ON ISOMORPHISMS OF GENERALIZED MULTIFOLD EXTENSIONS OF ALGEBRAS WITHOUT NONZERO ORIENTED CYCLES

MAYUMI KIMURA

Throughout this note k is an algebraically closed field, and all algebras considered here are assumed to be basic finite-dimensional associative k-algebras, which are regarded as k-categories by fixing a basic set of primitive idempotents of A. Let A be an algebra. If $\psi \in \operatorname{Aut}(A)$, then ψ canonically induces an automorphism $\hat{\psi}$ of \hat{A} . A category of the form $T_{\psi}^n(A) := \hat{A}/\langle \hat{\psi} \nu_A^n \rangle$ with $n \in \mathbb{Z}$ is called a *twisted n-fold extension* of A, where ν_A is the Nakayama automorphism of \hat{A} . An automorphism ϕ of the repetitive category \hat{A} is said to have a jump $n \in \mathbb{Z}$ if $\phi(A^{[0]}) = A^{[n]}$. Note that in this case ϕ induces an automorphism $\phi_0 := (\mathbb{1}^{[0]})^{-1}\nu_A^{-n}\phi\mathbb{1}^{[0]}$ of A. A category of the form $\hat{A}/\langle \phi \rangle$ with ϕ an automorphism of \hat{A} having a jump n is called a *generalized n-fold extension* of A (or a *generalized multifold extension* of A if n is not specified). Twisted *n*-fold extensions of A are generalized *n*-fold extensions of A.

An algebra A is called *piecewise hereditary* of tree type T if it is derived equivalent to a hereditary algebra H and the underlying graph of the quiver of H is a tree T. In [1] we gave a derived equivalence classification of generalized multifold extensions of piecewise hereditary algebras of tree type. Then we have proved that a generalized *n*-fold extension $\hat{A}/\langle \phi \rangle$ of A is derived equivalent to a twisted *n*-fold extension $T^n_{\phi_0}(A)$ of A. And we posed the following question.

Question. When are the algebras $\hat{A}/\langle \phi \rangle$ and $T^n_{\phi_0}(A)$ isomorphic?

In this talk we give an answer as a corollary of the following theorem.

Theorem. Let A be an algebra without nonzero oriented cycles and $\phi, \psi \in \operatorname{Aut}(\hat{A})$ with a jump $n \in \mathbb{Z}$. If $\phi_0 = \psi_0$, then $\hat{A}/\langle \phi \rangle$ and $\hat{A}/\langle \psi \rangle$ are isomorphic.

References

[1] Asashiba, H.; Kimura, M.: Derived equivalence classification of generalized multifold extensions of piecewise hereditary algebras of tree type, to appear in Algebra and Discrete Mathematics Journal

GRADUATE SCHOOL OF SCIENCE AND TECHNOLOGY, SHIZUOKA UNIVERSITY *E-mail address*: f5144005@ipc.shizuoka.ac.jp