On Hochschild cohomology of a self-injective special biserial algebra obtained by a circular quiver with double arrows

Ayako Itaba (Tokyo University of Science)*

Let K be an algebraically closed field. For a positive integer s, let Γ_s be the following circular quiver with double arrows:

We set the elements $x = \sum_{i=0}^{s-1} a_i$ and $y = \sum_{i=0}^{s-1} b_i$ in the path algebra $K\Gamma_s$. We denote by I the ideal generated by x^2 , xy + yx and y^2 . Then we define the bound quiver algebra $\Lambda_s = K\Gamma_s/I$ over K. This algebra Λ_s is a Koszul self-injective special biserial algebra ([I]).

We calculate the Hochschild cohomology group $\operatorname{HH}^n(\Lambda_s)$ of Λ_s for $n \geq 0$. Note that, for s = 1, 2, 4, the Hochschild cohomology of Λ_s is reserved in [XH], [ST] and [F], respectively. In the following, we assume that $s \geq 3$.

Theorem 1 ([I]). Let n = ms + r for integers $m \ge and \ 0 \le r \le s - 1$. Then we have the dimension formula for the Hochschild cohomology groups of Λ_s as follows:

 $\dim_{K} \operatorname{HH}^{ms+r}(\Lambda_{s}) = \begin{cases} ms+1 & \text{if s even and $r=0$, if m even and $r=0$, or} \\ ms+4 & \text{if s even and $r=1$, if m even and $r=1$, or} \\ ms+3 & \text{if s even and $r=2$, and $r=1$,} \\ ms+3 & \text{if s even and $r=2$, if m even and $r=2$, or} \\ ms+4 & \text{if s even and $r=2$, if m even and $r=2$, or} \\ ms+3 & \text{if s even and $r=2$, and $r=2$,} \\ 0 & \text{otherwise.} \end{cases}$

References

- [F] T. Furuya, Hochschild cohomology for a class of some self-injective special biserial algebras of rank four, preprint.
- [GSZ] E.L. Green, Ø. Solberg and D. Zacharia, Minimal projective resolutions, Trans. Amer. Math. Soc. 353 (2001), 2915-2939.
- [I] A. Itaba, On Hochschild cohomology of a self-injective special biserial algebra obtained by a circular quiver with double arrows, preprint.
- [ST] N. Snashall and R. Taillefer, The Hochschild cohomology ring of a class of special biserial algebras, J. Algebra Appl. 9 (2010), no. 1, 73-122.
- [XH] Y. Xu and Y. Han, Hochschild (co)homology of exterior algebras, Comm. Algebra 35 (2007), no. 1, 115-131.

²⁰¹⁰ Mathematics Subject Classification: 16D20, 16E40, 16G20.

Keywords: Koszul algebra, special biserial algebra, self-injective algebra, Hochschild cohomology.

^{*}e-mail: j1110701@ed.tus.ac.jp