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Diffeological space

Diffeological spaces are one of the generalizations of smooth
manifolds.

manifolds with corners
orbifolds
infinite dimensional manifolds

The category of diffeological spaces is complete, cocomplete,
and cartesian closed. [BH]
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Diffeological space

X : a set
Paramn(X ) := {p : Up → X | Up ⊂ Rn is an open set, n ∈ N }
Param(X ) :=

⋃
n∈N Paramn(X )

diffeology

D ⊂ Param(X ) is called a diffeology on X if

Covering Every constant parametrization U → X is in D.

Locality For all (p : Up → X ) ∈ Param(X ), if there is an open
covering {Uα} of Up such that p|Uα

∈ D for all α,
then p itself is in D.

Smooth compatibility For all (p : Up → X ) ∈ D, every open set V
in Rm and f : V → Up that is smooth as a map
between Euclidean spaces, p ◦ f : V → X is also in D.

Taho Masaki The University of Tokyo, D1

Tangent spaces of diffeological spaces and their variants



4 / 24

(X ,DX ), (Y ,DY ): diffeological spaces
f : X → Y is said to be smooth :⇐⇒ For all p ∈ DX , f ◦ p ∈ DY

Examples

M: a C∞-manifold
DM := {p : Up → M | p is a C∞-map}

: the standard diffeology of M
f : (M,DM) → (N,DN) is smooth ⇐⇒ f is a C∞-map.

X : a set
Dmin := {p : Up → X | p is locally constant}

: the minimum diffeology of X
Dmax := Param(X ): the maximum diffeology of X
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X : a set, F ⊂ Param(X )
〈F〉: the smallest diffeology of X which contains F

Quotient diffeology/subdiffeology

(X .DX ): a diffeological space, ∼: an equivalent relation on X
π : X → X/∼: the quotient map
〈{π ◦ q | q ∈ DX}〉: the quotient diffeology of X/∼

(X ,DX ): a diffeological space, A ⊂ X (i : A ↪→ X ).
DA := {p ∈ Param(A) | i ◦ p ∈ DX}: the subdiffeology of A.
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Examples of diffeological spaces

十quot := (R1
∐

R2)/(01∼02)

For n ∈ N, we equip the quotient diffeology with Rn/O(n)
Then Rn/O(n) is not diffeomorphic to Rm/O(m) if m 6= n.

For α ∈ R\Q, Tα := R/(Z+ αZ) is called an irrational torus.
Tα is diffeomorphic to Tβ

⇐⇒ ∃a, b, c , d ∈ Z such that α =
a+ bβ

c + dβ
.

[0,∞) ⊂ R with subdiffeology is NOT diffeomorphic to
Rn/O(n) for any n ∈ N.
十sub := {(x , y) ∈ R2 | xy = 0} ⊂ R2 with subdiffeology is
NOT diffeomorphic to 十quot .

〈{p : R → R2 | p is a C∞-map}〉: the wire diffeology on R2.
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D-topology

(X ,DX ): a diffeological space
O := {U ⊂ X | ∀p ∈ DX , p

−1(U) is open}: D-topology

example

manifolds M: a manifold
The D-topology of M as a standard diffeological
space is the topology of M as a manifold.

quotient X : a diffeological space,
∼: an equivalence relation on X
The D-topology of X/∼ is the quotient topology of
the D-topology of X .
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Internal tangent spaces [CW]

Category Objects Morphisms

Eucl∗ based Euclidean open sets based C∞-maps

Dflg∗ based diffeological spaces based smooth maps

i∗ : Eucl∗ → Dflg∗: the inclusion functor
T ′ : Eucl∗ → Vect: the standard tangent functor

internal tangent functor

T := Lani∗ T
′ : Dflg∗ → Vect: the internal tangent functor

For a diffeological space X and a point x ∈ X , we write

Tx(X ) := T (X , x) =

 ⊕
p : (Up ,0)→(X ,x)

T ′
0(Up)

 /R ,

(
R =

〈
v − w

∣∣∣∣ v ∈ T ′
0(Up), w ∈ T ′

0(Uq),
T ′(f )v = w , where p = q ◦ f .

〉)
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X : a diffeological space, x ∈ X
G (X , x) := {f : Bf → R | x ∈ Bf ⊂ X is D-open, f is smooth}/∼,
where (f : Bf → R)∼(g : Bg → R)
:⇐⇒ x ∈ ∃B ⊂ (Bf ∩ Bg ): D-open set s.t. f |B = g |B

G (X , x) is a diffeological R-algebra with standard operations.

external tangent space [CW]

X : a diffeological space, x ∈ X

T̂x(X ) =

{
D : G (X , x) → R

∣∣∣∣ D is smooth and linear.
D satisfies the Leibniz rule.

}
: the external tangent space
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Examples

Spaces Internal External

n-dim. manifold Rn Rn

十quot R2 R2

十sub(⊂ R2) R2 R2

[0,∞)(⊂ R) 0 R
Rn/O(n) 0 R
Tα = R/(Z+ αZ) R 0

(X ,Dmin) 0 0

(X ,Dmax) 0 0

R2
wire uncountable-dim. R2

R2/{(x , 0) ∈ R2} uncountable-dim. uncountable-dim.
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Question Are T̂x(X ) and Rani∗ T
′(X , x) isomorphic?

Answer They are NOT isomorphic in general. However
in many case, they are isomorphic.
By slightly modifying the definitions, we get an
isomorphism.
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X : a diffeological space, x ∈ X

T̂x(X ) =

{
D : G (X , x) → R

∣∣∣∣ D is smooth and linear.
D satisfies the Leibniz rule.

}
: the external tangent space

T̂R
x (X ) =

{
D : G (X , x) → R

∣∣∣∣ D is linear.
D satisfies the Leibniz rule.

}
: the right tangent space

T̂x(X ) =

{
D : C∞(X ,R) → R

∣∣∣∣ D is smooth and linear.
D satisfies the Leibniz rule.

}
: the global external tangent space

T̂R
x (X ) =

{
D : C∞(X ,R) → R

∣∣∣∣ D is linear.
D satisfies the Leibniz rule.

}
: the global right tangent space
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T̂R
x (X ) =

{
D : C∞(X ,R) → R

∣∣∣∣ D is linear.
D satisfies the Leibniz rule.

}
: the global right tangent space

Proposition[T, 2024]

X : a diffeological space, x ∈ X

Rani∗ T
′(X , x) ∼= T̂R

x (X )
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Modification

Category Objects Morphisms

Euclloc∗ based Euclidean open sets germs of C∞-maps

Dflgloc∗ based diffeological spaces germs of smooth maps

i loc∗ : Euclloc∗ → Dflgloc∗ : the inclusion functor

TEuclloc∗ : Euclloc∗ → Vect: the standard tangent functor

Main Theorem[T, 2024]

X : a diffeological space, x ∈ X

Rani loc∗
TEuclloc∗ (X , x) ∼= T̂R

x (X )
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sketch of proof

Rani loc∗
TEuclloc∗ (X , x) is written as an element of

{vg}g∈Obj((X ,x)↓i loc∗ ) ∈
∏

g∈Obj((X ,x)↓i loc∗ ) T
Euclloc∗
g(x) Vg which satisfies

the following condition:

∀g , h ∈ Obj((X , x) ↓ i loc∗ ),∀s : g → h in (X , x) ↓ i loc∗ ,

TEuclloc∗ (s)vg = vh

So we define the map
β : Rani loc∗

TEuclloc∗ (X , x) → T̂R
x (X ); {vf }f 7→ [f 7→ vf [idR]].

(If f ∈ G (X , x), then vf ∈ Tf (x)R ∼= R.)

The inverse is defined by the universality of the right Kan
extension.

Taho Masaki The University of Tokyo, D1

Tangent spaces of diffeological spaces and their variants



16 / 24

Well-definedness of β

vfg ([idR]) = f (x)vg ([idR]) + g(x)vf ([idR] (Leibniz rule)

We define (f , g) : X → R2; y 7→ (f (y), g(y)).
Then we have
T (pr1)(v(f ,g)) = vf ,T (pr2)(v(f ,g)) = vg , and T (×)v(f ,g) = vfg

R R

X
(f ,g) //

f

>>}}}}}}}}

g
  A

AA
AA

AA
A R2

pr1

OO

pr2
��

X
(f ,g) //

fg
>>}}}}}}}}
R2

×

OO

R
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vfg ([idR]) = f (x)vg ([idR]) + g(x)vf ([idR]) (Leibniz rule)

vfg ([idR]) = T (×)v(f ,g)([idR : R → R])
= v(f ,g)([× : R2 → R]) = v(f ,g)([pr1 : R2 → R] ∗ [pr2 : R2 → R])
= pr1((f (x), g(x)))v(f ,g)([pr2 : R2 → R])

+ pr2((f (x), g(x)))v(f ,g)([pr1 : R2 → R])
= f (x)vg ([idR]) + g(x)vf ([idR])

(T (pr1)(v(f ,g)) = vf ,T (pr2)(v(f ,g)) = vg , and T (×)v(f ,g) = vfg )

Thus [f 7→ vf [idR]] satisfies the Leibniz rule.
Similarly, we can prove that [f 7→ vf [idR]] is linear.
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Smoothly regular

Theorem[T, 2024]

X : a diffeological space, x ∈ X
If X is smoothly regular at x , then

T̂R
x (X ) ∼= T̂R

x (X )

Also,
T̂x(X ) ∼= T̂x(X )

Here, X is smoothly regular at x
:⇐⇒ x ∈ ∀U ⊂ X : D-open,

∃f : X → R: smooth map s.t. f (y) =

{
1 (y = x)

0 (y /∈ U).
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I -topology

X : a diffeological space

OI :=

{
U ⊂ X

∣∣∣∣ ∀u ∈ U, ∃V ⊂ R: open and
∃f : X → R: smooth map s.t. u ∈ f −1(V ) ⊂ U

}
: I -topology (the smallest topology such that all elements of
C∞(X ,R) are continuous)

Proposition

X : a diffeological space X is smoothly regular at x
⇐⇒ x ∈ ∀U ⊂ X : D-open, x ∈ ∃V ⊂ U: I -open set of X
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Examples

Manifolds with the standard diffeology are smoothly regular.

十quot , [0,∞), Tα = R/(Z+ αZ), (X ,Dmin), (X ,Dmax), and
R2
wire are all smoothly regular.

R/(0, 1) is NOT smoothly regular.
Note that {[1/2]} ⊂ X is a D-open set (the inverse image
(0, 1) ⊂ R is an open set). However, every smooth map
f : X → R satisfies f ([1/2]) = f ([1]) (by the continuity of f ).
Therefore, {[1/2]} ⊂ X is not an I -open set of X .

The orbit space A of the action
R ↷ R2; t · (x , y) = (x + ty , y) is NOT smoothly regular.

The orbit space B of the action
R ↷ R2; t · (x , y) = (2tx , 2−ty) is NOT smoothly regular.
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X :=十quot/{(x , 0) | x 6= 0} is NOT smoothly regular.

Moreover, T̂R
[(1,0)](X ) ≇ T̂R

[(1,0)](X ).

proof
Note that {[(1, 0)]} ⊂ X is a D-open set.
Therefore, T̂R

[(1,0)](X ) ∼= T̂R
[(1,0)]({[(1, 0)]}) ∼= 0.

On the other hands,

C∞(X ,R)
∼= {f : 十quot → R | ∀x ∈ R\{0}, f (x , 0) = f (1, 0)}
= {f : 十quot → R | ∀x ∈ R, f (x , 0) = f (1, 0)}
∼= C∞(R,R)

Therefore, T̂R
[(1,0)](X ) ∼= T̂R

0 (R) ∼= R.
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Thank you for listening!

Taho Masaki The University of Tokyo, D1

Tangent spaces of diffeological spaces and their variants


