Some cycles of the space of long knots and Vassiliev invariants

Keiichi Sakai
(partially joint with Saki Kanou, arXiv.2203.15329)
Algebraic and Geometric Models for Spaces and Related Topics
September 2, 2022
Shinshu University
ksakai@math.shinshu-u.ac.jp

Overview (1) : Configuration space integral, trivalent graphs and Vassiliev invariants

Aim : non-trivalent graph cocycles $\stackrel{\text { configuration space integral }}{\longmapsto}$ (CSI) Vassiliev invariants
Background : Main objective is the topology of $\mathcal{K}_{n}:=\left\{\right.$ long knots in $\left.\mathbb{R}^{n}\right\}$. Today we focus on $\boldsymbol{H}_{d R}^{0}\left(\mathcal{K}_{\mathbf{3}}\right)=\{\mathbb{R}$-valued knot invariants $\}$.

- (R. Bott-C. Taubes, T. Kohno 1994, ...) For any Vassiliev invariant V,
$\exists \Gamma:$ a formal sum of trivalent graphs $\stackrel{I}{\stackrel{\text { CSI }}{\longrightarrow}} \boldsymbol{I}(\Gamma)=V\left(\in \mathbf{\Omega}_{d R}^{0}\left(\mathcal{K}_{3}\right) \quad\right.$ closed $)$.
Example. $\boldsymbol{I}(\boldsymbol{X}-\boldsymbol{Y})=\boldsymbol{v}_{\mathbf{2}}$: Casson's knot invariant, where

$$
\begin{aligned}
& X=\xrightarrow{\begin{array}{llll}
2 & 2 & 3 & 4
\end{array}}
\end{aligned}
$$

- (A. Cattaneo, P. Cotta-Ramusino, R. Longoni 2002) $\exists \mathcal{G}_{n}^{k, *}$: graph complexes $(k \geq \mathbf{2})$,

$$
\begin{aligned}
& I: \mathcal{G}_{n}^{k, *} \rightarrow \Omega_{d R}^{k(n-3)+*}\left(\mathcal{K}_{n}\right) \quad \text { cochain maps }(n \geq 4), \\
& I: \boldsymbol{H}^{0}\left(\mathcal{G}_{n}^{k}\right) \hookrightarrow \boldsymbol{H}_{d R}^{k(n-3)}\left(\mathcal{K}_{n}\right), \quad(0 \leftrightarrow \text { trivalent graphs }) \\
& \boldsymbol{H}^{0}\left(\mathcal{G}_{n}^{k}\right) \cong\{\text { Vassiliev invariants of order } k\} \text { if } n \text { is odd. }
\end{aligned}
$$

Conjecture. I: $\bigoplus_{k} \mathcal{G}_{n}^{k, *} \rightarrow \Omega_{d R}^{*}\left(\mathcal{K}_{n}\right)$ is a quasi-isomorphism ($n \geq 4$).
The trivalent part supports the conjecture, and can be seen as "high dim analogues of Vassiliev invariants".

Overview (2-1) : Non-trivalent graphs

Little is known about non-trivalent graphs, but \exists some results that suggest some relation to Vassiliev invariants.

Theorem (S. 2012)

$n \geq \mathbf{3}$ odd $\Rightarrow \exists \Gamma_{3}^{1} \in \mathcal{G}_{n}^{3,1}$: a graph cocycle of defect 1 , such that
$\boldsymbol{I}\left(\Gamma_{3}^{\mathbf{1}}\right) \in \boldsymbol{H}_{d R}^{3(n-3)+1}\left(\mathcal{K}_{n}\right)$ is not zero. In particular if $\boldsymbol{n}=\mathbf{3}$,

$$
\left\langle I\left(\Gamma_{3}^{1}\right), G_{f}\right\rangle=\int_{G_{f}} I\left(\Gamma_{3}^{1}\right)=v_{2}(f) \quad\left(f \in \mathcal{K}_{3}\right),
$$

where \boldsymbol{G}_{f} is Gramain's 1 -cycle of \mathcal{K}_{3}.

Theorem (Longoni 2004, K. Pelatt-D. Sinha 2017)
If $n \geq \mathbf{4}$ is even, then $\boldsymbol{\exists} \boldsymbol{G}_{\boldsymbol{L}}$: a graph cocycle of defect $\mathbf{1}$ such that $I\left(G_{L}\right) \in H_{d R}^{3(n-3)+1}\left(\operatorname{Emb}\left(S^{1}, \mathbb{R}^{n}\right)\right)$ is not zero.

Overview (2-2) : Non-trivalent graphs

The cocycles below seem to be equal to $I\left(\Gamma_{\mathbf{3}}^{\mathbf{1}}\right)$, although they are defined in different ways.

Theorem (V. Turchin 2006)

$\exists v_{3}^{1} \in\left(\bmod 2\right.$ Vassiliev spectral sequence for $\left.\mathcal{K}_{3}\right)$ with $\left\langle v_{3}^{1}, G_{f}\right\rangle=v_{2}(f) \bmod 2$.

Theorem (A. Mortier 2015)

$\exists \alpha_{3}^{1}$: a 1 -cocycle of \mathcal{K}_{3} that satisfies $\left\langle\alpha_{3}^{1}, G_{f}\right\rangle=v_{2}(f)$ and

$$
\begin{equation*}
\left\langle\alpha_{3}^{1}, F H_{f}\right\rangle=6 v_{3}(f)-\operatorname{fr}(f) v_{2}(f) . \tag{*}
\end{equation*}
$$

Here $\boldsymbol{F H}_{f}$ is Fox-Hatcher $\mathbf{1}$-cycle of $\widetilde{\mathcal{K}}_{3}$ (explained later).
We have a result analogous to (*) :

Theorem (S. Kanou-S. 2022)

$\left\langle I\left(\Gamma_{3}^{1}\right), F H_{f}\right\rangle=6 v_{3}(f)-\mathrm{fr}(f) v_{2}(f)$.

Overview (3) : defect 1 graphs and Vassiliev invariants

At present no way is known to produce non-trivalent graph cocycles, but the computations in [Kanou-S] in fact show the following.

Theorem (S. 2022)

For any graph cocycle $\boldsymbol{\Gamma}_{k}^{1} \in \mathcal{G}_{n}^{k, 1}$, we can evaluate $I\left(\Gamma_{k}^{1}\right) \in \mathbf{\Omega}_{d R}^{k(n-3)+1}\left(\mathcal{K}_{n}\right)$ over some cycles (generalizing $\boldsymbol{G}_{\boldsymbol{f}}$ and $\boldsymbol{F} \boldsymbol{H}_{\boldsymbol{f}}$; explained later) in a combinatorial way.
In particular, if $\boldsymbol{n}=\mathbf{3}$ then

- $\left\langle\boldsymbol{I}\left(\Gamma_{k}^{\mathbf{1}}\right), G\right\rangle$ is a Vassiliev invariant of order $\leq k-\mathbf{1}$.
- $\left\langle\boldsymbol{I}\left(\boldsymbol{\Gamma}_{\boldsymbol{k}}^{\mathbf{1}}\right), \boldsymbol{F H}\right\rangle$ is a Vassiliev invariant of order $\leq \boldsymbol{k}$.

Remark

The above Theorem does not claim the non-triviality of $I\left(\Gamma_{k}^{\mathbf{1}}\right) \in H_{d R}^{k(n-3)+1}\left(\mathcal{K}_{n}\right)$. It seems that we need rather complicated combinatorics to prove the non-triviality.

(Framed) long knots

Definition

- A long knot is an embedding $f: \mathbb{R}^{\mathbf{1}} \hookrightarrow \mathbb{R}^{n}$ satisfying

$$
|x| \geq 1 \Longrightarrow f(x)=(x, 0, \ldots, 0)
$$

- A framed long knot is a pair $\tilde{f}=(f, w) \in \mathcal{K}_{n} \times \boldsymbol{\Omega}_{\boldsymbol{I}_{n}} \mathbf{S O}(\boldsymbol{n})$ such that the first column of $w(x)$ is $f^{\prime}(x) /\left|f^{\prime}(x)\right|$.
- $\mathcal{K}_{n}=\left\{\right.$ long knots in $\left.\mathbb{R}^{n}\right\}, \widetilde{\mathcal{K}}_{n}:=\left\{\right.$ framed long knots in $\left.\mathbb{R}^{n}\right\}$.
$\boldsymbol{H}^{0}\left(\mathcal{K}_{3} ; \boldsymbol{A}\right)=\operatorname{Map}\left(\pi_{0}\left(\mathcal{K}_{3}\right), \boldsymbol{A}\right)=\{\boldsymbol{A}$-valued isotopy invariants of (long) knots $\}$.

Lemma (Sinha)

where $p: \widetilde{\mathcal{K}}_{n} \rightarrow \mathcal{K}_{n}$ is the first projection. In particular $\widetilde{\mathcal{K}}_{3} \simeq \mathcal{K}_{3} \times \mathbb{Z}$.

Fox-Hatcher 1-cycle of $\widetilde{\mathcal{K}}_{n}$

A framed long knot can also be seen as a pair (f, w), where

- $f: S^{1} \hookrightarrow S^{n}$, with specified $f(0)=\infty$ and $f^{\prime}(\mathbf{0})$,
- $w \in \boldsymbol{\Omega}_{I_{n+1}} \mathbf{S O}(n+1)$ with the first column $f^{\prime} /\left|f^{\prime}\right|$ and the last column f.

An " S^{1}-action" $\boldsymbol{F H}: S^{1} \times \widetilde{\mathcal{K}}_{n} \rightarrow \widetilde{\mathcal{K}}_{n}$ is defined as follows;
for $t \in S^{1}$ and $\widetilde{f} \in \widetilde{\mathcal{K}}_{n}$, "rotate" \widetilde{f} by the multiplication of $w(t)^{-1} \in \mathbf{S O}(n+1)$ and re-parametrize it to get $t \cdot \widetilde{f}$.

The orbit $\boldsymbol{F H}_{\tilde{f}}: S^{1} \rightarrow \widetilde{\mathcal{K}}_{n}$ of $\widetilde{f} \in \widetilde{\mathcal{K}}_{n}$ is called the Fox-Hatcher 1-cycle.

Gramain and Fox-Hatcher cycles

Note that $\boldsymbol{F H}$ looks very similar to the \boldsymbol{S}^{1}-action of $\boldsymbol{L X}=\operatorname{Map}\left(\boldsymbol{S}^{1}, \boldsymbol{X}\right)$.

Fact (P. Salvatore-Turchin(-A. Kupers) 2022)

There is an action of the framed little 2-disks operad on $\widetilde{\mathcal{K}}_{n}$ and $\boldsymbol{H}_{*}\left(\widetilde{\mathcal{K}}_{n}\right)$ is equipped with a $B V$ algebra structure. The 1-cycles \boldsymbol{G}_{f} and $\boldsymbol{F} \boldsymbol{H}_{\tilde{f}}$ can be written respectively in terms of the Gerstenhaber bracket and the BV operator.

Remark

This is an affirmative answer to the question raised by R. Budney and Salvatore. The existence of the BV structure on $\boldsymbol{H}_{*}\left(\widetilde{\mathcal{K}}_{n}\right)$ was found earlier [S].

Chord diagrams and cycles of \mathcal{K}_{n}

Given a chord diagram \boldsymbol{C} with \boldsymbol{k} chords, we have

- a "long immersion" $g_{C}: \mathbb{R}^{1} \rightarrow \mathbb{R}^{3}\left(\subset \mathbb{R}^{n}\right)$ with k transverse double points that encode the chords of \boldsymbol{C}, and
- $\alpha_{C}:\left(S^{n-3}\right)^{\times k} \rightarrow \mathcal{K}_{n}$ that "resolves" the double points of g_{C}.

$n \geq 4 \Rightarrow\left[\alpha_{C}\right] \in \boldsymbol{H}_{k(n-3)}\left(\mathcal{K}_{n}\right)$ depends only on \boldsymbol{C}.
$\boldsymbol{n}=\mathbf{3} \Longrightarrow$ for any choice of $\boldsymbol{g}_{C}, \exists \boldsymbol{\exists} \in \mathcal{K}_{3}$ such that

$$
\alpha_{C}=\sum_{\epsilon_{1}, \ldots, \epsilon_{k} \in\{+1,-1\}} \epsilon_{1} \cdots \epsilon_{k} f_{\epsilon_{1}, \ldots, \epsilon_{k}}
$$

Definition

A knot invariant \boldsymbol{V} is a Vassiliev invariant of order $\leq \boldsymbol{k}$ if, for any \boldsymbol{C} with $\boldsymbol{k}+\mathbf{1}$ chords and any choice of $\boldsymbol{g}_{\boldsymbol{C}}$,

$$
V\left(\alpha_{C}\right) \quad\left(=\sum_{\epsilon_{1}, \ldots, \epsilon_{k+1} \in\{+1,-1\}} \epsilon_{1} \cdots \epsilon_{k+1} V\left(f_{\epsilon_{1}, \ldots, \epsilon_{k+1}}\right)\right)=0 .
$$

Configuration space integral (CSI)

$\operatorname{Conf}_{k}(X):=\left\{\left(x_{1}, \ldots, x_{k}\right) \in X^{\times k} \mid x_{i} \neq x_{j}\right.$ if $\left.i \neq j\right\}$.
Configuration spaces associated with graphs:

- $E_{\Gamma}:=\left\{\begin{array}{l|l}\left(f,\left(y_{1}, y_{2}, \ldots\right)\right) & y_{i}=f\left(x_{i}\right), \\ \in \mathcal{K}_{n} \times \operatorname{Conf}_{*}\left(\mathbb{R}^{n}\right) & \exists x_{1}<\cdots<x_{s}\end{array}\right\}$.
- For an edge e, define $\varphi_{e}: E_{\Gamma} \rightarrow S^{n-1}$ by

$$
\varphi_{e}(f, y):= \begin{cases}\left(y_{j}-y_{i}\right) /\left|y_{j}-y_{i}\right| & e=\overrightarrow{i j}, \\ f^{\prime}\left(x_{i}\right) /\left|f^{\prime}\left(x_{i}\right)\right| & e \text { is a loop at the vertex } i .\end{cases}
$$

- $\omega_{\Gamma}:=\Lambda_{e: \text { edges }} \varphi_{e}^{*} \operatorname{vol}_{S^{n-1}} \in \boldsymbol{\Omega}_{d R}^{(n-1) \text { \#fedges }}\left(\boldsymbol{E}_{\Gamma}\right)$.
- The first projection $\pi_{\Gamma}: E_{\Gamma} \rightarrow \stackrel{d R}{K}_{n}$ is a fiber bundle with fiber $\subset \operatorname{Conf}_{*}\left(\mathbb{R}^{n}\right)$.
- $I(\Gamma):=\pi_{\Gamma *} \omega_{\Gamma} \in \Omega_{d R}^{*}\left(\mathcal{K}_{n}\right)$, where $\pi_{\Gamma *}$ is the integration along the fiber.

Lemma

$\mathcal{G}_{n}^{k, l}:=\mathbb{R}\langle\boldsymbol{\Gamma}| \boldsymbol{b}_{\mathbf{1}}(\boldsymbol{\Gamma})=k$ and $\sum_{v \in V(\Gamma)}($ valence $\left.(\boldsymbol{v})-\mathbf{3})=l\right\rangle\left(\boldsymbol{l}\right.$: the defect). If $\boldsymbol{\Gamma} \in \mathcal{G}_{n}^{k, l}$, then $\operatorname{deg} I(\Gamma)=k(n-3)+l$.

Coboundary operation on graphs

Proposition

1. (Axelrod-Singer) ヨ Fiberwise compactification of $\boldsymbol{E}_{\boldsymbol{\Gamma}}$ so that $\boldsymbol{\varphi}_{e}$ extends smoothly on the compactification (thus $\boldsymbol{I}(\Gamma)$ converges).
2. $d \boldsymbol{I}(\Gamma)=\boldsymbol{I}(\partial \Gamma)$ (essentially by Stokes' theorem), where $\partial: \mathcal{G}_{n}^{k, l} \rightarrow \mathcal{G}_{n}^{k, l+1}$ is given by

$$
\partial \Gamma=\sum_{e \in\{\text { edges and arcs }\}} \pm \Gamma / e, \quad \Gamma \stackrel{\text { collapsing } e}{ } \Gamma / e
$$

Warning. In fact we need a "correction term" when $\boldsymbol{n}=3$.
Thus $I: \mathcal{G}_{n}^{k, *} \rightarrow \boldsymbol{\Omega}_{d R}^{k(n-3)+*}\left(\mathcal{K}_{n}\right)$ is a cochain map ($n \geq 4$).

Example

We have $\partial X=\partial Y$, where $X, Y \in \mathcal{G}_{n}^{2,0}$ and $\partial X=\partial Y \in \mathcal{G}_{n}^{2,1}$ are

Thus $v_{2}:=I(X-Y)$ is a $2(n-3)$-cocycle.

Defect 0 graphs \leadsto non-zero cohomology classes

Question. How to show the non-triviality of $[I(\Gamma)] \in H_{d R}^{k(n-3)}\left(\mathcal{K}_{n}\right)$ for a cocycle $\Gamma \in \mathcal{G}_{n}^{k, 0}$? Answer. Evaluate $\boldsymbol{I}(\boldsymbol{\Gamma})$ over a cycle α_{C} for some chord diagram \boldsymbol{C}.
Suppose $\boldsymbol{\Gamma}=\boldsymbol{a} \boldsymbol{C}+\sum_{i} \boldsymbol{a}_{i} \boldsymbol{\Gamma}_{i}$, where $\boldsymbol{\Gamma}_{i}$ are graphs of defect $\mathbf{0}$ other than \boldsymbol{C}.

Proposition

$\left\langle I(\Gamma), \alpha_{C}\right\rangle= \pm a$.
Outline of proof. $\left\langle I(\Gamma), \alpha_{C}\right\rangle=a\left\langle I(C), \alpha_{C}\right\rangle+\sum_{i} a_{i}\left\langle I\left(\Gamma_{i}\right), \alpha_{C}\right\rangle$.

- $\left\langle\boldsymbol{I}(\boldsymbol{C}), \alpha_{C}\right\rangle=\int_{\alpha_{C}} \omega_{C}$ localizes to the following configurations, and each edge serves as $\operatorname{Link}\left(S^{n-2}, \mathbb{R}^{1}\right)= \pm 1$.

- For \forall configurations in $\boldsymbol{E}_{\boldsymbol{\Gamma}_{i}}, \boldsymbol{\exists}$ a doublepoint of $\boldsymbol{f}_{\boldsymbol{C}}$ to which no edge comes, and $\left\langle\boldsymbol{I}\left(\boldsymbol{\Gamma}_{i}\right), \alpha_{C}\right\rangle$ is defined continuously for $\boldsymbol{h} \geq \mathbf{0}$. Thus $\left\langle\boldsymbol{I}\left(\boldsymbol{\Gamma}_{i}\right), \alpha_{C}\right\rangle \rightarrow \mathbf{0}(\boldsymbol{h} \rightarrow \mathbf{0})$ by dimensional reason.

The case $n=3$

$\Gamma \in \mathcal{G}_{3}^{k, 0}$ a cocycle $\leadsto \boldsymbol{V}:=I(\Gamma) \in H_{d R}^{0}\left(\mathcal{K}_{3}\right)$ is a knot invariant.
Choose crossings c_{1}, \ldots, c_{k} of a diagram of $f \in \mathcal{K}_{3}$ that determine a chord diagram \boldsymbol{C}.

$$
\Longrightarrow \quad V\left(\alpha_{C}\right)=\left\langle I(\Gamma), \alpha_{C}\right\rangle=\sum_{\epsilon_{1}, \ldots, \epsilon_{k} \in\{+1,-1\}} \epsilon_{1} \cdots \epsilon_{k} V\left(f_{\epsilon_{1}, \ldots, \epsilon_{k}}\right) \quad\left(=D^{k} V(f)\right)
$$

Since $\left\langle\boldsymbol{I}(\boldsymbol{\Gamma}), \alpha_{C}\right\rangle= \pm \boldsymbol{a}$ depends only on \boldsymbol{C}, the invariant \boldsymbol{V} is of order $\leq \boldsymbol{k}$; for \boldsymbol{C} with $\boldsymbol{k}+\mathbf{1}$ chords,

$$
D^{k+1} V(f)=D^{k} V\left(f_{\epsilon_{k+1}=+1}\right)-D^{k} V\left(f_{\epsilon_{k+1}=-1}\right)=a-a=0 .
$$

Theorem (Bott-Taubes, Kohno, ...)

All the Vassiliev invariants for (long) knots can be obtained from graph cocycles of defect $\mathbf{0}$ (= trivalent) in this way.

Defect 1 graphs

Question. How to show the non-triviality of $\left[I\left(\Gamma_{k}^{1}\right)\right] \in H_{d R}^{k(n-3)+1}\left(\mathcal{K}_{n}\right)$ for a cocycle $\Gamma \in \mathcal{G}_{n}^{k, 1}$? "Answer". Evaluate $\boldsymbol{I}\left(\boldsymbol{\Gamma}_{\boldsymbol{k}}^{\mathbf{1}}\right)$ over a cycle $\boldsymbol{F H}\left(\alpha_{C}\right)\left(\operatorname{or} \boldsymbol{G}\left(\alpha_{C}\right)\right)$ for some chord diagram \boldsymbol{C};

$$
F H\left(\alpha_{C}\right): S^{1} \times\left(S^{n-3}\right)^{\times k} \xrightarrow{\mathrm{id}_{S^{1}} \times \alpha_{C}} S^{1} \times \widetilde{\mathcal{K}}_{n} \xrightarrow{F H} \widetilde{\mathcal{K}}_{n} .
$$

Diagramatic description of $\boldsymbol{F H}\left(\alpha_{C}\right)$.

- S^{n-3}-factors serve as "resolutions" of doublepoints of f_{C}, and
- S^{1}-factor is decomposed into $2 m$ Fox-Hatcher moves

where $\boldsymbol{m}=\sharp\left\{\right.$ crossings in the diagram of $\left.f_{C}\right\}\left(\boldsymbol{m}=\mathbf{4}\right.$ for the above $\left.f_{C}\right)$.
The corresponding chord diagrams cyclically change as:

Thus $\boldsymbol{F H}\left(\alpha_{C}\right)$ is homologous to $\boldsymbol{F H}\left(\alpha_{C^{\prime}}\right)$ if $\boldsymbol{C} \xrightarrow{\text { cyclic change }} \boldsymbol{C}^{\prime}$.

Defect 1 graphs

Let $\Gamma_{k}^{1}=\sum_{i} a_{i} \Gamma_{i} \in \mathcal{G}_{n}^{k, 1}$ be a graph cocycle. Each Γ_{i} is one of the following two types:

(ii) graphs with free vertices

Theorem (S. 2022)

$\left\langle I\left(\Gamma_{k}^{\mathbf{1}}\right), p_{*} F \boldsymbol{F H}\left(\alpha_{C}\right)\right\rangle=\sum_{i \in I} \pm a_{i}$, where $i \in I \Longleftrightarrow \Gamma_{i}$ is a semi-chord diagrams one of whose "resolutions"

is equal to a cyclic transformation of \boldsymbol{C}.

A rough sketch of the proof

Very similar to the proof of " $\left\langle\boldsymbol{I}(\mathbf{\Gamma}), \alpha_{C}\right\rangle= \pm a$ " in defect $\mathbf{0}$ case.

- If one of the "resolution" of $\boldsymbol{\Gamma}_{i}$ is a cyclic transformation of \boldsymbol{C}, then

$$
\left\langle I\left(\Gamma_{i}\right), p_{*} F H\left(\alpha_{C}\right)\right\rangle=\int_{p_{*} F H\left(\alpha_{C}\right)} \omega_{\Gamma_{i}}
$$

localizes to the following configurations.

- If the resolutions of $\boldsymbol{\Gamma}_{j}$ are not equal to \boldsymbol{C}, then $\boldsymbol{\exists}$ a doublepoint of $f_{\boldsymbol{C}}$ to which no edge comes, and $\left\langle\boldsymbol{I}\left(\Gamma_{j}\right), \boldsymbol{F H}\left(\alpha_{C}\right)\right\rangle$ is defined continuously for $\boldsymbol{h} \geq \mathbf{0}$. Thus $\left\langle\boldsymbol{I}\left(\boldsymbol{\Gamma}_{j}\right), \boldsymbol{F H}\left(\alpha_{C}\right)\right\rangle \rightarrow \mathbf{0}(\boldsymbol{h} \boldsymbol{\rightarrow 0})$ by dimensional reason.

The case $n=3$

For a graph cocycle Γ_{k}^{1} of order k and defect $\mathbf{1}$, we have an invariant $V(\widetilde{f}):=\left\langle I\left(\Gamma_{k}^{1}\right), p_{*} F H_{\tilde{f}}\right\rangle$ of framed long knots.
Choose crossings c_{1}, \ldots, c_{k} of a diagram of $\widetilde{f} \in \widetilde{\mathcal{K}}_{3}$ that determine a chord diagram \boldsymbol{C}.

$$
\Longrightarrow \quad\left\langle I\left(\Gamma_{k}^{1}\right), p_{*} F H\left(\alpha_{C}\right)\right\rangle=\sum_{\epsilon_{1}, \ldots, \epsilon_{k} \in\{+1,-1\}} \epsilon_{1} \cdots \epsilon_{k} V\left(\widetilde{f}_{\epsilon_{1}, \ldots, \epsilon_{k}}\right)=D^{k} V(\widetilde{f}) .
$$

Now we can compute $D^{k} \boldsymbol{V}(\widetilde{f})$ in a combinatorial way, and in particular $D^{k} \boldsymbol{V}(\widetilde{f})$ depends only on \boldsymbol{C}. Thus V is of order $\leq k$;
for \boldsymbol{C} with $\boldsymbol{k}+\mathbf{1}$ chords,

$$
D^{k+1} V(\widetilde{f})=D^{k} V\left(\widetilde{f}_{\epsilon_{k+1}=+1}\right)-D^{k} V\left(\widetilde{f}_{\epsilon_{k+1}}=-1\right)=0
$$

Non-triviality of \boldsymbol{V} is unknown!

A non-trivial example

Example (S. 2008, 2012)

$n \geq \mathbf{3}$ odd $\Rightarrow \exists$ a graph cocycle $\Gamma_{3}^{1}=\Sigma_{1 \leq i \leq 9} a_{i} \boldsymbol{\Gamma}_{i}$ of defect $\mathbf{1}$,

$\left(a_{1}, \ldots, a_{9}\right)=(-2,1,2,-2,2,-1,1,-1,1)$.

Theorem (Kanou-S., 2022)

$$
v(\widetilde{f}):=\left\langle I(\Gamma), p_{*} F H_{\tilde{f}}\right\rangle=6 v_{3}(\widetilde{f})-\operatorname{fr}(\widetilde{f}) v_{2}(f) .
$$

Since \boldsymbol{v} is of order $\leq \mathbf{3}$, this should be a linear combination of $\boldsymbol{v}_{\mathbf{3}}, \mathbf{f r} \cdot \boldsymbol{v}_{\mathbf{2}}, \mathrm{fr}^{\mathbf{3}}, \boldsymbol{v}_{\mathbf{2}}, \mathrm{fr}^{\mathbf{2}}$ and $\mathbf{f r}$. The coefficients can be determined by explicit computations.

Questions

1. Is $I\left(\mathbf{\Gamma}_{k}^{\mathbf{1}}\right) \in \boldsymbol{H}_{d R}^{k(n-3)+1}\left(\mathcal{K}_{n}\right)$ non-zero in general?

- We might need rather complicated combinatorics.

2. How about cocycles of defect >1 ?

- We need more cycles. The action of (framed) little disks operad might produce them.

3. Are there any cycles other than α_{C} ?
4. How about Embllong ${ }_{\text {long }}^{(f r)}\left(\mathbb{R}^{m}, \mathbb{R}^{n}\right)$?
