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Diffeological space

m Diffeological spaces are one of the generalizations of smooth
manifolds.
m manifolds with corners
m orbifolds
m infinite dimensional manifolds
m The category of diffeological spaces is complete, cocomplete,
and cartesian closed. [BH]

Taho Masaki The University of Tokyo, D

Tangent spaces of diffeological spaces and their variants



Diffeological space

X: aset
Param,(X) :={p: U, = X | U, C R" is an open set, n € N }
Param(X) := |,y Param,(X)

diffeology

D C Param(X) is called a diffeology on X if
Covering Every constant parametrization U — X is in D.
Locality For all (p: U, — X) € Param(X), if there is an open
covering { Uy} of U, such that p|, € D for all o,
then p itself is in D.
Smooth compatibility For all (p: U, — X) € D, every open set V
in R™and f: V — U, that is smooth as a map
between Euclidean spaces, pof: V — X is also in D.



(X,Dx), (Y,Dy): diffeological spaces
f: X = Y is said to be smooth :<=> For all p € Dx, fop € Dy

Examples

m M: a C*-manifold
Dy = {p: Up = M| pisa C>*-map}
: the standard diffeology of M
f: (M,Dy) — (N,Dy) is smooth <= f is a C>°-map.

m X: aset
Dpmin :={p: U, = X | p is locally constant}
: the minimum diffeology of X
Dmax := Param(X): the maximum diffeology of X
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X: aset, F C Param(X)
(F): the smallest diffeology of X which contains F

Quotient diffeology/subdiffeology

(X.Dx): a diffeological space, ~: an equivalent relation on X
m: X — X/~: the quotient map
({moq| g€ Dx}): the quotient diffeology of X/~

(X,Dx): a diffeological space, A C X(i: A X).
Dp = {p € Param(A) | i o p € Dx}: the subdiffeology of A.
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Examples of diffeological spaces

® tguor = (R1[[R2)/(01~02)

m For n € N, we equip the quotient diffeology with R"/O(n)
Then R"”/0O(n) is not diffeomorphic to R™/O(m) if m # n.

m For a € R\Q, T, :=R/(Z + aZ) is called an irrational torus.
T, is diffeomorphic to Tg

a+ bs

c+dp

m [0,00) C R with subdiffeology is NOT diffeomorphic to
R"/O(n) for any n € N.

m top = {(x,y) € R? | xy = 0} C R? with subdiffeology is
NOT diffeomorphic to 140t

m ({p: R —=R?|pisa C®-map}): the wire diffeology on R2.

<= da, b,c,d € Z such that a =

Taho Masaki The University of Tokyo, D1

Tangent spaces of diffeological spaces and their variants



D-topology

(X,Dx): a diffeological space
O:={UC X |VpeDx,p (V) is open}: D-topology

example

manifolds M: a manifold
The D-topology of M as a standard diffeological
space is the topology of M as a manifold.

quotient X: a diffeological space,
~: an equivalence relation on X
The D-topology of X/~ is the quotient topology of
the D-topology of X.



Internal tangent spaces [CW]

Category | Objects Morphisms
Eucl, based Euclidean open sets | based C°°-maps
Dflg, based diffeological spaces | based smooth maps

ir: Eucl, — Dflg,: the inclusion functor
T': Eucl, — Vect: the standard tangent functor

internal tangent functor

T := Lan;, T': Dflg, — Vect: the internal tangent functor
For a diffeological space X and a point x € X, we write

TX(X) = T(va) = @ T(;(UP) /R,

pP: (U,,,O)—)(X,x)
(R: <V_ v e THUp), w e T§(Uy), >>

T'(f)v = w, where p=gqof.




X: a diffeological space, x € X

G(X,x)={f: Bf >R | x € Bf C X is D-open, f is smooth}/~,
where (f: Bf = R)~(g: By = R)

<= x € 3B C (BfN Bg): D-open sets.t. flg=glg

G(X,x) is a diffeological R-algebra with standard operations.

external tangent space [CW]

X: a diffeological space, x € X

A D is smooth and linear.
Tx(X) = {D' G(X,x) >R ‘ D satisfies the Leibniz rule. }

. the external tangent space
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Examples

Spaces Internal External
n-dim. manifold R" R"
1 quot R? R2
+sup(C R?) R? R?
[0,00)(C R) 0 R
R"/O(n) 0 R
To=R/(Z+aZ) | R 0
(X, Dmin) 0 0
(X, Drnax) 0 0

2 e uncountable-dim. | R?

R?/{(x,0) € R?}

uncountable-dim.

uncountable-dim.
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Question Are Ty(X) and Ran;, T'(X, x) isomorphic?
Answer  m They are NOT isomorphic in general. However
in many case, they are isomorphic.
m By slightly modifying the definitions, we get an
isomorphism.
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X: a diffeological space, x € X
Te(X) = {D: G(X,x) =R

. the external tangent space

D is smooth and linear.
D satisfies the Leibniz rule.

A D is linear.
R _ .
< (X) = {D' 6(X,x) > R ’ D satisfies the Leibniz rule. }

. the right tangent space

D is smooth and linear.
D satisfies the Leibniz rule.

T (X) = {D: C®(X,R) = R
: the global external tangent space

D is linear.
D satisfies the Leibniz rule.

TR(X) = {D: C®(X,R) = R
: the global right tangent space
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D is linear.
D satisfies the Leibniz rule.
: the global right tangent space

TR(X) = {D: C®(X,R) = R

Proposition[T, 2024]

X: a diffeological space, x € X

Ran;, T'(X,x) = TR(X)

|




Modification

Category | Objects Morphisms
Eucl® based Euclidean open sets | germs of C°°-maps
Dﬂgi"c based diffeological spaces | germs of smooth maps

iloc: Eucl*® — Dfigl¢: the inclusion functor
loc
TEuel . Eucl’c — Vect: the standard tangent functor

Main Theorem[T, 2024]

X: a diffeological space, x € X

Ranee TP (X, x) 2 TR(X)



sketch of proof

loc . .
Ranc TEul® (X, x) is written as an element of

Eucl/ec
{Vg}geObJ((X x)iloc) S HgEObJ((X x)ilec) Tg( ) V which satisfies

the following condition:
Vg, h € Obj((X,x) | i) Vs: g — hin (X, x) | i,
TEuCll*oc(s)vg = v

So we define thel map
B: Ranjee TEUE (X x) = TR(X): {ve}r = [f = velidg]].

(|f fe G(X,X), then vf € Tf(X)R = R.)

The inverse is defined by the universality of the right Kan
extension.
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Well-definedness of 3

vig([idr]) = f(x)vg([idr]) + g(x)ve([idr] (Leibniz rule)

We define (f,g): X — R2y s (f(y),g(y)).
Then we have
T(pr1)(Vir.g)) = Ve, T(Pr2)(V(r,g)) = Vg, and T(X)V(g) = Vig

R R
X (f.g) R2 X (f.g) R2

DN

R



vig([idr]) = f(x)vg([idr]) + g(x)vr([idr]) (Leibniz rule)

[x: B2 = R]) = vis,g)([pr1: B> = R % [pry: B> — R])
(), 8())Vr.g) ([pr: B — R])

+ pra((F(x), 6())Vir. g ([prs - B = R])
= £(x)vg([idg]) + & (x)ve([idz])

(T(pre)(Vr.g)) = ve, T(Pra)(Vir.g)) = Vg, and T(X)v(r0) = vig)

Thus [f — v¢[idg]] satisfies the Leibniz rule.
Similarly, we can prove that [f — v¢[idg]] is linear.
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Smoothly regular

Theorem([T, 2024]

X: a diffeological space, x € X
If X is smoothly regular at x, then

R (X) 2 TR (X)

Also,

Here, X is smoothly regular at x
<= x € YU C X: D-open,

3f: X — R: smooth map s.t. f(y) = {



I-topology

X: a diffeological space

OI::{ch' VYu e U,3V C R: open and }

3f: X — R: smooth maps.t. ue f}(V)cU

. I-topology (the smallest topology such that all elements of
C>(X,R) are continuous)

Proposition

X: a diffeological space X is smoothly regular at x
<= x € YU C X: D-open, x € 3V C U: I-open set of X
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m Manifolds with the standard diffeology are smoothly regular.

m tguot, [0,00), To =R/(Z+ aZ), (X, Dmin), (X, Dmax), and
wa-re are all smoothly regular.
m R/(0,1) is NOT smoothly regular.
Note that {[1/2]} C X is a D-open set (the inverse image
(0,1) C R is an open set). However, every smooth map
f: X — R satisfies f([1/2]) = f([1]) (by the continuity of f).
Therefore, {[1/2]} C X is not an [-open set of X.
m The orbit space A of the action

R~ R? t-(x,y) = (x + ty,y) is NOT smoothly regular.

m The orbit space B of the action
R~ R2t-(x,y) = (2tx,27ty) is NOT smoothly regular.
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X — +quot/{(x, 0) | x # 0} is NOT smoothly regular.
Moreover, T[(1 ol (X) 2 'ﬁ‘fao)](X)_

proof

Note that {[(1 0)]} € X is a D-open set.

Therefore, T[(1 0)] (X) = —/A'["(?LO)]({[(L 0)]}) =0.

On the other hands,

C®(X,R)

= {f: tquot = R | Vx € R\{0}, f(x,0) = (1,0)}
={f: Tquot > R|Vx € R, f(x,0) = f(1,0)}

= C*(R,R)

A

Therefore, TELO)](X) =~ TR(R)

12

R.
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