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Clifford algebras play important roles in various fields and the construction of Clif-
ford algebras contains that of complex numbers, quaternions, and so on (see e.g. [4]).
In this talk, we generalize the construction of Clifford algebras and introduce the no-
tion of Clifford extensions. Clifford extensions are constructed as Frobenius extensions
and we have already known that Frobenius extensions of Auslander-Gorenstein rings
are also Auslander-Gorenstein rings. It should be noted that little is known about
constructions of Auslander-Gorenstein rings although Auslander-Gorenstein rings ap-
pear in various fields of current research in mathematics including noncommutative
algebraic geometry, Lie algebras, and so on (see e.g. [1], [2], [3] and [5]).

We use the notation A/R to denote that a ring A contains a ring R as a subring,.
Let n > 2 be an integer. We fix a set of integers I = {0,1,...,n — 1} and a ring
R. First, we construct a split Frobenius extension A/R of second kind using a certain
pair (o,c) of 0 € Aut(R) and ¢ € R. Namely, we define an appropriate multiplication
on a free right R-module A with a basis {v;};,c;. We show that this construction
can be iterated arbitrary times. Then we deal with the case where n = 2 and study
the iterated Frobenius extensions. For m > 1 we construct ring extensions A,,/R
using the following data: a sequence of elements ¢, ¢, - - in Z(R) and signs €(4, j) for
1 <1,7 < m. Namely, we define an appropriate multiplication on a free right R-module
A,, with a basis {v, }zerm. We show that A,, is obtained by iterating the construction
above m times, that A,,/R is a split Frobenius extension of first kind, and that if
¢; € rad(R) for 1 < i < m then R/rad(R) = A,,/rad. We call A, Clifford extensions
of R because they have the following properties similar to Clifford algebras. For each
r = (x1,...,x,m) € I"™ we set S(x) = {i | z; = 1}. Also we set v, = t; for x € I™
with S(z) = {i}. Then the following hold: (C1) ? = vyc; for all 1 < i < m; (C2)
tit; +t;t; =0 unless i = j; (C3) v, = t;, -+~ t;, if S(x) = {iy,... 40} with iy < -+ <i,.
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