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§1. Introduction

Motivation Let X be an m-dimensional toric variety over C, and let Σ denote

the fan in Rm which is associated to X. We write such a toric variety as X = XΣ.

Let Σ(1) = {ρk : 1 ≤ k ≤ r} denote the set of all one dimensional cones in Σ,
and let nk ∈ Zm be the primitive generator of ρk for each 1 ≤ k ≤ r.

For each D = (d1, · · · , dr) ∈ Nr and a field F, one can define the certain space

PolyD,Σ
n (F) ⊂ F[z]r

satisfying the following condition:

(1.1) PolyD,Σ
n (F) = Hol∗D(S2, XΣ) if (F, n) = (C, 1) and

r∑
k=1

dknk = 0m

as long as the primitive generators {nk}rk=1 satisfiy certain conditions.

The space PolyD,Σ
n (F) is called the space of non-resultant systems of bounded

multiplicity n (with coefficients F) determined by a toric variety XΣ.
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We already investigated the homotopy type of the space PolyD,Σ
n (F) for the case

F = C in the following:

[KY12] A. Kozlowski and K. Yamaguchi, Spaces of non-resultant systems of
bounded multiplicity determined by a toric variety, Topology Appl., (2023)

We would like to investigate the homotopy type of the space PolyD,Σ
n (F) for the

case F = R. Note that

(1.2)

PolyD,Σ
1 (C) = Hol∗D(S2, XΣ) if n = 1 and

r∑
k=1

dknk = 0,

PolyD,Σ
n (R) = (PolyD,Σ

n (C))Z2 ,

where D = (d1, · · · , dr) ∈ Nr and the Z2-action on PolyD,Σ
n (C) is induced from

the complex conjugation on C.

If XΣ = CPm−1 and D = (d, · · · , d) ∈ Nm, then we write

(1.3) PolyD,Σ
n (F) = Polyd,mn (F).

In this talk, we would like to consider the space Polyd,mn (F) for F = C, or F = R.
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1.1 Homology (Homotopy) stability

Definition Let f : X → Y be a based continuous map.

(i) A map f is called a homology (resp. homotopy) equivalence through
dimension D if

(1.4) f∗ : Hk(X;Z) → Hk(Y ;Z) (resp. f∗ : πk(X) → πk(Y ))

is an isomorphism for any k ≤ D.

(ii) A map f is called a homology (resp. homotopy) equivalence up to
dimension D if

(1.5) f∗ : Hk(X;Z) → Hk(Y ;Z) (resp. f∗ : πk(X) → πk(Y ))

is an isomorphism for any k < D and an epimorphism for k = D.
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Definition (i) Let Map(X,Y ) denote the space consisting of

all continuous maps f : X → Y with the compact open topology, and let

(1.6) Map∗(X,Y ) ⊂ Map(X,Y )

be the subspace of all base point preserving maps f : (X, ∗) → (Y, ∗).

(ii) For a based homotopy class D ∈ π0(Map∗(X,Y )) = [X,Y ], we denote by

(1.7) Map∗D(X,Y ) ⊂ Map∗(X,Y )

the path component containing the homotopy class D.

(iii) When X and Y are complex manifolds, let

Hol∗D(X,Y ) =
{
f ∈ Map∗D(X,Y ) : f is holomorphic map

}
(1.8)

⊂ Map∗D(X,Y ).

Then we have the natural inclusion

(1.9) iD : Hol∗D(X,Y )
⊂−→ Map∗D(X,Y )
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Homology (Homotopy) stability

Definition Let F = {fd : d ∈ N} denote the family of based continuous maps

(1.10) X1
f1−→ X2

f2−→ X3
f3−→ X4

f4−→ X5
f5−→ X6

f6−→ X6
f7−→ · · ·

Then we say that the family F satisfies the homology stability (resp. homotopy
stability) if each map fd is a homology equivalence (resp. homotopy equivalence)
through (resp. up to) dimension md such that lim

d→∞
md = ∞.

In this situation, let X∞ denote the colimit (or homotopy colimit) given by

(1.11) X∞ = colimdXd (taken from the family of maps F = {fd}∞d=1)

If the above homology stability (or homotopy stability) holds, we see that the
natural map

(1.12) ιd : Xd → X∞

is a homology equivalence (resp. homotopy equivalence) though (up to)
dimension md.
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In this meaning we also say that the map

ιd : Xd → X∞ (or space Xd)

satisfies the homology stability (resp. the homotopy stability).

Moreover, if each space Xd is a finite dimensional space, we can say that the
space Xd is a finite dimensional homology (or homotopy) model of the space X∞.
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Theorem 1.1 (G. Segal, (1979)) If m ≥ 2, the inclusion map

id : Hol∗d(S
2,CPm−1)

⊂−→ Map∗d(S
2,CPm−1) = Ω2

dCPm−1 ≃ Ω2S2m−1

is a homotopy equivalence up to dimension (2m− 3)d.

Remark We can identify Hol∗d(S
2,CPm−1) with the space Hol∗d defined by

Hol∗d =

 Each fk(z) ∈ C[z] is a monic polynomial
(f1(z), · · · , fm(z)) of degree d, and all polynomials

f1(z), · · · , fm(z) have no common root

 .

Then the inclusion map id : Hol∗d
⊂−→ Ω2

dCPm−1 can be given by

id(f1(z), · · · , fm(z))(α) =

{
[f1(α) : · · · : fm(α)] if α ∈ C
[1 : 1 : · · · : 1] if α = ∞

(1.13)

for (f1(z), · · · , fm(z)) ∈ Hol∗d and α ∈ C ∪∞ = S2 = CP1.
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Proof of Theorem 1.1 Let Hol∗d = Hol∗d(S
2,CPn−1).

There is a family of stabilization maps

(1.14) · · · → Hol∗d
sd−→ Hol∗d+1

sd+1−→ Hol∗d+2

sd+2−→ Hol∗d+3

sd+3−→ Hol∗d+4

sd+4−→ · · ·

such that each sd is a homology equivalence up to dimension (2n− 3)d.

Moreover, there is a homotopy equivalence (this map is called a scanning map)

(1.15) S : Hol∗∞ = lim
d→∞

Hol∗d
≃−→ Ω2Wn(CP∞),

where Wn(X) denotes the n-th fat wedge of a base space X defined by

(1.16) Wn(X) = {(x1, · · · , xn) ∈ Xn : xi = ∗ for some i}.

Furthermore, one can show that there is a fibration sequence

CPn−1 →Wn(CP∞) → (CP∞)n−1 (∴ Ω2
0CPn−1 ≃ Ω2Wn(CP∞))

and that lim
d→∞

id = S (up to homotopy equivalence).

K. Yamaguchi (UEC) Spaces of non-resultant systems 10 / 42



Thus, we see that the inclusion map

id : Hol∗d → Ω2
dCPn−1 ≃ Ω2S2n−1

is a homology equivalence up to dimension (2n− 3)d.

If n ≥ 3, Hol∗d is simply connected and we see that id is a homotopy equivalence
up to dimension (2n− 3)d.

If n = 2, we can show that the space Hol∗d is simple up to dimension d and the
assertion follows.

Remark (i) The idea of the above proof can be used for our case Polyd,mn (F)
when F = C or R.
(ii) A space X is called simple up to dimension d if π1(X) acts on the homotopy

group πk(X) trivially for any k < d.
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1.2 Spaces of non-resultant systems of bounded multiplicity

Definition (B.Farb-J.Wofson, (2016))

For m,n, d ∈ N with (m,n) ̸= (1, 1) and a field F with algebraic closure F,
let Polyd,mn (F) denote the space defined by

Polyd,mn (F) =


Each fk(z) is a monic
polynomial of degree d,

(f1(z), · · · , fm(z)) ∈ F[z]m f1(z), · · · , fm(z) have
no common root in F with
multiplicity ≥ n

 .

Thus, there is an incleasing filtration:

Polyd,m1 (F) ⊂ Polyd,m2 (F) ⊂ · · · ⊂ Polyd,md (F) ⊂ Polyd,md+1(F) = Pd(F)m,

where Pd(F) = {zd +
∑d

k=1 akz
d−k; ak ∈ F} ∼= Fd.

The space Polyd,md+1(F) is called the space of non-resultant systems of bounded

multiplicity with coefficients F.
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Example If (n,F) = (1,C), Polyd,mn (F) = Hol∗d(S
2,CPm−1).

Example Let F = R, (d,m) = (8, 2), and let f(z) and g(z) denote the monic

polynomials of degree 8 given by (f(z), g(z)) = ((z2 + 1)3z2, (z2 + 1)4).

(i) α = (f(z), g(z)) /∈ Poly8,23 (R) if n = 3.

(ii) α = (f(z), g(z)) ∈ Poly8,24 (R) if n = 4.

Proof The assertions (i) and (ii) follows from the fact that {z = ±
√
−1} is a

common root of {f(z), g(z)} of multiplicity 3.

Remark B. Farb and J. Wofson considered the space Polyd,mn (F) for
investigating the homological density of algebraic cycles in a manifold.
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Definition (i) For a connected space X, let F (X, d) denote

the ordered configuration space of distinct d points of X defined by

(1.17) F (X, d) = {(x1, · · · , xd) ∈ Xd : xi ̸= xk if i ̸= k}.

(ii) The symmetric group Sd of d letters acts on F (X, d) by the permutation of
coordinates freely. We denote by Cd(X) the orbit space

(1.18) Cd(X) = F (X, d)/Sd.

The space Cd(X) is called the unordered configuration space of distinct d
points of X.

(iii) Let Dd(X) denotes the equvariant half smash product given by

(1.19) Dd(X) = F (C, d)+ ∧Sd
X∧d,

where

{
F (X, d)+ = F (X, d) ∪ {∗} (disjoint union),

X∧d = X ∧X ∧ · · · ∧X (d-times).
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Theorem 1.2 (I.James, V.Snaith, F.Cohen-M.Mahowald-R.Milgram)

There are stable homotopy equivalences

(1.20)



ΩSN+1 ≃s

∞∨
k=1

SkN = SN ∨ S2N ∨ S3N ∨ · · ·

Ω2S2N+1 ≃s

∞∨
k=1

Σ2(N−1)kDk,

where Σk denotes the k-fold reduced suspension, and let

Dk = Dk(S
1) = F (C, k)+ ∧Sk

(S1)∧k.

K. Yamaguchi (UEC) Spaces of non-resultant systems 15 / 42



Stable version of Theorem 1.1

Theorem 1.3 (F.Cohen-R.Cohen-B.Mann-R.Milgram, (1991))

If m ≥ 2, there is a stable homotopy equivalence

(1.21) Hol∗d(S
2,CPm−1) ≃s

d∨
k=1

Σ2(m−2)kDk.

Moreover, the following diagram is commutative up to stable homotopy
equivalence

(1.22)

Hol∗d(S
2,CPm−1)

id−−−−→
⊂

Ω2
dCPm−1 ≃ Ω2S2m−1y≃s

y≃s

d∨
k=1

Σ2(m−2)kDk −−−−→
⊂

∞∨
k=1

Σ2(m−2)kDk

Here, the map id is a homotopy equivalence up to dimension (2m− 3)d.
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Definition For each polynomial f(z) ∈ C[z], define the n-tuple

(1.23) Fn(f) = Fn(f)(z) ∈ C[z]n

of polynomials by

Fn(f)(z) =
(
f(z), f(z) + f ′(z), f(z) + f ′′(z), · · · , f(z) + f (n−1)(z)

)
∈ C[z]n.

If f(z) ∈ C[z] is a monic polynomial of degree d, Fn(f) is the n-tuples of monic
polynomials of the same degree d.

Remark Let f(z) ∈ C[z] of deg f ≥ n, and let α ∈ C. Then

f(z) is can be divided by (z − α)n

⇔ f(α) = f ′(α) = f ′′(α) = · · · = f (n−1)(α) = 0

⇔ Fn(f)(α) = (0, 0, · · · , 0) = 0n ∈ Cn
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Definition Define the natural map

(1.24) id,mn,C : Polyd,mn (C) → Ω2
dCPmn−1 ≃ Ω2S2mn−1 by

id,mn,C (f1, · · · , fm)(α) =

{
[Fn(f1)(α) : Fn(f2)(α) : · · · : fn(fm)(α)] if α ∈ C
[1 : 1 : · · · : 1] if α = ∞

for (f1, · · · , fm) ∈ Polyd,mn (C), where we identify S2 = C ∪∞.
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1.3 The space Polyd,mn (C)

Theorem 1.4; G. Segal (The case mn = 2 ⇔ (m,n) = (1, 2) or (2, 1))

(i) (G. Segal, (1976); (m,n) = (1, 2))

The natural map

(1.25) id,12,C : Cd(C) ∼= Polyd,12 (C) → Ω2
dS

2

is a homology equivalence up to dimension ⌊d/2⌋, where ⌊x⌋ denotes the
integer part of a real number x.

(ii) (G. Segal, (1979); (m,n) = (2, 1)) (The special case of Theorem 1.1)

The natural map

(1.26) id,21,C : Polyd,12 (C) = Hol∗d(S
2,CP1) → Ω2

dCP1 ≃ Ω2S3

is a homotopy equivalence up to dimension d.
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Remark (i) The natural map id,12,C : Cd(C) ∼= Polyd,12 (C) → Ω2
dS

2 can be

identified with the map id,12,C(f) : (C ∪∞,∞) → (C ∪∞, 1) given by

id,12,C(f)(α) =


f(α) + f ′(α)

f(α)
= 1 +

d∑
k=1

1

α− ak
if α /∈ {a1, · · · , ad}

∞ if α = ak

for α ∈ C ∪∞ = S2 and f = f(z) =
∏d

k=1(z − ak) ∈ Polyd,12 (C).

Proof The above identification follows from the following homeomorphism:

CP1 −−−−→∼=
S2 = C ∪∞

id,12,C(f)(α) = [f(α) : f(α) + f ′(α)] −−−−→ f(α)+f ′(α)
f(α)

(ii) Note that there is a homotopy equivalence Cd(C) ≃ K(βd, 1), where βd

denotes the Artin’s braid group of d-strings.
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Theorem 1.5 (V. Vassiliev, (1992))

There is a stable homotopy equivalence

(1.27) Cd(C) ∼= Polyd,12 (C) ≃s Hol∗⌊d/2⌋(S
2,CP1),

where ⌊x⌋ denotes the integer part of a real number x.

Theorem 1.6 (Guest-Kozlowski-Yamaguchi, (1998))

If n ≥ 3, there is a homotopy equivalence

(1.28) Polyd,1n (C) = SPd
n(C) ≃ Hol∗⌊d/n⌋(S

2,CPn−1).

Here, let SPd
n(C) denote the space of all monic polynomials f(z) ∈ C[z] of

degree d without roots of multiplicity ≥ n.

Remark There is a homeomorphism SPd
2(C) ∼= Cd(C).
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Theorem 1.7 (Kozlowski-Yamaguchi (2017); The case mn ≥ 3)

(i) If mn ≥ 3, the natural map

(1.29) id,mn,C : Polyd,mn (C) → Ω2
dCPmn−1 ≃ Ω2S2mn−1

is a homotopy equivalence through dimension DC(d;m,n), where

(1.30) DC(d;m,n) = (2mn− 3)(⌊d/n⌋+ 1)− 1.

(ii) If mn ≥ 3, there is a homotopy equivalence

(1.31) Polyd,mn (C) ≃ Hol∗⌊ d
n ⌋(S

2,CPmn−1) = Poly
⌊ d
n ⌋,mn

1 (C)

(iii) If mn ≥ 3, there is a stable homotopy equivalence

(1.32) Polyd,mn (C) ≃s

⌊ d
n ⌋∨

k=1

Σ2(mn−2)kDk, where Dk = Dk(S
1).
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§2. The space Polyd,mn (R)

From now on, we shall consider the homotopy type of the space Polyd,mn (F) for
the case F = R.

References
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2.1 The Z2-actions induced from the complex conjugation

Let Z2 = {±1} denote the multiplicative cyclic group of order 2.

Then the complex conjugation on C naturally extends to the Z2-actions on

S2 = C ∪∞, CPN , Ω2
dCPN , Polyd,mn (C), etc.

For example, the space Ω2
dCPN has the natural Z2-action given by f(α) = f(α).

Definition Let G be a group and let X be a G-space.

For each subgroup H ⊂ G, let XH denote the H-fixed point set of X given by

(2.1) XH = {x ∈ X : h · x = x for any h ∈ H}.

Example

(S2)Z2 = S1 = R ∪∞, (CPN )Z2 = RPN , (Polyd,mn (C))Z2 = Polyd,mn (R).
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Lemma 2.1 There is a homotopy equivalence

(2.2) (Ω2
dCPN )Z2 ≃ Ω2S2N+1 × ΩSN .

Definition Let G be group, and X and Y be G-spaces.

(i) Let f : X → Y be a based G-map. Then the map f is called a G-equivariant
homotopy (resp. homology) equivalence through dimension D if

(2.3) fH = f |XH : XH → Y H

is a homotopy (resp. homology) equivalence through dimension D for any
subgroup H ⊂ G.

(ii) Similarly, the map f is a G-equivariant homotopy (resp. homology)
equivalence up to dimension D if

(2.4) fH : XH → Y H

is a homotopy (resp. homology) equivalence up to dimension D for any
subgroup H ⊂ G.
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2.2 The case mn = 2 for Polyd,mn (R)

Note that

(2.5) mn = 2 ⇔ (m,n) = (2, 1) or (m,n) = (1, 2).

First, consider the case (m,n) = (2, 1).

Definition (the case (m,n) = (2, 1))

Let S2 = C ∪∞ and let (Ω2
dCP1)Z2

j ⊂ (Ω2
dCP1)Z2 denote the subspace given by

(2.6) (Ω2
dCP1)Z2

j = {f ∈ (Ω2
dCP1)Z2 : deg(f |S1) = j}.
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Theorem 2.2 (G. Segal (1979); the case (m,n) = (2, 1))

(i) The space Polyd,21 (R) consists of (d+ 1) connected components

(2.7) {Polyd,21,j (R) : j = d− 2k, 0 ≤ k ≤ d}.

(ii) If j = d− 2k and 0 ≤ k ≤ d, the natural inclusion map

(2.8) id,21,j : Polyd,21,j (R)
⊂−→ (Ω2

dCP1)Z2
j ≃ Ω2

dCP1 ≃ Ω2S3

is a homotopy equivalence up to dimension 1
2 (d− |j|).

Here, the map id,21,j is defined by

(2.9) id,21,j (f(z), g(z))(α) =

{
[f(α) : g(α)] if α ∈ C
[1 : 1] if α = ∞

for (f(z), g(z)) ∈ Polyd,21,j (R) and α ∈ S2 = C ∪∞.
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Definition (the case (m,n) = (1, 2)) Let f(z) ∈ Polyd,12 (R).

If α ∈ C \ R is a root of f(z), then α is also a root of f(z). Thus, we can write

(2.10) f(z) =
( d−2j∏

i=1

(z − xi)
)( j∏

k=1

(z − αk)(z − αk)
)

for some ({xi}d−2j
i=1 , {αk}jk=1) ∈ Cd−2j(R)× Cj(H+), where

H+ = {α ∈ C : Im α > 0}.

(i) Define the subspace Polyd,12,j (R) ⊂ Polyd,12 (R) by

Polyd,12,j (R) =


f(z) is represented as the form of

f(z) ∈ Polyd,12 (R) (2.10) for some ({xi}d−2j
i=1 , {αk}jk=1)

in Cd−2j(R)× Cj(H+)


∼= Cd−2j(R)× Cj(H+)

∼= Rd−2j × Cj(C) ≃ Cj(C)
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(ii) Define the natural map

(2.11) id,12,j : Polyd,12,j (R) → Ω2
jCP1 ≃ Ω2

jS
2 ≃ Ω2S3 by

(2.12) id,12,j (f(z))(α) =

{
[f(α) : f(α) + f ′(α)] if α ∈ C
[1 : 1] if α = ∞

for f(z) ∈ Polyd,12,j (R) and α ∈ S2 = C ∪∞.
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Proposition I (the case (m,n) = (1, 2))

(i) The space Polyd,12 (R) consists of (⌊d/2⌋+ 1) connected components

(2.13) {Polyd,12,j (R) : 0 ≤ j ≤ ⌊d/2⌋}.

(ii) There is a natural map

(2.14) id,12,j : Polyd,12,j (R) → Ω2
jCP1 ≃ Ω2

jS
2 ≃ Ω2S3

which is a homology equivalence up to dimension ⌊j/2⌋ if 3 ≤ j ≤ ⌊d/2⌋,
and it is a homotopy equivalence through dimension 1 if j = 2.

(iii) If 0 ≤ j ≤ ⌊d/2⌋, there is a homotopy equivalence

(2.15) Polyd,12,j (R) ≃ K(βj , 1),

where βj denotes the Artin braid group on j-strings.

In particular, the space Polyd,12,j (R) is contractible if j ∈ {0, 1} and it is

homotopy equivalent to the space S1 if j = 2.
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2.3 The case mn ≥ 3 for Polyd,mn (R)

Definition Let mn ≥ 3 and consider the restriction of the natural map

id,mn,C |Poly
d,m
n (R) : Polyd,mn (R) → Ω2

dCPmn−1 given by

id,mn,C (f1, · · · , fm)(α) =

{
[Fn(f1)(α) : Fn(f2)(α) : · · · : fn(fm)(α)] if α ∈ C
[1 : 1 : · · · : 1] if α = ∞

for (f1, · · · , fm) ∈ Polyd,mn (R), where we identify S2 = C ∪∞.

Since id,mn,C (Poly
d,m
n (R)) ⊂ (Ω2

dCPmn−1)Z2 , the restriction map

id,mn,R = id,mn,C |Poly
d,m
n (R)

gives the natural map

(2.16) id,mn,R : Polyd,mn (R) → (Ω2
dCPmn−1)Z2 ≃ Ω2S2mn−1 × ΩSmn−1
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Definition Let mn ≥ 3, and K = R or C.

Let

(2.17) sd,mn,K : Polyd,mn (K) → Polyd+1,m
n (K)

denote the stabilization map given by adding roots from the infinity.

One can define the map sd,mn,K satisfying the following condition:

(2.18) sd,mn,R = (sd,mn,C )
Z2 = sd,mn,C |Poly

d,m
n (R).

Thus, we have the following two stabilization maps:{
sd,mn,R : Polyd,mn (R) → Polyd+1,m

n (R)
sd,mn,C : Polyd,mn (C) → Polyd+1,m

n (C)
(2.19)

such that

sd,mn,R = (sd,mn,C )
Z2 = sd,mn,C |Poly

d,m
n (R).
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The main results

Theorem I (The case mn ≥ 3) (i) The natural map

(2.20) id,mn,R : Polyd,mn (R) → (Ω2
dCPmn−1)Z2 ≃ Ω2S2mn−1 × ΩSmn−1

is a homotopy equivalence through dimension D(d;m,n) if mn ≥ 4, and

it is a homology equivalence through dimension D(d;m,n) = ⌊d/n⌋ if mn = 3.

Here, the positive integer D(d;m,n) is given by

(2.21) D(d;m,n) = (mn− 2)(⌊d/n⌋+ 1)− 1.

(ii) If mn ≥ 3, there is a stable homotopy equivalence

Polyd,mn (R) ≃s

( ⌊d/n⌋∨
i=1

S(mn−2)i
)
∨
( ∨

i≥0,j≥1,i+2j≤⌊d/n⌋

Σ(mn−2)(i+2j)Dj

)
,

where Dj denotes the space Dj = Dj(S
1) = F (C, j)+ ∧Sj

(S1)∧j .
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By (ii) of Theorem I, we also easily obtain the following result:

Example I If mn ≥ 3 and k ≥ 2, there is a stable homotopy equivalence

Polykn,mn (R) ≃s Poly
(k−1)n,m
n (R) ∨

( ⌊ k
2 ⌋∨

j=0

Σk(mn−2)Dj

)
,

where we set (D0 := S0).

K. Yamaguchi (UEC) Spaces of non-resultant systems 34 / 42



Definition

(i) The space X is called simple up to dimension D if the group π1(X) acts
trivially on the group πi(X) for any i < D.

(ii) In particular, the space X is called simple if the group π1(X) acts trivially on
the group πi(X) for any i ≥ 1.

Theorem II (The case (m,n) = (3, 1)) Let (m,n) = (3, 1).

Then the space Polyd,31 (R) is simple if d ≡ 1 (mod 2) and it is simple up to
dimension d if d ≡ 0 (mod 2).

Theorem III (The case (m,n) = (3, 1)) The natural map

(2.22) id,31,R : Polyd,31 (R) → (Ω2
dCP2)Z2 ≃ Ω2S5 × ΩS2 ≃ Ω2S5 × ΩS3 × S1

is a homotopy equivalence through dimension d if d ≡ 1 (mod 2), and
it is a homotopy equivalence up to dimension d if d ≡ 0 (mod 2).
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Remark mn = 3 ⇔ (m,n) = (3, 1) or (1, 3)

D(d;m,n) =

{
d if (m,n) = (3, 1)

⌊d/3⌋ if (m,n) = (1, 3)

By using (i) of Theorem I of the case (m,n) = (1, 3), we have:

Corollary I∗ (The case (m,n) = (1, 3)) If (m,n) = (1, 3), the natural map

id,13,R : Polyd,13 (R) → (Ω2
dCP2)Z2 ≃ Ω2S5 × ΩS2 ≃ Ω2S5 × ΩS3 × S1

is a homology equivalence through dimension ⌊d/3⌋.
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By using (ii) of Theorem I, we easily obtain the following:

Corollary I∗∗ If mn ≥ 3, there is a stable homotopy equivalence

(2.23) Polyd,mn (R) ≃s Poly
⌊d/n⌋,mn
1 (R).

Remark Note that there is a homotopy equivalence

(2.24) Polyd,mn (C) ≃ Poly
⌊d/n⌋,mn
1 (C) if mn ≥ 3.

Example I∗∗ (i) If mn = 3, there is a stable homotopy equivalence

(2.25) Polyd,mn (R) ≃s Poly
d1,m
n (R) if and only if ⌊d/n⌋ = ⌊d1/n⌋.

(ii) If mn ≥ 4, there is a homotopy equivalence

(2.26) Polyd,mn (R) ≃ Polyd1,m
n (R) if and only if ⌊d/n⌋ = ⌊d1/n⌋.
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Corollary IV

(i) If mn ≥ 4, the natural map

id,mn,C : Polyd,mn (C) → Ω2
dCPmn−1 ≃ Ω2S2mn−1

is a Z2-equivariant homotopy equivalence through dimension D(d;m,n).

(ii) Let (m,n) = (3, 1). Then the natural map

id,31,C : Polyd,31 (C) → Ω2
dCP2 ≃ Ω2S5

is a Z2-equivariant homotopy equivalence through dimension d if d ≡ 1
(mod 2), and it is a Z2-equivariant homotopy equivalence up to dimension d
if d ≡ 0 (mod 2).

(iii) If (m,n) = (1, 3), the natural map

id,mn,C : Polyd,13 (C) → Ω2
dCP2 ≃ Ω2S5

is a Z2-equivariant homology equivalence through dimension ⌊d/3⌋.
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The key points of the proof of Theorem I are the following two points:

1 Scanning maps (defined by G. Segal).

2 Vassiliev spectral sequence.

For example, by using the Vassiliev spectral sequence one can prove the following
Theorem V.

Theorem V (The homology stability)

Let mn ≥ 3. Then the stabilization map

sd,mn,R : Polyd,mn (R) → Polyd+1,m
n (R)

is a homology equivalence if ⌊d/n⌋ = ⌊(d+ 1)/n⌋, and it is a homology
equivalence through dimension D(d;m,n) otherwise, where

D(d;m,n) = (mn− 2)(⌊d/n⌋+ 1)− 1.
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Sketch proof of Theorem V Consider the Vassiliev spectral sequence{
Et;d

k,s, dt : Et;d
k,s → Et;d

k+t,s+t−1

}
⇒ H̃s−k(Poly

d,m
n (R);Z).(2.27)

One can prove that there is a natural isomorphism

(2.28) E1;d
k,s

∼=
( k⊕

j=1

H̃s−(mn−1)k(Σ
(mn−2)jDj ;Z)

)
⊕ H̃s−(mn−1)k(S

0;Z)

if 1 ≤ k ≤ ⌊d/n⌋.

The stabilization map sd,mn,R : Polyd,mn (R) → Polyd+1,m
n (R) naturally induces the

homomorphism of spectral sequences

{θtk,s : E
1;d
k,s → E1;d+1

k,s }.

By using the comparison theorem of spectral sequences, we can obtain the

assertion.
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Example ((m,n) = (4, 3)) For example, for (m,n) = (4, 3), we have:

Poly3,43 (R) ≃s S
10,

Poly6,43 (R) ≃s Poly
3,4
3 (R) ∨ S20 ∨ Σ20D1,

Poly9,43 (R) ≃s Poly
6,4
3 (R) ∨ S30 ∨ Σ30D1,

Poly12,43 (R) ≃s Poly
9,4
3 (R) ∨ S40 ∨ Σ40D1 ∨ Σ40D2,

Poly15,43 (R) ≃s Poly
12,4
3 (R) ∨ S50 ∨ Σ50D1 ∨ Σ50D2,

Poly18,43 (R) ≃s Poly
15,4
3 (R) ∨ S60 ∨ Σ60D1 ∨ Σ60D2 ∨ Σ60D3,

Poly21,43 (R) ≃s Poly
18,4
3 (R) ∨ S70 ∨ Σ70D1 ∨ Σ70D2 ∨ Σ70D3,

Poly24,43 (R) ≃s Poly
21,4
3 (R) ∨ S80 ∨ Σ80D1 ∨ Σ80D2 ∨ Σ80D3 ∨ Σ80D4,

Poly27,43 (R) ≃s Poly
24,4
3 (R) ∨ S90 ∨ Σ90D1 ∨ Σ90D2 ∨ Σ90D3 ∨ Σ90D4,

Poly30,43 (R) ≃s Poly
27,4
3 (R) ∨ S100 ∨ (

5∨
k=1

Σ100Dk),

Poly33,43 (R) ≃s Poly
30,4
3 (R) ∨ S110 ∨ (

5∨
k=1

Σ110Dk), · · · · · · etc
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For example, by Corollary V∗, the stabilization map

sd,43,R : Polyd,43 (R) → Polyd+1,4
3 (R)

is a homotopy equivalence if ⌊d
3⌋ = ⌊d+1

3 ⌋ and it is is a homotopy equivalence

through dimension D(d; 4, 3) = 10(⌊d
3⌋+ 1)− 1 if ⌊d

3⌋ < ⌊d+1
3 ⌋.

For example, since 6 = ⌊18/3⌋ = ⌊19/3⌋ = ⌊20/3⌋ < ⌊21/3⌋ = 7,

Poly18,43 (R)
s18,43,R−−−−→
≃

Poly19,43 (R)
s19,43,R−−−−→
≃

Poly20,43 (R)

≃s

x s20,43,R

y
Poly15,43 (R) ∨X0 Poly21,43 (R)

≃s

y
Poly18,43 (R) ∨ Y0

where we write

{
X0 = S60 ∨ Σ60D1 ∨ Σ60D2 ∨ Σ60D3,

Y0 = S70 ∨ Σ70D1 ∨ Σ70D2 ∨ Σ70D3.
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