1 / 24

Tangent spaces of diffeological spaces and their variants

Taho Masaki

The University of Tokyo, D1

August 26, 2024

Taho Masaki The University of Tokyo, D1

Tangent spaces of diffeological spaces and their variants

- Diffeological spaces are one of the generalizations of smooth manifolds.
	- **n** manifolds with corners
	- orbifolds
	- **n** infinite dimensional manifolds
- The category of diffeological spaces is complete, cocomplete, and cartesian closed. [BH]

X: a set $\mathsf{Param}_n(X) := \{ p \colon \mathit{U_p} \to X \mid \mathit{U_p} \subset \mathbb{R}^n \text{ is an open set, } n \in \mathbb{N} \ \}$ $\mathsf{Param}(X) := \bigcup_{n \in \mathbb{N}} \mathsf{Param}_n(X)$

diffeology

D ⊂ Param(*X*) is called a *diffeology* on *X* if Covering Every constant parametrization $U \rightarrow X$ is in D . Locality For all $(p: U_p \to X) \in \text{Param}(X)$, if there is an open

 $\mathsf{covering}~\{\mathit{U}_{\alpha}\}~\mathsf{of}~\mathit{U}_{p}~\mathsf{such}~\mathsf{that}~\mathit{p}|_{\mathit{U}_{\alpha}}\in\mathcal{D}~\mathsf{for}~\mathsf{all}~\alpha,$ then *p* itself is in *D*.

Smooth compatibility For all $(p: U_p \to X) \in \mathcal{D}$, every open set V \mathbb{R}^m and $f\colon V\to U_p$ that is smooth as a map between Euclidean spaces, $p \circ f : V \to X$ is also in D .

(X, \mathcal{D}_X) , (Y, \mathcal{D}_Y) : diffeological spaces *f* : *X* → *Y* is said to be *smooth* : \Longleftrightarrow For all $p \in \mathcal{D}_X$, $f \circ p \in \mathcal{D}_Y$

Examples

M: a *C∞*-manifold $\mathcal{D}_M := \{ p : U_p \to M \mid p \text{ is a } C^\infty \text{-map} \}$: the standard diffeology of *M* $f : (M, \mathcal{D}_M) \to (N, \mathcal{D}_N)$ is smooth $\iff f$ is a C^∞ -map. \blacksquare *X*: a set $\mathcal{D}_{min} := \{p: U_p \to X \mid p \text{ is locally constant}\}$: the minimum diffeology of *X* D_{max} := Param(*X*): the maximum diffeology of *X*

X: a set, *F ⊂* Param(*X*) $\langle F \rangle$: the smallest diffeology of X which contains F

Quotient diffeology/subdiffeology

(*X.D^X*): a diffeological space, *∼*: an equivalent relation on *X* $\pi: X \to X/\sim$: the quotient map $\langle \{\pi \circ q \mid q \in \mathcal{D}_X\} \rangle$: the *quotient diffeology* of X/\sim

 (X, \mathcal{D}_X) : a diffeological space, $A \subset X$ (*i* : $A \hookrightarrow X$). $\mathcal{D}_A := \{ p \in \text{Param}(A) \mid i \circ p \in \mathcal{D}_X \}$: the *subdiffeology* of *A*.

$$
\blacksquare \vdash_{\mathsf{quot}} := (\mathbb{R}_1 \coprod \mathbb{R}_2) / (0_1 \sim 0_2)
$$

- For $n \in \mathbb{N}$, we equip the quotient diffeology with $\mathbb{R}^n/O(n)$ Then $\mathbb{R}^n/O(n)$ is not diffeomorphic to $\mathbb{R}^m/O(m)$ if $m \neq n$.
- For $\alpha \in \mathbb{R} \backslash \mathbb{Q}$, $T_{\alpha} := \mathbb{R}/(\mathbb{Z} + \alpha \mathbb{Z})$ is called an irrational torus. *T^α* is diffeomorphic to *T^β*

$$
\iff \exists a, b, c, d \in \mathbb{Z} \text{ such that } \alpha = \frac{a+b\beta}{c+d\beta}.
$$

- [0*, ∞*) *⊂* R with subdiffeology is NOT diffeomorphic to $\mathbb{R}^n/\mathcal{O}(n)$ for any $n \in \mathbb{N}$.
- $\mathcal{H}_{\textit{sub}} := \{ (x,y) \in \mathbb{R}^2 \mid xy = 0 \} \subset \mathbb{R}^2$ with subdiffeology is NOT diffeomorphic to 十*quot*.

 $\langle \{p\colon \mathbb{R}\to \mathbb{R}^2 \mid p \text{ is a } C^{\infty}\text{-map}\}\rangle$: the wire diffeology on \mathbb{R}^2 .

D-topology

 (X, \mathcal{D}_X) : a diffeological space $\mathcal{O} := \{ \mathit{U} \subset X \mid \forall p \in \mathcal{D}_X, p^{-1}(U) \text{ is open} \}$: $D\text{-topology}$

example

manifolds *M*: a manifold The *D*-topology of *M* as a standard diffeological space is the topology of *M* as a manifold. quotient *X*: a diffeological space, *∼*: an equivalence relation on *X* The *D*-topology of *X/∼* is the quotient topology of the *D*-topology of *X*.

Internal tangent spaces [CW]

i[∗] : Eucl*[∗] →* Dflg*[∗]* : the inclusion functor

T ′ : Eucl*[∗] →* Vect: the standard tangent functor

internal tangent functor

 $\mathcal{T} := \textsf{Lan}_{i_*} \mathcal{T}' : \textsf{Dflg}_* \to \textsf{Vect}$: the internal tangent functor For a diffeological space *X* and a point $x \in X$, we write

$$
T_x(X) := T(X, x) = \left(\bigoplus_{p:(U_p, 0) \to (X, x)} T'_0(U_p)\right) / R,
$$

$$
\left(R = \left\langle v - w \middle| \begin{array}{l} v \in T'_0(U_p), \ w \in T'_0(U_q), \\ T'(f)v = w, \text{ where } p = q \circ f. \end{array} \right\rangle\right)
$$

X: a diffeological space, *x ∈ X* $G(X, x) := \{f : B_f \to \mathbb{R} \mid x \in B_f \subset X \text{ is } D\text{-open}, f \text{ is smooth}\}/\sim,$ $\text{where } (f: B_f \to \mathbb{R}) \sim (g: B_g \to \mathbb{R})$ \Rightarrow $x \in \exists B \subset (B_f \cap B_g)$: D-open set s.t. $f|_B = g|_B$

 $G(X, x)$ is a diffeological \mathbb{R} -algebra with standard operations.

external tangent space [CW]

X: a diffeological space, *x ∈ X*

$$
\hat{T}_x(X) = \left\{ D \colon G(X, x) \to \mathbb{R} \middle| \begin{array}{c} D \text{ is smooth and linear.} \\ D \text{ satisfies the Leibniz rule.} \end{array} \right\}
$$

: the external tangent space

Tangent spaces of diffeological spaces and their variants

Question Are $\hat{T}_x(X)$ and Ran $_{i_*}$ $T'(X,x)$ isomorphic?

- Answer \blacksquare They are NOT isomorphic in general. However in many case, they are isomorphic.
	- By slightly modifying the definitions, we get an isomorphism.

X: a diffeological space,
$$
x \in X
$$

\n $\hat{T}_x(X) = \left\{ D : G(X, x) \to \mathbb{R} \middle| \bigcup_{D \text{ satisfies the Leibniz rule.}} D \text{ satisfies the Leibniz rule.} \right\}$
\n $\hat{T}_x^R(X) = \left\{ D : G(X, x) \to \mathbb{R} \middle| \bigcup_{D \text{ satisfies the Leibniz rule.}} D \text{ satisfies the Leibniz rule.} \right\}$
\n $\hat{T}_x(X) = \left\{ D : C^\infty(X, \mathbb{R}) \to \mathbb{R} \middle| \bigcup_{D \text{ satisfies the Leibniz rule.}} D \text{ satisfies the Leibniz rule.} \right\}$
\n $\hat{T}_x^R(X) = \left\{ D : C^\infty(X, \mathbb{R}) \to \mathbb{R} \middle| \bigcup_{D \text{ satisfies the Leibniz rule.}} D \text{ satisfies the Leibniz rule.} \right\}$
\n $\hat{T}_x^R(X) = \left\{ D : C^\infty(X, \mathbb{R}) \to \mathbb{R} \middle| \bigcup_{D \text{ satisfies the Leibniz rule.}} D \text{ satisfies the Leibniz rule.} \right\}$
\n \therefore the global right tangent space

Tangent spaces of diffeological spaces and their variants

$$
\hat{\mathbb{T}}_x^R(X) = \left\{ D \colon C^\infty(X, \mathbb{R}) \to \mathbb{R} \middle| \begin{array}{l} D \text{ is linear.} \\ D \text{ satisfies the Leibniz rule.} \end{array} \right\}
$$

: the global right tangent space

Proposition[T, 2024]

X: a diffeological space, *x ∈ X*

$$
\mathrm{Ran}_{i_*} \; T'(X,x) \cong \hat{\mathbb{T}}_X^R(X)
$$

 $i_{*}^{loc}: \text{Eucl}_{*}^{loc} \to \text{Dflg}_{*}^{loc}:$ the inclusion functor $\mathcal{T}^{\text{Eucl}^{loc}_{*}}$: Eucl^{loc} \rightarrow Vect: the standard tangent functor

Main Theorem[T, 2024]

X: a diffeological space, *x ∈ X*

$$
\textsf{Ran}_{i^{loc}_*} T^{\text{Eucl}^{loc}_*}(X, x) \cong \hat{T}_x^R(X)
$$

 $\mathsf{Ran}_{i_{\ast}^{\mathsf{loc}}} \ \mathcal{T}^{\mathrm{Eucl}_{\ast}^{\mathsf{loc}}}(X,x)$ is written as an element of *∗* $\{v_g\}_{g \in \mathrm{Obj}((X,x)\downarrow i_{\mathscr{F}}^{l,loc})} \in \prod_{g \in \mathrm{Obj}((X,x)\downarrow i_{\mathscr{F}}^{l,loc})} \mathcal{T}_{g(x)}^{\mathrm{Eucl}_{*}^{l,loc}} V_g$ which satisfies *∗* the following condition:

$$
\forall g, h \in \text{Obj}((X, x) \downarrow i^{loc}_*) , \forall s: g \rightarrow h \text{ in } (X, x) \downarrow i^{loc}_*,
$$

$$
\mathcal{T}^{\text{Eucl}^{loc}_*}(s) v_g = v_h
$$

So we define the map $\beta\colon \operatorname{\sf Ran}_{l_{*}^{\operatorname{loc}}} \mathcal T^{\operatorname{Eucl}_*^{\operatorname{loc}}}(X,x)\to \hat T^R_{_X}(X); \{\mathsf v_f\}_f\mapsto [f\mapsto \mathsf v_f[\mathsf{id}_{{\mathbb R}}]].$ *∗*

(If
$$
f \in G(X, x)
$$
, then $v_f \in T_{f(x)} \mathbb{R} \cong \mathbb{R}$.)

The inverse is defined by the universality of the right Kan extension.

$v_{fg}([id_{\mathbb{R}}]) = f(x)v_{g}([id_{\mathbb{R}}]) + g(x)v_{f}([id_{\mathbb{R}}]$ (Leibniz rule)

 We define $(f,g)\colon X\to \mathbb{R}^2;$ $\mathsf{y}\mapsto(f(\mathsf{y}),g(\mathsf{y})).$ Then we have $\mathcal{T}(\text{pr}_1)(v_{(f,g)}) = v_f, \, \mathcal{T}(\text{pr}_2)(v_{(f,g)}) = v_g, \, \text{and} \, \, \mathcal{T}(\times)v_{(f,g)} = v_{fg}$

$v_{fg}([id_{\mathbb{R}}]) = f(x)v_{g}([id_{\mathbb{R}}]) + g(x)v_{f}([id_{\mathbb{R}}])$ (Leibniz rule)

$$
v_{fg}([id_{\mathbb{R}}]) = T(\times)v_{(f,g)}([id_{\mathbb{R}} : \mathbb{R} \to \mathbb{R}])
$$

\n
$$
= v_{(f,g)}([\times : \mathbb{R}^2 \to \mathbb{R}]) = v_{(f,g)}([pr_1 : \mathbb{R}^2 \to \mathbb{R}] * [pr_2 : \mathbb{R}^2 \to \mathbb{R}])
$$

\n
$$
= pr_1((f(x), g(x)))v_{(f,g)}([pr_2 : \mathbb{R}^2 \to \mathbb{R}])
$$

\n
$$
+ pr_2((f(x), g(x)))v_{(f,g)}([pr_1 : \mathbb{R}^2 \to \mathbb{R}])
$$

\n
$$
= f(x)v_g([id_{\mathbb{R}}]) + g(x)v_f([id_{\mathbb{R}}])
$$

\n
$$
(T(pr_1)(v_{(f,g)}) = v_f, T(pr_2)(v_{(f,g)}) = v_g, \text{ and } T(\times)v_{(f,g)} = v_{fg})
$$

Thus $[f \mapsto v_f[\mathsf{id}_\mathbb{R}]]$ satisfies the Leibniz rule. Similarly, we can prove that $[f \mapsto v_f[\mathsf{id}_\mathbb{R}]]$ is linear.

Smoothly regular

Theorem[T, 2024]

X: a diffeological space, *x ∈ X* If *X* is smoothly regular at *x*, then

$$
\hat{T}_x^R(X) \cong \hat{\mathbb{T}}_x^R(X)
$$

Also,

$$
\hat{T}_x(X) \cong \hat{\mathbb{T}}_x(X)
$$

Here, *X* is smoothly regular at *x* :*⇐⇒ x ∈ ∀U ⊂ X*: *D*-open, *[∃]^f* : *^X [→]* ^R: smooth map s.t. *^f* (*y*) = (1 (*y* = *x*) 0 (*y ∈/ U*)*.* *X*: a diffeological space

$$
\mathcal{O}_I := \left\{ U \subset X \middle| \begin{array}{l} \forall u \in U, \exists V \subset \mathbb{R}: \text{ open and} \\ \exists f: X \to \mathbb{R}: \text{ smooth map s.t. } u \in f^{-1}(V) \subset U \end{array} \right\}
$$

: *I*-topology (the smallest topology such that all elements of $C^{\infty}(X,\mathbb{R})$ are continuous)

Proposition

X: a diffeological space *X* is smoothly regular at *x ⇐⇒ x ∈ ∀U ⊂ X*: *D*-open, *x ∈ ∃V ⊂ U*: *I*-open set of *X*

Examples

- **Manifolds with the standard diffeology are smoothly regular.**
- \blacksquare \vdash *quot*, [0, ∞), $T_{\alpha} = \mathbb{R}/(\mathbb{Z} + \alpha\mathbb{Z})$, (X, \mathcal{D}_{min}) , (X, \mathcal{D}_{max}) , and \mathbb{R}^2_{wire} are all smoothly regular.
- $\mathbb{R}/(0,1)$ is NOT smoothly regular. Note that *{*[1*/*2]*} ⊂ X* is a *D*-open set (the inverse image (0*,* 1) *⊂* R is an open set). However, every smooth map $f: X \to \mathbb{R}$ satisfies $f([1/2]) = f([1])$ (by the continuity of *f*). Therefore, $\{[1/2]\}\subset X$ is not an *I*-open set of X.
- The orbit space A of the action $\mathbb{R}\curvearrowright\mathbb{R}^2; t\cdot (x,y)=(x+ty,y)$ is NOT smoothly regular.
- The orbit space *B* of the action $\mathbb{R}\curvearrowright\mathbb{R}^2; t\cdot (x,y)=(2^t x,2^{-t} y)$ is NOT smoothly regular.

$$
X := \biguparrow_{\mathit{quot}} / \{ (x, 0) \mid x \neq 0 \}
$$
 is NOT smoothly regular.
Moreover, $\hat{T}_{[(1,0)]}^R(X) \ncong \hat{T}_{[(1,0)]}^R(X)$.

proof Note that *{*[(1*,* 0)]*} ⊂ X* is a *D*-open set. $\text{Therefore, } \hat{\mathcal{T}}_{[(1,0)]}^R(X) \cong \hat{\mathcal{T}}_{[(1,0)]}^R(\{[(1,0)]\}) \cong 0.$

On the other hands,

$$
C^{\infty}(X,\mathbb{R})
$$

\n
$$
\cong \{f: +_{quot} \to \mathbb{R} \mid \forall x \in \mathbb{R} \setminus \{0\}, f(x,0) = f(1,0)\}
$$

\n
$$
= \{f: +_{quot} \to \mathbb{R} \mid \forall x \in \mathbb{R}, f(x,0) = f(1,0)\}
$$

\n
$$
\cong C^{\infty}(\mathbb{R}, \mathbb{R})
$$

Therefore,
$$
\hat{\mathbb{T}}_{[(1,0)]}^R(X) \cong \hat{\mathbb{T}}_0^R(\mathbb{R}) \cong \mathbb{R}
$$
.

References

John C. Baez and Alexander E. Hoffnung. Convenient categories of smooth spaces. *Transactions of the American Mathematical Society*, 363(11):5789–5825, 2011.

畐

J. Daniel Christensen and Enxin Wu. Tangent spaces and tangent bundles for diffeological spaces. *Cah. Topol. G´eom. Diff´er. Cat´eg.*, 57(1):3–50, 2016.

Patrick Iglesias-Zemmour.

Diffeology, volume 185 of *Mathematical Surveys and Monographs*.

American Mathematical Society, Providence, RI, 2013.

References

J.-M. Souriau.

Groupes différentiels.

In *Differential geometrical methods in mathematical physics (Proc. Conf., Aix-en-Provence/Salamanca, 1979)*, volume 836 of *Lecture Notes in Math.*, pages 91–128. Springer, Berlin, 1980.

Masaki Taho.

Tangent spaces of diffeological spaces and their variants, 2024, arXiv:2406.04703

Martin Vincent.

FÌ

FÌ

Diffeological differential geometry. Master Thesis, University of Copenhagen, 2008.

Thank you for listening!

Taho Masaki The University of Tokyo, D1

Tangent spaces of diffeological spaces and their variants