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§1. A universal bivariant theory and Riemann-Roch
formulas

1. Let S be another class of maps called “specialized maps” (e.g., smooth
maps in algebraic geometry), which is

1.1 closed under composition, X f−→ Y ,Y
g−→ Z ∈ S =⇒ g ◦ f ∈ S

1.2 closed under base change (i.e., stable by pullback)
(NOTE:this condition is not required on the above class S ′.)

1.3 and containing all identity maps, X
idX−−→ X ∈ S.

2. Let S be as above. If the orientation θ on S is stable by pullback,

i.e.,
satisfies

θ(f ′) = g∗θ(f )

for an independent square with f ∈ S

X ′ g′
−−−−−→ X

f ′
y yf

Y ′ −−−−−→
g

Y

θ is called a nice canonical orientation of B.
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§1.1. A universal bivariant theory
From now on we assume that our category V satisfies that any fiber square

P′ −−−−−→ P

f ′
y yf

Q′ −−−−−→ Q

with f being confined, i.e., f ∈ C, is an independent square.

Theorem
(S.Y., “Oriented bivariant theory, I”, Int. J. Math. 20 (2009), 1305–1334), in
fact a work of 2005-2006.)
Let V be a category with a class C of confined maps, a class Ind of
independent squares and a class S of specialized maps. Define

MC
S(X

f−→ Y )

to be the free abelian group generated by the set of isomorphism classes of
confined maps h : W → X such that

f ◦ h : W → Y ∈ S.

(1) The association MC
S is a bivariant theory, i.e., satisfies 7 axioms, if the

bivariant operations are defined as follows:
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(i). Product:

• : MC
S(X

f−→ Y )⊗MC
S(Y

g−→ Z ) → MC
S(X

g◦f−−→ Z )

is defined by

[V h−→ X ] • [W k−→ Y ] := [V ′ h◦k′′
−−−→ X ]

and extended linearly, where

V ′ h′−−−−−→ X ′ f ′−−−−−→ W

k′′
y k′

y k

y
V −−−−−→

h
X −−−−−→

f
Y −−−−−→

g
Z .

(ii). Pushforward: For f : X → Y and g : Y → Z with f confined,

f∗ : MC
S(X

g◦f−−→ Z ) → MC
S(Y

g−→ Z ) is defined by f∗
(
[V h−→ X ]

)
:= [V f◦h−−→ Y ]

and extended linearly. V h−→ X f−→ Y
g−→ Z =⇒ V h−→ X f−→ Y

g−→ Z

(iii).Pullback: For an independent square

X ′ g′
−−−−−→ X

f ′
y yf

Y ′ −−−−−→
g

Y ,

g∗ : MC
S(X

f−→ Y ) → MC
S(X

′ f ′−→ Y ′) is defined by g∗
(
[V h−→ X ]

)
:= [V ′ h′−→ X ′]
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and extended linearly, where

V ′ g′′
−−−−−→ V

h′
y yh

X ′ g′
−−−−−→ X

f ′
y yf

Y ′ −−−−−→
g

Y .

(2) For a specialized map f : X → Y ∈ S

θMC
S
(f ) = [X

idX−−→ X ] ∈ MC
S(X

f−→ Y )

is a nice canonical orientation of MC
S for S. X

idX−−→ X f−→ Y
(3) (A universality of MC

S ) Let B be a bivariant theory on the same V with the
same C, Ind and S, and θB a nice canonical orientation of B for S. Then
there exists a unique Grothendieck transformation

γB : MC
S → B

such that for X f−→ Y ∈ S, γB : MC
S(X

f−→ Y ) → B(X f−→ Y ) satisfies

γB(θMC
S
(f )) = θB(f ).

(In a sense, this is a RR-formula with uf = 1X or df = 1Y .)
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Commutativity
MC

S is commutative in the following sense: for the fiber square

X ′ g′
−−−−−→ X

f ′
y yf

Z ′ −−−−−→
g

Z ,

and ∀α ∈ MC
S(X

f−→ Z ), ∀β ∈ MC
S(Z

′ g−→ Z ) we have

g∗(α) • β = f ∗(β) • α.

X ′
g′

f ∗β⃝
//

f ′g∗α⃝
��

X

f α⃝
��

Z ′ g

β⃝
// Z

If g∗(α) • β = (−1)deg(α) deg(β)f ∗(β) • α, it is called skew-commutative (see
[Part I:Bivariant Theories] of Fulton-MacPherson’s book).
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Remark
The main purpose of introducing the UBT MC

S(X → Y )

was constructing a
bivariant analogue

BΩ(X f−→ Y )

of Levine–Morel’s algebraic cobordism Ω∗(X ):
• Levine-Morel, “Algebraic Cobordism”, Springer-Verlag (2007).
• Levine-Pandharipande, “Algebraic cobordism revisited”, Invent. Math., 176
(2009), 63-130.
so that

1. BΩ(X → pt) ∼= Ω∗(X ) Levine-Morel’s “algebraic cobrodism”
(NOTE:Levine-Morel’s algebraic cobordism is in fact not “cobordism”,
but a “bordism” theory.)

2. BΩ(X idX−−→ X ) =: BΩ∗(X ) is a new “algebraic cobrodism”

My plan was to mod out MC
S(X → Y ) by some subgroups RC

S(X → Y )
obtained by a “bivariant version” of Levine–Morel’s relations: :

BΩ(X f−→ Y ) :=
MC

S(X → Y )

RC
S(X → Y )

.

Toni Annala (Univ.British Columbia) succeeded in doing this:
“Bivariant derived algebraic cobordism”, J. Algebraic Geometry, 2020. (50 pp)
using Lowrey-Schürg’s “Derived algebraic cobordism”, J. Inst. Math. Jussieu,
15 (2016),407-443” and UBT MC

S .
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§1.2. Riemann–Roch formulas for the universal BT MC
S

We can define many (in fact, infinitely many) nice canonical orientations.

First we define the following, motivated by the relative dim. reldim(f ) of a
smooth map f : X → Y in algebraic geometry:

Definition
If there is an assignment reldim(f ) for a specialized map f : X → Y such that

1. reldim(f ) is a non-negative integer and

2. it satisfies the following conditions

2.1 for f : X → Y , g : Y → Z ∈ S

reldim(g ◦ f ) = reldim(g) + reldim(f ),

2.2 reldim(idX ) = 0.

2.3 for an independent square where f , f ′ ∈ S,

X ′ g′
−−−−−→ X

f ′
y yf

Y ′ −−−−−→
g

Y

reldim(f ) = reldim(f ′).

then the integer reldim(f ) is called a relative dimension of f : X → Y .

REMARK: Cleary there is a very trivial one: reldim(f ) := 0 for ∀f ∈ S.
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1. If aF : F → pt is confined (e.g., a proper map), F is called confined (e.g.,
a compact space).

2. If aF : F → pt is specialized (e.g., a smooth map), F is called
specialized (e.g., a smooth variety).

3. If aF : F → pt is confined and specialized, F is called confined and
specialized (e.g., a compact smooth variety).

Let F be confined and specialized. Hence [F
aF−→ pt ] ∈ MC

S(pt → pt). For
aX : X → pt ,

(aX )
∗[F

aF−→ pt ] = [X × F
pr1−−→ X ] ∈ MC

S(X
idX−−→ X )

X × F −−−−−→ F

pr1

y yaF

X
aX−−−−−→ pt

idX

y y
X −−−−−→

aX
pt .
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NOTE:for [F
aF−→ pt ] ∈ MC

S(pt → pt)

[F
aF−→ pt ] • [F aF−→ pt ] = [F × F

aF×F−−−→ pt ] ∈ MC
S(pt → pt)

by the definition of the bivariant product •:

F × F
pr2−−−−−→ F

idF−−−−−→ F

pr1

y aF

y aF

y
F −−−−−→

aF
pt −−−−−→ pt −−−−−→ pt .

F × F
aF×F

''

pr2 //

pr1

��

F
idF //

aF

��

F

aF

��
F

aF

// pt // pt // pt

11 / 31



Then we have

([F
aF−→ pt ] • [F aF−→ pt ]) • [F aF−→ pt ]

= [F × F
aF×F−−−→ pt ] • [F aF−→ pt ]

= [F × F × F
aF×F×F−−−−−→ pt ]

= [F 3 aF3−−→ pt ]

By induction, for n we have

[F
aF−→ pt ]n :=

n︷ ︸︸ ︷
[F

aF−→ pt ] • · · · • [F aF−→ pt ]

= [F n aFn−−→ pt ]

Therefore we get

(aX )
∗([F

aF−→ pt ]n) = [X × F n pr1−−→ X ] ∈ MC
S(X

idX−−→ X )

Convention: For n = 0 we define [F
aF−→ pt ]0 := [pt → pt ] and F 0 := pt .
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By the above construction X × F n pr1−−→ X is a confined and specialized map.

Hence, for a specialized map f : X → Y ,

f ◦ pr1 : X × F n pr1−−→ X f−→ Y

becomes a specialized map, hence we have

[X × F n pr1−−→ X ] ∈ MC
S(X

f−→ Y ).

Thus [X × F n pr1−−→ X ] ∈ MC
S(X

idX−−→ X ) and [X × F n pr1−−→ X ] ∈ MC
S(X

f−→ Y ).
This difference can be captured as the following bivariant product:

[X × F n pr1−−→ X ] = [X × F n pr1−−→ X ] • [X idX−−→ X ] (1.1)

Here [X
idX−−→ X ] ∈ MC

S(X
f−→ Y ) is a canonical orientation θMC

S
(f ). So, we can

express the bivariant element [X × F n pr1−−→ X ] ∈ MC
S(X

f−→ Y ) by

[X × F n pr1−−→ X ] = [X × F n pr1−−→ X ] • θMC
S
(f ) = (aX )

∗([F
aF−→ pt ]n) • θMC

S
(f ).
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Theorem
Assume that we can define the integer reldim on a class S of specialized
maps.Let F be confined and specialized. For a specialized map f : X → Y
we define

θF
MC

S
(f ) := (aX )

∗([F
aF−→ pt ]reldim(f ))•θMC

S
(f ) ∈ MC

S(X
f−→ Y ).

θF
MC

S
is a nice canonical orientation, i.e., it satisfies the following:

1. θF
MC

S
(g ◦ f ) = θF

MC
S
(f ) • θF

MC
S
(g) for f : X → Y , g : Y → Z ∈ S.

2. θF
MC

S
(idX ) = 1X .

3. for an independent square where f , f ′ ∈ S,

X ′ g′
−−−−−→ X

f ′
y yf

Y ′ −−−−−→
g

Y ,

g∗(θF
MC

S
(f )) = θF

MC
S
(f ′).

In particular, when F = pt, we have that θpt
MC

S
(f ) = θMC

S
(f ).
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In fact, the above bivariant element [F → pt ] ∈ MC
S(pt −→ pt) can be

replaced by any element

∆ ∈ MC
S(pt −→ pt).

Hence we can show the following formula.
COROLLARY: Let ∆ ∈ MC

S(pt −→ pt).

1. (“upstairs” Riemann–Roch “self” formula)

θ∆MC
S
(f ) = (aX )

∗(∆reldim(f))•θMC
S
(f )

is a nice canonical orientation, where (aX )
∗(∆reldim(f)) ∈ MC

S(X
idX−−→ X ).

2. (“downstairs” Riemann–Roch “self” formula)

∆θMC
S
(f ) = θMC

S
(f )•(aY )

∗(∆reldim(f))

is a nice canonical orientation, where (aY )
∗(∆reldim(f)) ∈ MC

S(Y
idY−−→ Y ).

It turns out that in this case

(aX )
∗(∆reldim(f)) • θMC

S
(f ) = θMC

S
(f ) • (aY )

∗(∆reldim(f)),

which follows from Commutativity! Thus θ∆MC
S
(f ) = ∆θMC

S
(f ).
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We also get the following, which follows from the universality of UBT:

Corollary
Let ∆ ∈ MC

S(pt −→ pt). ∃ a unique Grothendieck (auto-)transformation

γ∆ : MC
S → MC

S

such that γ∆(θMC
S
(f )) = θ∆MC

S
(f ) = (aX )

∗(∆reldim(f)) • θMC
S
(f ) for a specialized

map f : X → Y . (Because θ∆MC
S
(f ) is a nice canonical orientation.)

In particular, we have “SGA6”, “BFM–RR” and “Verdier–RR”: (Note:

MC
S
∗
(Z ) := MC

S(Z
idZ−−→ Z ) and MC

S∗(Z ) := MC
S(Z → pt)

1. “SGA6”:For a confined and specialized map f : X → Y we have the
following commutative diagram:

MC
S
∗
(X )

γ∆

−−−−−→ MC
S
∗
(X )

f!

y yf!
(
(aX )∗(∆reldim(f))•−

)
=f!
(
−
)
•(aY )∗(∆reldim(f))

MC
S
∗
(Y ) −−−−−→

γ∆
MC

S
∗
(Y ),

,
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1. “BFM–RR”: For a confined map f : X → Y we have the following
commutative diagram:

MC
S∗(X )

γ∆

−−−−−→ MC
S∗(X )

f∗

y yf∗

MC
S∗(Y ) −−−−−→

γ∆
MC

S∗(Y )

2. “Verdier–RR”: For a specialized map f : X → Y the following diagram
commute:

MC
S∗(Y )

γ∆

−−−−−→ MC
S∗(Y )

f !
y y(aX )∗(∆reldim(f))•f !=f !

(
(aY )∗(∆reldim(f))•−

)
MC

S∗(X ) −−−−−→
γ∆

MC
S∗(X ),
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§1.3. A very naive universal bivariant theory
We give another very naive and simple universal bivariant theory MC

without using the class S of specialized maps.
THEOREM (A very naive universal bivariant theory) Let V be a category with
a class C of confined maps and a class of independent squares. Define

MC(X f−→ Y )

to be the free abelian group generated by the set of isomorphism classes of
confined morphisms h : W → X.
(1) The association MC is a bivariant theory if the three bivariant operations
are defined exactly in the same way as in UBT above.
(i). Product: For morphisms f : X → Y and g : Y → Z, the product operation

• : MC(X f−→ Y )⊗MC(Y
g−→ Z ) → MC(X

gf−→ Z ).

(ii). Pushforward: For morphisms f : X → Y and g : Y → Z with f confined,
the pushforward operation

f∗ : MC(X
gf−→ Z ) → MC(Y

g−→ Z ).

18 / 31



(iii). Pullback: For an independent square

X ′ g′
−−−−−→ X

f ′
y yf

Y ′ −−−−−→
g

Y ,

the pullback operation

g∗ : MC(X f−→ Y ) → MC(X ′ f ′−→ Y ′).

(2). (A very naive universality of MC) Let B be a bivariant theory on the same
category V with the same class C of confined morphisms and the same lass
of independent squares. Let θB be a canonical orientation for all maps in V.
Then there exists a unique Grothendieck transformation

γB : MC → B

such that γB : MC(X f−→ Y ) → B(X f−→ Y ) satisfies the normalization condition
that for any map f : X → Y in C

γB([X
idX−−→ X ]) = θB(f ).

19 / 31



§2 Simple examples of bivariant theories and
Riemann–Roch formulas

Let’s consider the category F of finite sets as an easy example.
DEFINITION (cf.[§6.1 The bivariant theory F and §10.1.2 The Frobenius] of
FM.) For F , let any map be confined and any fiber square be
independent. For a map f : X → Y we define

F(X f−→ Y ) := F0(X f−→ Y )

to be the abelian group of R-valued functions on X .

1. (product)
• : F(X f−→ Y )⊗ F(Y g−→ Z ) → F(X g◦f−−→ Z )

for α ∈ F(X f−→ Y ), β ∈ F(Y g−→ Z ) and for x ∈ X

(α • β)(x) := α(x) · β(f (x)).

2. (pushforward) for any map f : X → Y (note that any map is confined)

f∗ : F(X g◦f−−→ Z ) → F(Y g−→ Z )

for y ∈ Y
f∗(α)(y) :=

∑
x∈f−1(y)

α(x).
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f∗ : F(X g◦f−−→ Z ) → F(Y g−→ Z )

for y ∈ Y
f∗(α)(y) :=

∑
x∈f−1(y)

α(x).
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1. (pullback) For a fiber square

X ′ g′
−−−−−→ X

f ′
y yf

Y ′ −−−−−→
g

Y ,

g∗ : F(X f−→ Y ) → F(X ′ f ′−→ Y ′)

is defined by (the usual functional pullback)

(g∗α)(x ′) := α(g′(x ′)).
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The following is obvious:
Lemma For any map f : X → Y we define

θ1(f ) := 1X ∈ F(X f−→ Y )

the characteristic function, i.e., 1X (x) = 1. Then θ1 is a canonical orientation
for all maps and it is a nice canonical orientation, i.e., we have

1. θ1(g ◦ f ) = θ1(f ) • θ1(g) for ay maps f : X → Y and g : Y → Z,

2. θ1(idX) = 1X .

3. θ1 is a nice canonical orientation.

REMARK: Let r ∈ R \ {0}. For any map f : X → Y we can define

θr (f ) := r |X |−|Y |θ1(f ) = r |X |−|Y |1X .

Here |Z | denotes the number of element of a finite set. Then we have

1. θr (g ◦ f ) = θr (f ) • θr (g) for f : X → Y and g : Y → Z,

2. θr (idX) = 1X .

3. if r ̸= 1, then θr is not a nice canonical orientation.
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The following theorem follows from the theorems of UBT:

Theorem
For the category F of finite sets there exists a unique Grothendieck
transformation

γF : MC → F
such that for any map f : X → Y

γF(θMC (f )) = θ1(f ).

Note θMC (f ) = [X
idX−−→ X ] ∈ MC(X f−→ Y ) and θ1(f ) = 1X ∈ F(X f−→ Y ).

REMARK: The “SGA 6”, “BFM–RR” and “Verdier–RR” of γF : MC → F
become the following respectively:
(1) “SGA 6” (for any map f : X → Y ):

MC(X
idX−−→ X )

γF−−−−−→ F(X idX−−→ X )

f∗=f!

y yf!=f∗

MC(Y
idY−−→ Y ) −−−−−→

γF
F(Y idY−−→ Y ),

f!([V
h−→ X ]) = [V f◦h−−→ Y ], γF([V

h−→ X ]) = h∗1V for [V h−→ X ] ∈ MC(X
idX−−→ X ).

For α ∈ F(X idX−−→ X ) f!α = f∗α.
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(2) “BFM–RR” (for any map f : X → Y ):

MC(X → pt)
γF−−−−−→ F(X → pt)

f∗

y yf∗

MC(Y → pt) −−−−−→
γF

F(Y → pt),

f∗([V
h−→ X ]) = [V f◦h−−→ Y ], γF([V

h−→ X ]) = h∗1V for [V h−→ X ] ∈ MC(X
idX−−→ X ).

So, “SGA6” and “BFM–RR” are the same.

(3) “Verdier–RR” (for any map f : X → Y ):

MC(Y → pt)
γF−−−−−→ F(Y → pt)

f !
y yf !=f∗

MC(X → pt) −−−−−→
γF

F(X → pt),
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DEFINITION: If a map f : X → Y satisfies that each fiber has the same finite
number of points, namely, X ∼= Y × F with a finite set F , then f is called a
“specialized” map.

The finite number |F | is called the “Euler number” of f ,
denoted χ(f ). (NOTE:f : X → Y is isomorphic to the projection
pr1 : Y × F → Y , thus a specialized map is a projection, but we stick to the
above naming. Also χ(f ) = |F | = |X |

|Y | .)
LEMMA: For two specialized maps f : X → Y and g : Y → Z we have

χ(g ◦ f ) = χ(g)χ(f ).

LEMMA: Let S be the set of all specialized maps. For a specialized map
f : X → Y ∈ S, we define

θS(f ) := χ(f )1X = χ(f )θ1(f ).

Then θS is a nice canonical orientation, i.e., we have

1. θS(g ◦ f ) = θS(f ) • θS(g) for f : X → Y , g : Y → Z ∈ S,
2. θS(idX) = 1X ,

3. for the following fiber square

X ′ g′
−−−−−→ X

f ′
y yf

Y ′ −−−−−→
g

Y ,

g∗(θS(f )) := θS(f ′).
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number of points, namely, X ∼= Y × F with a finite set F , then f is called a
“specialized” map. The finite number |F | is called the “Euler number” of f ,
denoted χ(f ). (NOTE:f : X → Y is isomorphic to the projection
pr1 : Y × F → Y , thus a specialized map is a projection, but we stick to the
above naming. Also χ(f ) = |F | = |X |

|Y | .)
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The following theorem follows from the theorems of UBT:
THEOREM: Let the situation be as above. On the category F of finite sets
there exists a unique Grothendieck transformation

γF : MC
S → F

such that for any f : X → Y ∈ S

γF(θMC
S
(f )) = θS(f ) = χ(f )θ1(f ).

REMARK: As to the abelian group MC
S(X

f−→ Y ), we note that if f : X → Y is
not surjective, then MC

S(X
f−→ Y ) = 0. Note that this kind of thing happens, for

example, in the case of bivariant theory F of constructible functions (see
[§6.1.2 Definition of F, Remarks., p.62] of FM).
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REMARK: The above equality

γF(θMC
S
(f )) = χ(f )θ1(f ).

is a Riemann–Roch formula for the Grothendieck transformation

γF : MC
S → F

with respect to the canonical orientations θMC
S

on MC
S and θ1 on F.

The “modifier” χ(f ) can be considered as a bivariant element

uf := χ(f )1X ∈ F(X idX−−→ X ) and we have χ(f )θ1(f ) = uf • θ1(f ).
Or, it can be also considered as a bivariant element
df := χ(f )1Y ∈ F(Y idY−−→ Y ) and we have χ(f )θ1(f ) = θ1(f ) • df .

Furthermore from this Riemann–Roch formula we can get the following
“SGA 6”, “BFM–RR” and “Verdier–RR”:
(1) “SGA 6” (for a specialized map f : X → Y ):

MC
S
∗
(X )

γF−−−−−→ F∗(X )

f!

y yf!
(
χ(f )1X •−

)
=χ(f )f∗

MC
S
∗
(Y ) −−−−−→

γF
F∗(X ),
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(2) “BFM–RR” (for any map f : X → Y ):

MC
S∗(X )

γF−−−−→ F∗(X )

f∗

y yf∗

MC
S∗(Y ) −−−−→

γF
F∗(Y ),

(3) “Verdier–RR” (for a specialized map f : X → Y ):

MC
S∗(Y )

γF−−−−→ F∗(Y )

f !
y yχ(f )1X•f !=χ(f )f∗

MC
S∗(X ) −−−−→

γF
F∗(X ),
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REMARK: The above bivariant theory F is considered as the target of a
Grohendieck transformation

tr : K (X f−→ Y ) → F(X f−→ Y )

in [Part I: Bivariant Theories, §10.1 Fixed point theorems for coherent
sheaves] of [FM].

(The definition of K (X f−→ Y ) is complicated, see §10.1 of
[FM]). It remains to see whether one could use the universal bivariant theory
MC

S or some modified version for some fixed point problem.

So far we consider the category of finite sets, but we can extend the above
arguments to the category ENS of sets, namely, infinite sets can be allowed.
In this case, we need to define a confined map and a specialized map.

DEFINITION: For the category ENS of sets,

1. a map f : X → Y is called confined if the inverse image of a finite
subset of Y is finite, equivalently, if every fiber is a finite set.

2. a map f : X → Y is called specialized if each fiber is finite and the
number of elements of the fiber is the same at each element of Y . In
other words, X ∼= Y × F with a finite set F and f : X → Y is
isomorphic to the projection pr1 : Y × F → Y .
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Theorem
For ENS, C of confined maps, S of specialized maps,

1. There exists a unique Grothendieck transformation

γF : MC
S → F

such that for any f : X → Y ∈ S, γF(θMC
S
(f )) = θS(f ) = χ(f )θ1(f ).

2. We get the same “SGA 6”, “BFM-RR” and “Verdier-RR” as above.

For more examples of bivariant theories and Riemann-Roch formulas, see

▶ Fulton-MacPherson’s book [FM] (Mem. AMS.)
▶ Fulton’s “Intersection Theory” (Springer)

For some applications, see, e.g.,

▶ Behrend-Ginot-Noohi-Xu, “String Topology for Stacks”, Astérisque 343
(2012)

▶ Lipman-Tarrı́o-Lopéz; “Bivariance, Grothendieck duality and Hochschild
homology I: construction of a bivariant theory”, Asian J. Math. 15 (2011),
453-500

▶ Lipman-Tarrı́o-Lopéz; “Bivariance, Grothendieck duality and Hochschild
homology II: the fundamental class of a flat scheme-map”, Advances in
Math. 257 (2014), 365-461.

▶ Déglise, “Bivariant Theories in Motivic Stable Homotopy”, Documenta
Math. 23 (2018), 997-1076.
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2. We get the same “SGA 6”, “BFM-RR” and “Verdier-RR” as above.

For more examples of bivariant theories and Riemann-Roch formulas, see
▶ Fulton-MacPherson’s book [FM] (Mem. AMS.)
▶ Fulton’s “Intersection Theory” (Springer)

For some applications, see, e.g.,

▶ Behrend-Ginot-Noohi-Xu, “String Topology for Stacks”, Astérisque 343
(2012)

▶ Lipman-Tarrı́o-Lopéz; “Bivariance, Grothendieck duality and Hochschild
homology I: construction of a bivariant theory”, Asian J. Math. 15 (2011),
453-500

▶ Lipman-Tarrı́o-Lopéz; “Bivariance, Grothendieck duality and Hochschild
homology II: the fundamental class of a flat scheme-map”, Advances in
Math. 257 (2014), 365-461.
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▶ Lipman-Tarrı́o-Lopéz; “Bivariance, Grothendieck duality and Hochschild
homology II: the fundamental class of a flat scheme-map”, Advances in
Math. 257 (2014), 365-461.
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▶ Lipman-Tarrı́o-Lopéz; “Bivariance, Grothendieck duality and Hochschild

homology I: construction of a bivariant theory”, Asian J. Math. 15 (2011),
453-500
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Thank you very much for your attention!
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