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Clifford algebras play important roles in various fields and the construction of Clif-
ford algebras contains that of complex numbers, quaternions, and so on (see e.g. [4]).
In this talk, we generalize the construction of Clifford algebras and introduce the no-
tion of Clifford extensions. Clifford extensions are constructed as Frobenius extensions
and we have already known that Frobenius extensions of Auslander-Gorenstein rings
are also Auslander-Gorenstein rings. It should be noted that little is known about
constructions of Auslander-Gorenstein rings although Auslander-Gorenstein rings ap-
pear in various fields of current research in mathematics including noncommutative
algebraic geometry, Lie algebras, and so on (see e.g. [1], [2], [3] and [5]).

We use the notation A/R to denote that a ring A contains a ring R as a subring.
Let n ≥ 2 be an integer. We fix a set of integers I = {0, 1, . . . , n − 1} and a ring
R. First, we construct a split Frobenius extension Λ/R of second kind using a certain
pair (σ, c) of σ ∈ Aut(R) and c ∈ R. Namely, we define an appropriate multiplication
on a free right R-module Λ with a basis {vi}i∈I . We show that this construction
can be iterated arbitrary times. Then we deal with the case where n = 2 and study
the iterated Frobenius extensions. For m ≥ 1 we construct ring extensions Λm/R
using the following data: a sequence of elements c1, c2, · · · in Z(R) and signs ε(i, j) for
1 ≤ i, j ≤ m. Namely, we define an appropriate multiplication on a free right R-module
Λm with a basis {vx}x∈Im . We show that Λm is obtained by iterating the construction
above m times, that Λm/R is a split Frobenius extension of first kind, and that if
ci ∈ rad(R) for 1 ≤ i ≤ m then R/rad(R)

∼−→ Λm/rad. We call Λm Clifford extensions
of R because they have the following properties similar to Clifford algebras. For each
x = (x1, . . . , xm) ∈ Im we set S(x) = {i | xi = 1}. Also we set vx = ti for x ∈ Im

with S(x) = {i}. Then the following hold: (C1) t2i = v0ci for all 1 ≤ i ≤ m; (C2)
titj + tjti = 0 unless i = j; (C3) vx = ti1 · · · tir if S(x) = {i1, . . . , ir} with i1 < · · · < ir.
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