低次元球面上の有限群の

滑らかな odd-Euler-characteristic action について

田村 俊輔 (Shunsuke Tamura)

津山工業高等専門学校 総合理工学科 先進科学系

2022年8月31日

空間の代数的・幾何的モデルとその周辺

信州大学理学部

The flow of this talk

1. Motivation and Main theorem

- 1.1 Some definitions
- 1.2 Motivation
- 1.3 Our main theorems
- 2. Histories of exotic actions on spheres
- 3. An idea of our proof of the main theorem

Some definitions

G : a finite group. M : a smooth manifold with smooth G-action. (Write $G \curvearrowright M.$)

Definitions

1. A smooth action of ${\cal G}$ on ${\cal M}$ is a group homomorphism

 $\Psi_M : G \to \operatorname{Diff}(M).$

2. For a subgroup H of G, let M^H denote the **H**-fixed-point set of M, i.e.

 $M^{H} = \{ x \in M \mid \Psi_{M}(h)(x) = x \text{ for all } h \in H \}.$

 G ∩ M is called an odd-Euler-characteristic action (resp. a one-fixed-point action) if χ(M^G) ≡ 1 mod 2 (resp. |M^G| = 1).

Motivation

G: a finite group. S^n : the standard n-sphere.

 A_5 : the alternating group on five letters. C_n : a cyclic group of order n.

 $S_5\colon$ the symmetric group on five letters.

Conjecture (M. Morimoto 2019?)

 \exists an effective one-fixed-point G-action on $S^6 \iff G \cong A_5$, $A_5 \times C_2$ or S_5 .

Note that if $[G: A_5] = 2$ then G is isomorphic to either $A_5 \times C_2$ or S_5 .

M.Morimoto recently has proved the following:

Theorem (M. Morimoto 2022 (1987))

If $G \cong A_5$, $A_5 \times C_2$ or S_5 then there are one-fixed-point G-actions on S^6 .

Main result (1)

 Σ : a Z-homology 6-sphere (as a closed smooth manifold) with effective G-action.

We call $G \curvearrowright \Sigma$ is orientation preserving if the diffeomorphism

$$\Psi_{\Sigma}(g): \Sigma \to \Sigma$$

preserves an orientation of Σ for each $g \in G$.

Theorem (T.)

Suppose \exists an orientation preserving odd-Euler-characteristic *G*-action on Σ . Then $G \cong A_5$ and $|\Sigma^G| = 1$.

Corollary

Suppose \exists a not orientation preserving odd-Euler-characteristic *G*-action on Σ . Then $G \cong A_5 \times C_2$ or S_5 and $|\Sigma^G| = 1$.

A proof of the corollary

 Σ : a Z-homology 6-sphere with effective G-action.

Hypothesis

1. If
$$\exists G \curvearrowright \Sigma_{\text{ori-pre}}$$
 with $\chi(\Sigma^G) \equiv 1 \mod 2$ then $G \cong A_5$ and $|\Sigma^G| = 1$.

2. If $|G| = p^r$ and X is a finite G-complex then $\chi(X) \equiv \chi(X^G) \mod p$.

Suppose \exists a not orientation preserving odd-Euler-characteristic *G*-action on Σ .

Then

$$L = \{ g \in G \, | \, \Psi_{\varSigma}(g) : \varSigma \to \varSigma \text{ preserves an orientation of } \varSigma \}$$

is a subgroup of G with [G:L]=2. Thus, $G/L \curvearrowright \varSigma^L$ and $\varSigma^G = (\varSigma^L)^{G/L}.$

Since $\chi(\Sigma^G) \equiv \chi(\Sigma^L) \equiv 1 \mod 2$, it holds that $\underset{\text{ori-pre}}{L \curvearrowright \Sigma}$ and $\chi(\Sigma^L) \equiv 1 \mod 2$.

By our main theorem, we have $L\cong A_5$ and $|\varSigma^L|=1.$

Since $[G:A_5] = 2$ and $\Sigma^G \subset \Sigma^L$, $G \cong A_5 \times C_2$ or S_5 and $|\Sigma^G| = 1$.

Main result (2)

Theorem

Let $n \leq 5$. If S is a homotopy n-sphere then $\chi(S^G) \equiv 0 \mod 2$.

 Ξ : a \mathbb{Z}_2 -homology 5-sphere with effective G-action.

Theorem (T.)

There are no odd-Euler-characteristic G-actions on Ξ , i.e. $\chi(\Xi^G) \equiv 0 \mod 2$.

Remark

- **1**. \exists an A_5 -action on a **homology** 3-sphere Σ with $|\Sigma^{A_5}| = 1$.
- 2. \exists an A_5 -action on a \mathbb{Z}_p -homology 5-sphere Ξ with $|\Xi^{A_5}| = 3$. (p: odd prime)

The flow of this talk

- 1. Motivation and Main theorem
- 2. Histories of exotic actions on spheres
 - $2.1\,$ A conjecture posed by Montgomery–Samelson
 - 2.2 On finite groups having one-fixed-point actions on spheres
 - 2.3 On dimensions of spheres admitting one-fixed-point actions
- 3. An idea of our proof of the main theorem

Conjecture (D. Montgomery–H. Samelson 1946)

If a compact Lie group G acts smoothly on the n-sphere S^n in such a way as to have one stationary point, it is likely that there must be a second stationary point.

Theorem (E. Stein 1977 [First example])

Let G=SL(2,5) or $SL(2,5)\times C_r$ with (r,30)=1. Then G can act on S^7 with one fixed point.

SL(2,5): the special linear group of order 120 or the nontrivial double covering of A_5 .

One-fixed-point actions on spheres and Fixed-point-free actions on disks

A G-action on a manifold M is called a **fixed-point-free action** if $M^G = \emptyset$.

Fixed-point-free actions on disks by R. Oliver

p, q: prime numbers.

Let \mathcal{G}_p^q denote the family of finite groups G having a normal sequence

$$P \trianglelefteq H \trianglelefteq G$$

such that P is a p-group, H/P is a cyclic group and G/H is a q-group.

Remark

Let $D = D^n$ and $S = S^n$ (n: arbitrary). Suppose $G \in \mathcal{G}_p^q$.

1.
$$\chi(D^G) \equiv 1 \mod q$$
. In particular, $\chi(D^G) \neq 0$.

2. $\chi(S^G) \equiv 0 \text{ or } 2 \mod q$. In particular, $\chi(S^G) \neq 1$.

We call a finite group G an **Oliver group** if $G \notin \mathcal{G} = \bigcup_{p,q} \mathcal{G}_p^q$.

Theorem (R. Oliver 1975)

A fintie group G can act on some disk D with $D^G = \emptyset \iff G$ is an Oliver group.

One-fixed-point action of Oliver groups on spheres

G : a group.

Theorem (T. Petrie 1982)

Suppose that G satisfies at least one of the following.

- $1. \ G$ is an abelian Oliver group of odd order.
- 2. $G = SL(2,\mathbb{F})$ or $PSL(2,\mathbb{F})$ with $|\mathbb{F}| = \text{odd.}$ (Except for SL(2,3).)
- 3. $G = S^3$ or SO(3).

Then G can act on some sphere S with exactly one G-fixed point.

Theorem (E. Laitinen-M. Morimoto 1998)

The follwong three conditions are equivalent.

- ▶ *G* is an Oliver group.
- G can act on some disk D with $D^G = \emptyset$.
- G can act on some sphere S with exactly one G-fixed point.

A question on one-fixed-point actions on spheres

Question

What is the least dimension of a sphere which has a one-fixed-point G-action?

Moreover, which finite group can act on the sphere in such a way?

For a nonnegative integer $m, G \cap M$ is called an *m*-pseudofree action if dim $M^H \leq m$ for any nontrivial subgroup H of G.

Theorem (E. Laitinen–P. Traczyk 1986)

If S^6 has a 2-pseudofree one-fixed-point G-action then G is isomorphic to A_5 .

Theorem (M. Morimoto 1987)

There are 2-pseudofree one-fixed-point A_5 -actions on S^6 .

More generally, A. Bak–M. Morimoto has proved that, for each $n \ge 6$, S^n possesses one-fixed-point A_5 -actions. (Joint with A. Bak in the case that n = 7, 8)

One-fixed-point actions on ${\cal S}^4$

Theorem (M. Furuta 1989)

Let S be a homotopy 4-sphere with orientation preserving G-action. Then $|S^G| \neq 1$.

Theorem (S. Demichelis 1989)

The G-fixed-point set of an orientation preserving G-action on any homology 4-sphere is empty set or a sphere S, where $0 \le \dim S \le 2$.

Theorem (M. Morimoto 1988)

Homotopy 4-spheres have no one-fixed-point actions of compact Lie group.

Comment (C. Giffen 1966)

The fixed point set of a finite cyclic group action on S^4 can be a knotted 2-sphere.

One-fixed-point actions on ${\cal S}^3$ and ${\cal S}^5$

Theorem (N. P. Buchdahl–S. Kwasik–R. Schultz 1990 (M. Furuta ?))

Let M be an orientable, closed, connected 3-manifold with G-action. If $|M^G|=1$ then $E\neq\pi_1(M)\subset SU(2).$

Remark

The poincare 3-sphere $M = S^3/SL(2,5)$ has a one-fixed-point A_5 -action.

Theorem (N. P. Buchdahl–S. Kwasik–R. Schultz 1990)

If Ξ is a Z-homology 5-sphere with G-action then $|\Xi^G| \neq 1$.

The flow of this talk

- 1. Motivation and Main theorem
- 2. Histories of exotic actions on spheres
- 3. An idea of our proof of the main theorem
 - 3.1 Tangential representation
 - 3.2 Ideas of the proofs of the nonexistence of one-fixed-point actions on S^4 and $S^5\,$
 - 3.3 A relation between the Fitting subgroup F(G) and the parity of $\chi((S^6)^G)$
 - 3.4 Outline of our proof of the main theorem

Tangential G-module and Tangential representation of G

 ${\cal M}$: an n-dimensional manifold with G-action.

For $x \in M^G$, the tangential space $T_x(M)$ inherits linearly the *G*-action on *M*. We call a real representation $\rho_x : G \to O(n)$ a **tangential representation** at $x \in M^G$ associated with $T_x(M)$.

Tangential representation of G at x

Suppose ${\cal M}$ is orientable and the ${\cal G}\mbox{-}{\rm action}$ on ${\cal M}$ is effective and orientation preserving.

Then we can get a faithful real representation $\rho_x : G \to SO(n)$.

Thus we may assume that a finite group G acting on M is a finite subgroup of SO(n).

Ideas by S. Demichelis and N. P. Buchdahl-S. Kwasik-R. Schultz

Finite subgroups of SO(n)

- 1. Any finite subgroup of SO(2) is a cyclic group.
- 2. If $G \subset SO(3)$ then $G \cong C_n$, D_{2n} , A_4 , S_4 or A_5 .
- 3. The finite groups of SO(4) are classified (up to conjugations).
- 4. The finite groups of SO(5) are classified (up to conjugations).

The case S^4 by S. Demichelis

If a nontrivial normal p-subgroup of G then $(S^4)^G$ is empty set or a sphere.

The case S^5 by N. P. Buchdahl–S. Kwasik–R. Schultz

If each minimal normal subgroup H of G is not nonabelian simple then $|(S^5)^G| \neq 1$.

Key lemma

Let F(G) denote the **Fitting subgroup** of G,i.e.

the unique maximal nilpotent normal subgroup of G.

Key Lemma (1)

 Σ : a Z-homology 6-sphere with orientation preserving effective G-action.

If F(G) is nontrivial then $\chi(\Sigma^G)$ is even.

Key Lemma (2)

 Ξ : a \mathbb{Z}_2 -homology 5-sphere with **orientation preserving** effective *G*-action.

If F(G) is nontrivial then $\chi(\Xi^G)$ is even.

The idea of a proof of Key lemma

 $\rho: G \to SO(n)$: a faithful real representation of degree n.

If L is normal in G then ρ is decomposed to the two subrepresentations

$$\rho^L : G \to O(m) \text{ and } \rho_L : G \to O(l),$$

where l + m = n.

In the case when L = F(G)

Let
$$H = \ker \rho^{F(G)}$$
 and $K = \ker \rho_{F(G)}$.

1.
$$F(G) \subset H \subset SO(l)$$
.

2. $H \cap K = E$. (1) $F(G) \cap F(K) = E \Rightarrow F(K) = E$. ($\because F(G)$ is maximal)

3. $K \subset SO(m)$. (2) $K \subset SO(m)$ with F(K) = E.

4. $G/K \subset O(l)$. (3) If K = E then $G \subset O(l)$.

A part of a proof of Key lemma

 \varSigma : a Z-homology 6-sphere with effective orientation preserving $G\text{-}\mathsf{action}.$

Hypothesis

- 1. If F(G) is noncyclic then $\chi(\Sigma^G)$ is even.
- 2. If $G \subset O(4)$ and F(G) is nontrivial then $\chi(\Sigma^G)$ is even.

Suppose F(G) is nontrivial and cyclic. Then deg $\rho^{F(G)}$ is equal to either 0, <u>2 or 4</u>.

(1) deg
$$\rho^{F(G)} = 2$$
 Then $K = \ker \rho_{F(G)} \subset SO(2)$ with $F(K) = E$ (thus $K = E$).

Therefore, $G \cong G/K \subset O(4)$, and $\chi(\Sigma^G)$ is even.

(2) deg
$$\rho^{F(G)} = 4$$
 Then $K \subset SO(4)$ with $F(K) = E$ (thus $K = E$ or A_5).

Therefore, $G \cong G/K \subset O(2)$, i.e. $G \cong C_n$ or D_{2n} , or $A_5 \trianglelefteq G$ (later).

Since C_n and D_{2n} belong to \mathcal{G}_2^2 , $\chi(\Sigma^G) \equiv 0$ or $2 \mod 2$ (hence $\chi(\Sigma^G) \equiv 0 \mod 2$).

A proof of our main theorem

 Σ^6 : a Z-homology 6-sphere with effective orientation preserving G-action.

Proposition

If $\chi(\Sigma^G) \equiv 1 \mod 2$ then there is a normal subgroup H of G isomorphic to

 $A_5, A_6, A_7, PSL(2,7), PSU(4,2) \text{ or } A_5 \times A_5.$

Proof) This follows from key lemma: if $\chi(\Sigma^G) \equiv 1 \mod 2$ then F(G) is trivial.

A property on minimal normal subgroups

Each minimal normal subgroup of G is a characteristically simple group, i.e.

 $C_p \times \cdots \times C_p$ or $Q \times \cdots \times Q$ (Q : nonabelian)

Proposition (R. Brauer, H. F. Blichfeldt and J. H. Lindsey)

 $H = Q \times \cdots \times Q \subset SO(6)$ is isomorphic to either

 $A_5, A_6, A_7, PSL(2,7), PSU(4,2) \text{ or } A_5 \times A_5.$

A proof of our main theorem

 \varSigma : a Z-homology 6-sphere with **orientation preserving** effective G-action.

If $\chi(\Sigma^G) \equiv 1 \mod 2$ then $G \cong A_5$ and $|\Sigma^G| = 1$.

The main theorem follow from the following results.

Proposition

Theorem (T.)

If $\varSigma^G \neq \emptyset$ and G contains a normal subgroup of H isomorphic to

 $A_6, A_7, PSL(2,7), PSU(4,2) \text{ or } A_5 \times A_5$

then $\Sigma^H \cong S^k$, where $0 \le k \le 1$. Moreover, $\Sigma^G = (\Sigma^H)^{G/H} \cong S^l$, where $0 \le l \le 1$.

Lemma

If A_5 is normal in G and $\chi(\Sigma^G) \equiv 1 \mod 2$ then $G = A_5$ and $|\Sigma^G| = 1$.

Summary

G: a finite group S^n : the *n*-sphere

Summery

- 1. Let $n \leq 5$. $|(S^n)^G| \neq 1 \Rightarrow \chi((S^n)^G) \not\equiv 1 \mod 2$.
- 2. M. Morimoto's conjecture is true, i.e.

$$\exists G \cap S^6 \text{ with } |(S^6)^G| = 1 \iff G \cong A_5, A_5 \times C_2 \text{ or } S_5.$$

Moreover,

 $\exists G \curvearrowright S^6 \text{ with } \chi((S^6)^G) \equiv 1 \mod 2 \iff G \cong A_5, A_5 \times C_2 \text{ or } S_5.$

Thank you for your attention !