NON-SIMPLY CONNECTED RATIONAL HOMOTOPY THEORY AND DIFFERENTIAL GRADED CATEGORY

SYUNJI MORIYA

Extensions of rational homotopy theory of Quillen and Sullivan to non-simply connected spaces have been considered by some people. Katzarkov-Pantev-Toën [2] and Pridham [3] introduced a π_1 -equivariant commutative differential graded algebra (CDGA) consisting of twisted differential (or polynomial) forms with coefficients in a large semi-simple local system. This equivariant CDGA has much richer information than the usual de Rham algebra for non-simply connected (or non-nilpotent) spaces, and admits a notion of minimal model which has very similar nature to Sullivan's minimal model. In this talk, we will see how a differential graded category (DGC) of local systems can be used to extract information such as twisted cohomology and the action of π_1 on the rational homotopy groups from the equivariant CDGA and give explicit description of the equivariant minimal model for some examples of spaces. In the former part, we introduce the π_1 -equivariant CDGA and the DGC and see the relation among them and homotopy invariants. In the latter part, we give examples. Especially, we give the π_1 -equivariant CDGA corresponding to a non-nilpotent version of an example in another extension of the theory due to Gómez-Tato-Halperin-Tanré [1]. This talk is based on [4, 5].

References

- A. Gómez-Tato, S. Halperin and D. Tanré Rational homotopy theory for non-simply connected spaces, Trans. Amer. Math. Soc. 352 (2000) no. 4, 1493–1525.
- [2] L. Katzarkov, T. Pantev, and B. Toën Schematic homotopy types and non-abelian Hodge theory, Compos. Math. 144 (2008) no. 3, 582–632.
- [3] J. P. Pridham, Pro-algebraic homotopy types, Proc. Lond. Math. Soc. (3) 97 (2008) no. 2, 273–338.
- [4] S. Moriya, The de Rham homotopy theory and differential graded category, Math. Z. 271 (2012) no. 3-4, 961–1010.
- [5] S. Moriya, A note on non-simply connected rational homotopy models, preprint, arXiv:2304.00880, (2023).