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For positive integers m,n, d ≥ 1 with (m,n) ̸= (1, 1) and a field F
with its algebraic closure F, let Polyd,mn (F) denote the space of all m-tuples
(f1(z), · · · , fm(z)) ∈ F[z] of F-coefficients monic polynomials of the same
degree d such that polynomials f1(z), · · · , fm(z) have no common root in F
of multiplicity ≥ n. The space Polyd,mn (F) was first considered and studied
by Farb and Wolfson [5] for studying the homological densities of algebraic
cycles in a manifold ([6]). This space can be also regarded as a generalization
of spaces studied by Arnold, Vassiliev, Segal and others in different contexts
(e.g. [2], [3], [8], [9], [16], [17]), and it is usually called the space of non-
resultant systems of bounded multiplicity with coefficients F. A. Kozlowski
and the author [10] already studied about the homotopy type of these space
for the case F = C. In this talk we shall mainly consider the homotopy type
of the space Polyd,mn (F) for the case F = C or C ([10], [14], [15]). More-
over, as one of generalizations, we may explain about the space PolyD,Σ

n of
non-resultant systems determined by a toric variety ([11], [13]).
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