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Some definitions

G : a finite group. M : a smooth manifold with smooth G-action. (Write G ↷ M .)

Definitions

1. A smooth action of G on M is a group homomorphism

ΨM : G → Diff(M).

2. For a subgroup H of G, let MH denote the HHH-fixed-point set of M , i.e.

MH = {x ∈ M |ΨM (h)(x) = x for all h ∈ H}.

3. G ↷ M is called an odd-Euler-characteristic action

(resp. a one-fixed-point action) if χ(MG) ≡ 1 mod 2 (resp. |MG| = 1).
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Motivation

G: a finite group. Sn : the standard n-sphere.

A5: the alternating group on five letters. Cn : a cyclic group of order n.

S5: the symmetric group on five letters.

Conjecture (M. Morimoto 2019 ? )

∃∃∃ an effective one-fixed-point G-action on S6 ⇐⇒ G ∼= A5 , A5 × C2 or S5.

Note that if [G : A5] = 2 then G is isomorphic to either A5 × C2 or S5.

M.Morimoto recently has proved the following:

Theorem (M. Morimoto 2022 (1987))

If G ∼= A5, A5 × C2 or S5 then there are one-fixed-point G-actions on S6.

4 / 24



Main result (1)

Σ : a Z-homology 6-sphere (as a closed smooth manifold) with effective G-action.

We call G ↷ Σ is orientation preserving if the diffeomorphism

ΨΣ(g) : Σ → Σ

preserves an orientation of Σ for each g ∈ G.

Theorem (T.)

Suppose ∃∃∃ an orientation preserving odd-Euler-characteristic G-action on Σ.

Then G ∼= A5 and |ΣG| = 1.

Corollary

Suppose ∃∃∃ a not orientation preserving odd-Euler-characteristic G-action on Σ.

Then G ∼= A5 × C2 or S5 and |ΣG| = 1.

5 / 24



A proof of the corollary

Σ : a Z-homology 6-sphere with effective G-action.

Hypothesis

1. If ∃∃∃ G ↷ Σ
ori−pre

with χ(ΣG) ≡ 1 mod 2 then G ∼= A5 and |ΣG| = 1.

2. If |G| = pr and X is a finite G-complex then χ(X) ≡ χ(XG) mod p.

Suppose ∃∃∃ a not orientation preserving odd-Euler-characteristic G-action on Σ.

Then
L = { g ∈ G |ΨΣ(g) : Σ → Σ preserves an orientation of Σ }

is a subgroup of G with [G : L] = 2. Thus, G/L ↷ ΣL and ΣG = (ΣL)G/L.

Since χ(ΣG) ≡ χ(ΣL) ≡ 1 mod 2, it holds that L ↷ Σ
ori−pre

and χ(ΣL) ≡ 1 mod 2.

By our main theorem, we have L ∼= A5 and |ΣL| = 1.

Since [G : A5] = 2 and ΣG ⊂ ΣL, G ∼= A5 × C2 or S5 and |ΣG| = 1.
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Main result (2)

Theorem

Let n ≤ 5. If S is a homotopy n-sphere then χ(SG) ≡ 0 mod 2.

Ξ : a Z2-homology 5-sphere with effective G-action.

Theorem (T.)

There are no odd-Euler-characteristic G-actions on Ξ, i.e. χ(ΞG) ≡ 0 mod 2.

Remark

1. ∃∃∃ an A5-action on a homology 3-sphere Σ with |ΣA5 | = 1.

2. ∃∃∃ an A5-action on a Zp-homology 5-sphere Ξ with |ΞA5 | = 3. (p: odd prime)
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Motivation for one-fixed-point actions on spheres

Conjecture (D. Montgomery–H. Samelson 1946)

If a compact Lie group G acts smoothly on the n-sphere Sn in such a way as to have

one stationary point, it is likely that there must be a second stationary point.

Theorem (E. Stein 1977 [First example])

Let G = SL(2, 5) or SL(2, 5)× Cr with (r, 30) = 1. Then G can act on S7 with one

fixed point.

SL(2, 5): the special linear group of order 120 or the nontrivial double covering of A5.
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One-fixed-point actions on spheres and Fixed-point-free actions on disks

A G-action on a manifold M is called a fixed-point-free action if MG = ∅.
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Fixed-point-free actions on disks by R. Oliver

p, q : prime numbers.

Let Gq
p denote the family of finite groups G having a normal sequence

P ⊴ H ⊴ G

such that P is a p-group, H/P is a cyclic group and G/H is a q-group.

Remark

Let D = Dn and S = Sn (n: arbitrary). Suppose G ∈ Gq
p .

1. χ(DG) ≡ 1 mod q. In particular, χ(DG) ̸= 0.

2. χ(SG) ≡ 0 or 2 mod q. In particular, χ(SG) ̸= 1.

We call a finite group G an Oliver group if G ̸∈ G =
∪

p,q Gq
p .

Theorem (R. Oliver 1975)

A fintie group G can act on some disk D with DG = ∅ ⇐⇒ G is an Oliver group.
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One-fixed-point action of Oliver groups on spheres

G : a group.

Theorem (T. Petrie 1982)

Suppose that G satisfies at least one of the following.

1. G is an abelian Oliver group of odd order.

2. G = SL(2,F) or PSL(2,F) with |F| = odd. (Except for SL(2, 3).)

3. G = S3 or SO(3).

Then G can act on some sphere S with exactly one G-fixed point.

Theorem (E. Laitinen–M. Morimoto 1998)

The follwong three conditions are equivalent.

▶ G is an Oliver group.

▶ G can act on some disk D with DG = ∅.

▶ G can act on some sphere S with exactly one G-fixed point.
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A question on one-fixed-point actions on spheres

Question

What is the least dimension of a sphere which has a one-fixed-point G-action?

Moreover, which finite group can act on the sphere in such a way?

For a nonnegative integer m, G ↷ M is called an mmm-pseudofree action if

dimMH ≤ m for any nontrivial subgroup H of G.

Theorem (E. Laitinen–P. Traczyk 1986)

If S6 has a 2-pseudofree one-fixed-point G-action then G is isomorphic to A5.

Theorem (M. Morimoto 1987)

There are 2-pseudofree one-fixed-point A5-actions on S6.

More generally, A. Bak–M. Morimoto has proved that, for each n ≥ 6, Sn possesses

one-fixed-point A5-actions. (Joint with A. Bak in the case that n = 7, 8)
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One-fixed-point actions on S4

Theorem (M. Furuta 1989)

Let S be a homotopy 4-sphere with orientation presreving G-action. Then |SG| ̸= 1.

Theorem (S. Demichelis 1989)

The G-fixed-point set of an orientation preserving G-action on any homology 4-sphere

is empty set or a sphere S, where 0 ≤ dimS ≤ 2.

Theorem (M. Morimoto 1988)

Homotopy 4-spheres have no one-fixed-point actions of compact Lie group.

Comment (C. Giffen 1966)

The fixed point set of a finite cyclic group action on S4 can be a knotted 2-sphere.
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One-fixed-point actions on S3 and S5

Theorem (N. P. Buchdahl–S. Kwasik–R. Schultz 1990 (M. Furuta ?))

Let M be an orientable, closed, connected 3-manifold with G-action.

If |MG| = 1 then E ̸= π1(M) ⊂ SU(2).

Remark

The poincare 3-sphere M = S3/SL(2, 5) has a one-fixed-point A5-action.

Theorem (N. P. Buchdahl–S. Kwasik–R. Schultz 1990)

If Ξ is a Z-homology 5-sphere with G-action then |ΞG| ̸= 1.
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Tangential G-module and Tangential representation of G

M : an n-dimensional manifold with G-action.

For x ∈ MG, the tangential space Tx(M) inherits linearly the G-action on M .

We call a real representation ρx : G → O(n) a tangential representation at x ∈ MG

associated with Tx(M).

Tangential representation of G at x

Suppose M is orientable and the G-action on M is effective and orientation preserving.

Then we can get a faithful real representation ρx : G → SO(n).

Thus we may assume that a finite group G acting on M is a finite subgroup of SO(n).
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Ideas by S. Demichelis and N. P. Buchdahl–S. Kwasik–R. Schultz

Finite subgroups of SO(n)

1. Any finite subgroup of SO(2) is a cyclic group.

2. If G ⊂ SO(3) then G ∼= Cn, D2n, A4, S4 or A5.

3. The finite groups of SO(4) are classified (up to conjugations).

4. The finite groups of SO(5) are classified (up to conjugations).

The case S4 by S. Demichelis

If a nontrivial normal p-subgroup of G then (S4)G is empty set or a sphere.

The case S5 by N. P. Buchdahl–S. Kwasik–R. Schultz

If each minimal normal subgroup H of G is not nonabelian simple then |(S5)G| ̸= 1.
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Key lemma

Let F (G) denote the Fitting subgroup of G,i.e.

the unique maximal nilpotent normal subgroup of G.

Key Lemma (1)

Σ : a Z-homology 6-sphere with orientation preserving effective G-action.

If F (G) is nontrivial then χ(ΣG) is even.

Key Lemma (2)

Ξ : a Z2-homology 5-sphere with orientation preserving effective G-action.

If F (G) is nontrivial then χ(ΞG) is even.
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The idea of a proof of Key lemma

ρ : G → SO(n) : a faithful real representation of degree n.

If L is normal in G then ρ is decomposed to the two subrepresentations

ρL : G → O(m) and ρL : G → O(l),

where l +m = n.

In the case when L = F (G)

Let H = ker ρF (G) and K = ker ρF (G).

1. F (G) ⊂ H ⊂ SO(l).

2. H ∩K = E. 1○ F (G) ∩ F (K) = E ⇒ F (K) = E. (∵ F (G) is maximal)

3. K ⊂ SO(m). 2○ K ⊂ SO(m) with F (K) = E.

4. G/K ⊂ O(l). 3○ If K = E then G ⊂ O(l).
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A part of a proof of Key lemma

Σ : a Z-homology 6-sphere with effective orientation preserving G-action.

Hypothesis

1. If F (G) is noncyclic then χ(ΣG) is even.

2. If G ⊂ O(4) and F (G) is nontrivial then χ(ΣG) is even.

Suppose F (G) is nontrivial and cyclic. Then deg ρF (G) is equal to either 0, 2 or 4.

1○ deg ρF (G) = 2 Then K = ker ρF (G) ⊂ SO(2) with F (K) = E (thus K = E).

Therefore, G ∼= G/K ⊂ O(4), and χ(ΣG) is even.

2○ deg ρF (G) = 4 Then K ⊂ SO(4) with F (K) = E (thus K = E or A5).

Therefore, G ∼= G/K ⊂ O(2), i.e. G ∼= Cn or D2n, or A5 ⊴ G (later).

Since Cn and D2n belong to G2
2 , χ(ΣG) ≡ 0 or 2 mod 2 (hence χ(ΣG) ≡ 0 mod 2).
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A proof of our main theorem

Σ6 : a Z-homology 6-sphere with effective orientation preserving G-action.

Proposition

If χ(ΣG) ≡ 1 mod 2 then there is a normal subgroup H of G isomorphic to

A5, A6, A7, PSL(2, 7), PSU(4, 2) or A5 ×A5.

Proof) This follows from key lemma: if χ(ΣG) ≡ 1 mod 2 then F (G) is trivial.

A property on minimal normal subgroups

Each minimal normal subgroup of G is a characteristically simple group, i.e.

Cp × · · · × Cp or Q× · · · ×Q (Q : nonabelian)

Proposition (R. Brauer, H. F. Blichfeldt and J. H. Lindsey)

H = Q× · · · ×Q ⊂ SO(6) is isomorphic to either

A5, A6, A7, PSL(2, 7), PSU(4, 2) or A5 ×A5.
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A proof of our main theorem

Σ : a Z-homology 6-sphere with orientation preserving effective G-action.

Theorem (T.)

If χ(ΣG) ≡ 1 mod 2 then G ∼= A5 and |ΣG| = 1.

The main theorem follow from the following results.

Proposition

If ΣG ̸= ∅ and G contains a normal subgroup of H isomorphic to

A6, A7, PSL(2, 7), PSU(4, 2) or A5 ×A5

then ΣH ∼= Sk, where 0 ≤ k ≤ 1. Moreover, ΣG = (ΣH)G/H ∼= Sl, where 0 ≤ l ≤ 1.

Lemma

If A5 is normal in G and χ(ΣG) ≡ 1 mod 2 then G = A5 and |ΣG| = 1.
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Summary

G: a finite group Sn: the n-sphere

Summery

1. Let n ≤ 5. |(Sn)G| ̸= 1 ⇒ χ((Sn)G) ̸≡ 1 mod 2.

2. M. Morimoto’s conjecture is true, i.e.

∃∃∃ G ↷ S6 with |(S6)G| = 1 ⇐⇒ G ∼= A5, A5 × C2 or S5.

Moreover,

∃∃∃ G ↷ S6 with χ((S6)G) ≡ 1 mod 2 ⇐⇒ G ∼= A5, A5 × C2 or S5.

Thank you for your attention !
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