}(f)=\chi(f) \theta_{1}(f)$.
2. We get the same "SGA 6", "BFM-RR" and "Verdier-RR" as above.

For more examples of bivariant theories and Riemann-Roch formulas, see

- Fulton-MacPherson's book [FM] (Mem. AMS.)
- Fulton's "Intersection Theory" (Springer)

Theorem

For $\mathcal{E N S}, \mathcal{C}$ of confined maps, \mathcal{S} of specialized maps,

1. There exists a unique Grothendieck transformation

$$
\gamma_{\mathbb{F}}: \mathbb{M}_{\mathcal{S}}^{\mathcal{C}} \rightarrow \mathbb{F}
$$

such that for any $f: X \rightarrow Y \in \mathcal{S}, \gamma_{\mathbb{F}}\left(\theta_{\mathbb{M} \mathcal{S}}(f)\right)=\theta_{\mathcal{S}}(f)=\chi(f) \theta_{1}(f)$.
2. We get the same "SGA 6", "BFM-RR" and "Verdier-RR" as above.

For more examples of bivariant theories and Riemann-Roch formulas, see

- Fulton-MacPherson's book [FM] (Mem. AMS.)
- Fulton's "Intersection Theory" (Springer)

Theorem

For $\mathcal{E N S}, \mathcal{C}$ of confined maps, \mathcal{S} of specialized maps,

1. There exists a unique Grothendieck transformation

$$
\gamma_{\mathbb{F}}: \mathbb{M}_{\mathcal{S}}^{\mathcal{C}} \rightarrow \mathbb{F}
$$

such that for any $f: X \rightarrow Y \in \mathcal{S}, \gamma_{\mathbb{F}}\left(\theta_{\mathbb{M} \mathcal{S}}(f)\right)=\theta_{\mathcal{S}}(f)=\chi(f) \theta_{1}(f)$.
2. We get the same "SGA 6", "BFM-RR" and "Verdier-RR" as above.

For more examples of bivariant theories and Riemann-Roch formulas, see

- Fulton-MacPherson's book [FM] (Mem. AMS.)
- Fulton's "Intersection Theory" (Springer)

For some applications, see, e.g.,

- Behrend-Ginot-Noohi-Xu, "String Topology for Stacks", Astérisque 343 (2012)

Theorem

For $\mathcal{E N S}, \mathcal{C}$ of confined maps, \mathcal{S} of specialized maps,

1. There exists a unique Grothendieck transformation

$$
\gamma_{\mathbb{F}}: \mathbb{M}_{\mathcal{S}}^{\mathcal{C}} \rightarrow \mathbb{F}
$$

such that for any $f: X \rightarrow Y \in \mathcal{S}, \gamma_{\mathbb{F}}\left(\theta_{\mathbb{M} \mathcal{S}}(f)\right)=\theta_{\mathcal{S}}(f)=\chi(f) \theta_{1}(f)$.
2. We get the same "SGA 6", "BFM-RR" and "Verdier-RR" as above.

For more examples of bivariant theories and Riemann-Roch formulas, see

- Fulton-MacPherson's book [FM] (Mem. AMS.)
- Fulton's "Intersection Theory" (Springer)

For some applications, see, e.g.,

- Behrend-Ginot-Noohi-Xu, "String Topology for Stacks", Astérisque 343 (2012)
- Lipman-Tarrío-Lopéz; "Bivariance, Grothendieck duality and Hochschild homology I: construction of a bivariant theory", Asian J. Math. 15 (2011), 453-500

Theorem

For $\mathcal{E N S}, \mathcal{C}$ of confined maps, \mathcal{S} of specialized maps,

1. There exists a unique Grothendieck transformation

$$
\gamma_{\mathbb{F}}: \mathbb{M}_{\mathcal{S}}^{\mathcal{C}} \rightarrow \mathbb{F}
$$

such that for any $f: X \rightarrow Y \in \mathcal{S}, \gamma_{\mathbb{F}}\left(\theta_{\mathbb{M} \mathcal{S}}(f)\right)=\theta_{\mathcal{S}}(f)=\chi(f) \theta_{1}(f)$.
2. We get the same "SGA 6", "BFM-RR" and "Verdier-RR" as above.

For more examples of bivariant theories and Riemann-Roch formulas, see

- Fulton-MacPherson's book [FM] (Mem. AMS.)
- Fulton's "Intersection Theory" (Springer)

For some applications, see, e.g.,

- Behrend-Ginot-Noohi-Xu, "String Topology for Stacks", Astérisque 343 (2012)
- Lipman-Tarrío-Lopéz; "Bivariance, Grothendieck duality and Hochschild homology I: construction of a bivariant theory", Asian J. Math. 15 (2011), 453-500
- Lipman-Tarrío-Lopéz; "Bivariance, Grothendieck duality and Hochschild homology II: the fundamental class of a flat scheme-map", Advances in Math. 257 (2014), 365-461.

Theorem

For $\mathcal{E N S}, \mathcal{C}$ of confined maps, \mathcal{S} of specialized maps,

1. There exists a unique Grothendieck transformation

$$
\gamma_{\mathbb{F}}: \mathbb{M}_{\mathcal{S}}^{\mathcal{C}} \rightarrow \mathbb{F}
$$

such that for any $f: X \rightarrow Y \in \mathcal{S}, \gamma_{\mathbb{F}}\left(\theta_{\mathbb{M} \mathcal{S}}(f)\right)=\theta_{\mathcal{S}}(f)=\chi(f) \theta_{1}(f)$.
2. We get the same "SGA 6", "BFM-RR" and "Verdier-RR" as above.

For more examples of bivariant theories and Riemann-Roch formulas, see

- Fulton-MacPherson's book [FM] (Mem. AMS.)
- Fulton's "Intersection Theory" (Springer)

For some applications, see, e.g.,

- Behrend-Ginot-Noohi-Xu, "String Topology for Stacks", Astérisque 343 (2012)
- Lipman-Tarrío-Lopéz; "Bivariance, Grothendieck duality and Hochschild homology I: construction of a bivariant theory", Asian J. Math. 15 (2011), 453-500
- Lipman-Tarrío-Lopéz; "Bivariance, Grothendieck duality and Hochschild homology II: the fundamental class of a flat scheme-map", Advances in Math. 257 (2014), 365-461.
- Déglise, "Bivariant Theories in Motivic Stable Homotopy", Documenta Math. 23 (2018), 997-1076.

Thank you very much for your attention!

