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Abstract. This reprot is a survey of our result in [I]. We calculate the dimensions of the Hochschild
cohomology groups of a self-injective special biserial algebra Λs obtained by a circular quiver with double

arrows. Moreover, we give a presentation of the Hochschild cohomology ring modulo nilpotence of Λs by
generators and relations. This result shows that the Hochschild cohomology ring modulo nilpotence of Λs

is finitely generated as an algebra.

1. Introduction

Let K be an algebraically closed field. Let Q be a finite connected quiver and KQ a path algebra and I
an admissible ideal of KQ. Then A = KQ/I is a finite-dimensional K-algebra. Also, we denote the origin
of a by o(a) and the terminus of a by t(a) for a ∈ Q1.

For a finite-dimensional albegra A over K, the Hochschild cohomology groups HHn(A) of A is defined by

HHn(A) := ExtnAe(A,A) (n ≥ 0),

where Ae:=Aop ⊗K A is the enveloping algebra of A. Moreover, the Hochschild cohomology rings HH∗(A)
of A is graded algebra defined by

HH∗(A) := Ext∗Ae(A,A) =
⊕
i≥0

ExtiAe(A,A)

with the Yoneda product.
The low-dimensional Hochschild cohomology groups are described as follows:

• HH0(A) = Z(A): the center of A.
• HH1(A) is the space of derivations modulo the inner derivation. A deivations is a k-linear map
f : A → A such that f(ab) = af(b) + f(a)b for all a, b ∈ A. A derivation f : A → A is an inner
derivation if there is some x ∈ A such that f(a) = ax− xa for all a ∈ A.

One important property of Hochschild cohomology is its invariance under derived equivalence. In gereral,
it is duffucult to calucurate the Hochschild cohomology of a finite-dimensional albegra A.

For a positive integer s, let Γs be the following circular quiver with double arrows:0
2s� 2s� 3 3

1s� 1 a0 a1a2
b0 b1b2bs�3bs�2 bs�1as�1as�2as�3

ei := the trivial path at the vertex i, where the subscript i of ei is regarded as modulo s. We set the
elements x =

∑s−1
i=0 ai and y =

∑s−1
i=0 bi in the path algebra KΓs. eix

n = xnei+n = eix
nei+n and eiy

n =
ynei+n = eiy

nei+n hold for 0 ≤ i ≤ s − 1 and n ≥ 0. We denote by I the ideal generated by x2, xy + yx
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and y2, that is, I = ⟨eix2, ei(xy + yx), eiy
2 | 0 ≤ i ≤ s − 1⟩. The bound quiver algebra Λs := KΓs/I over

K. Our purpose is to study the Hochschild cohomology of Λs. This algebra Λs is a Koszul self-injective
special biserial algebra (see Proposition 2.2), but is not a weakly symmetric algebra for s ≥ 3.

Remark 1.1. For s = 1, 2, 4, the Hochschild cohomology of Λs is reserched in [XH], [ST] and [F], respec-
tively.

Definition 1.2. We say that a graded projective resolution

· · · → P 2 d2

→ P 1 d1

→ P 0 d0

→ M → 0

is linear and M is a linear module if for n ≥ 0, the graded module Pn is generated in degree n. A graded
algebra Λ is a Koszul algebra if Λ0 is a linear module; that is, Λ0 has a linear projective resolution

(L, e) : · · · → L2 e2→ L1 e1→ L0 e0→ Λ0 → 0.

as a right Λ-module.

Definition 1.3. A = KQ/I is said to be a special biserial algebra, if A satisfies the following (SP1) and
(SP2):

(SP1): For each vertex v ∈ Q0,
• #{the arrows starting at v}≤ 2; and

• #{the arrows ending with v}≤ 2.
(SP2): For each arrow α ∈ Q1,

• #{the arrows β with βα /∈ I}≤ 1; and

• #{the arrows γ with αγ /∈ I}≤ 1.

In [GHMS], Green, Hartmann, Marcos and Solberg constructed a minimal projective bimodule resolution
for any Koszul algebra by using some sets Gn (n ≥ 0) introduced in [GSZ]. These sets Gn (n ≥ 0) are also
used in the papers [FO], [ST], [ScSn] in constructing a minimal projective bimodule resolution of several
weakly symmetric algebras. By this same method, we give the minimal projective bimodule resolution of Λs

for s ≥ 1 and compute the Hochschild cohomology group HHn(Λs) of Λs (n ≥ 0) in the case where s ≥ 3.
In [SnSo], Snashall and Solberg have defined the support varieties of finitely generated modules over a

finite-dimensional algebra by using the Hochschild cohomology ring modulo nilpotence. In [EHTSS], for
any finite-dimensional algebra, Erdmann, Holloway, Taillefer, Snashall and Solberg have introduced certain
finiteness conditions, denoted by (Fg), and showed that if a finite-dimensuonal algebra satisfies (Fg), then
the supprot varieties have a lot analogous properties of support varieties for finite group algebras. These
works inspire us to study the Hochschild cohomology rings modulo nilpotence of finite-dimensional algebras.
We determine generators and relations of the Hochschild cohomology ring modulo nilpotence HH∗(Λs)/NΛs

for all s ≥ 3.

2. A projective bimodule resolution (Q•, ∂•) of Λs

Let G0 be the set of all vertices of Q, G1 the set of all arrows of Q, and G2 a minimal set of uniform
generators of I. In [GSZ], Green-Solberg-Zacharia showed that, for each n ≥ 3, there are sets Gn of uniform
elements in KQ such that we have a minimal projective resoluition (P •, d•) of the right A-module A/radA
satisfying the following conditions:

(a) For n ≥ 0, Pn =
⊕

x∈Gn t(x)A.

(b) For x ∈ Gn, there are unique elements ry, sz ∈ KQ, where y ∈ Gn−1 and z ∈ Gn−2, such that
x =

∑
y∈Gn−1 yry =

∑
z∈Gn−2 zsz.

(c) For n ≥ 1, the differential dn : Pn → Pn−1 is defined by dn(t(x)λ) =
∑

y∈Gn−1 ryt(x)λ for x ∈ Gn and

λ ∈ A, where ry denotes the element in the expression (b).

A minimal projective bimodule resolution of any Koszul algebra is given in [GHMS] by using the sets Gn

(n ≥ 0) in [GSZ]. We construct sets Gn (n ≥ 0) for the right Λs-modules Λs/radΛs by following [GHMS].
We give a projective bimodule resolution (Q•, ∂•) of Λs.

In order to construct sets Gn for Λs/radΛs, we define the following elements in KΓs:



HOCHSCHILD COHOMOLOGY OF A SELF-INJECTIVE ALGEBRA 3

Definition 2.1. For 0 ≤ i ≤ s − 1, we put g0i,0 := ei, and, for n ≥ 1, we inductively define the elements
gni,j ∈ KΓs as follows:

• gni,0 := gn−1
i,0 y for 0 ≤ i ≤ s− 1,

• gni,j := gn−1
i,j−1x+ gn−1

i,j y for 0 ≤ i ≤ s− 1 and 1 ≤ j ≤ n− 1,

• gni,n := gn−1
i,n−1x for 0 ≤ i ≤ s− 1.

• We regard the subscript i of gni,j as modulo s.

By using Definition 2.1, we put the set

Gn = {gni,j | 0 ≤ i ≤ s− 1; 1 ≤ j ≤ n− 1}

for all n ≥ 0. It is easy to check that these sets satisfying the conditions (a), (b) and (c) in the beginning
of this section.

Now, it can be seen that Λs is a self-injective Koszul algebra. We have the following proposition.

Proposition 2.2. The algebra Λs is a self-injective Koszul algebra.

In order to obtain a minimal Λe
s-projective resolution (Q•, ∂•) of Λs, we need the following lemma.

Lemma 2.3. For n ≥ 1, we have the following equations hold:

• gni,0 = ygn−1
i+1,0 for 0 ≤ i ≤ s− 1,

• gni,j = ygn−1
i+1,j + xgn−1

i+1,j−1 for 0 ≤ i ≤ s− 1 and 1 ≤ j ≤ n− 1,

• gni,n = xgn−1
i+1,n−1 for 0 ≤ i ≤ s− 1.

By using the sets Gn (n ≥ 0), we give a minimal projective resolution (Q•, ∂•) of Λs as a right Λe
s-module.

First, we start with the definition of the projective module Qn for n ≥ 0. For n ≥ 0, we denote the
elements o(gni,j)⊗ t(gni,j) by bni,j in Λso(g

n
i,j)⊗ t(gni,j)Λs for 0 ≤ i ≤ s− 1 and 0 ≤ j ≤ n, where the subscript

i of bni,j is regarded as modulo s.

Definition 2.4. We define the projective Λe
s-module Qn by the following :

Qn :=
⊕
g∈Gn

Λso(g)⊗ t(g)Λs =
s−1⊕
i=0

n⊕
j=0

Λsb
n
i,jΛs.

Next, by Definition 2.1 and Lemma 2.3, we also define the map ∂n in the following definition.

Definition 2.5. We define ∂0 : Q0 → Λs to be the multiplication map, and, for n ≥ 1, ∂n : Qn → Qn−1 to
be the Λe

s-homomorphism determined by

• bni,0 7−→ bn−1
i,0 y + (−1)nybn−1

i+1,0 for 0 ≤ i ≤ s− 1,

• bni,j 7−→ (bn−1
i,j−1x+ bn−1

i,j y) + (−1)n(ybn−1
i+1,j + xbn−1

i+1,j−1) for 0 ≤ i ≤ s− 1; 1 ≤ j ≤ n− 1,

• bni,n 7−→ bn−1
i,n−1x+ (−1)nxbn−1

i+1,n−1 for 0 ≤ i ≤ s− 1.

By the direct computations, we see that the composite ∂n∂n+1 is zero for all n ≥ 0. Therefore, (Q•, ∂•)
is a complex of Λe

s-modules.
Now since Λs is Koszul by Proposition 2.2, the following theorem is immediatly from [GHMS].

Theorem 2.6. (Q•, ∂) is a minimal projective Λe
s-resolution of Λs.

3. Hochschild cohomology groups HHn(Λs)

In this section, we calculate the Hochschild cohomology group HHn(Λs) for n ≥ 0. By applying the
functor HomΛe

s
(−,Λs) to the resolution (Q•, ∂•), we have the complex

0 −→ Q̂0 ∂̂1

−→ Q̂1 ∂̂2

−→ Q̂2 ∂̂3

−→ · · · ∂̂
n−1

−→ Q̂n−1 ∂̂n

−→ Q̂n ∂̂n+1

−→ Q̂n+1 ∂̂n+2

−→ · · · ,

where Q̂n := HomΛe
s
(Qn,Λs) and ∂̂n := HomΛe

s
(∂n,Λs). We recall that, for n ≥ 0, the n-th Hochschild

cohomology group HHn(Λs) is defined to be the K-space HHn(Λs) := ExtnΛe
s
(Λs,Λs) = Ker ∂̂n+1/Im ∂̂n.
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3.1. The dimension of Im ∂̂n+1. By direct computation, we get the dimension of Im ∂̂n+1 for n ≥ 0:

Corollary 3.1. Let n = ms+ r for integers m ≥ and 0 ≤ r ≤ s− 1. Then the dimension of Im ∂̂n+1 is as
follows:

dimK Im ∂̂ms+r+1

=



s(ms+ 1) if s odd, m odd, charK ̸= 2 and r = 0,
(s− 1)(ms+ 1) if s even and r = 0, if m even and r = 0, or

if charK = 2 and r = 0,
s(ms+ 3) if s odd, m odd, charK ̸= 2 and r = 1,
(s− 1)(ms+ 3) if s even and r = 1, if m even and r = 1, or

if charK = 2 and r = 1,
0 otherwise.

3.2. The dimension of Ker ∂̂n+1. As an immediate consequence, we get the dimension of Ker ∂̂n+1 for
n ≥ 1:

Corollary 3.2. Let n = ms+ r for integers m ≥ 0 and 0 ≤ r ≤ s− 1. Then the dimension of Ker ∂̂n+1 is
as follows:

dimK Ker ∂̂ms+r+1

=



0 if s odd, m odd, charK ̸= 2 and r = 0,
ms+ 1 if s even and r = 0, if m even and r = 0, or

if charK = 2 and r = 0,
s(ms+ 1) if s odd, m odd, charK ̸= 2 and r = 1,
(s+ 1)(ms+ 1) + 2 if s even and r = 1, if m even and r = 1, or

if charK = 2 and r = 1,
s(ms+ 3) if r = 2,
0 otherwise.

3.3. The dimension formula for the Hochschild cohomology groups HHn(Λs). We have the follow-
ing theorem.

Theorem 3.3. Let n = ms + r for integers m ≥ 0 and 0 ≤ r ≤ s − 1. Then, for s ≥ 3, we have the
dimension formula for HHn(Λs):

dimK HHms+r(Λs)

=



ms+ 1 if s even and r = 0, if m even and r = 0, or
if charK = 2 and r = 0,

2ms+ 4 if s even and r = 1, if m even and r = 1, or
if charK = 2 and r = 1,

ms+ 3 if s even and r = 2, if m even and r = 2, or
if charK = 2 and r = 2,

0 otherwise.

4. The Hochschild cohomology ring modulo nilpotence HH∗(Λs)/Ns

Recall that the Hochschild cohomology ring of the algebra Λs is defined to be the graded ring

HH∗(Λs) := Ext∗Λe
s
(Λs,Λs) =

⊕
t≥0

ExttΛe
s
(Λs,Λs)

with the Yoneda product. Denote NΛs by the ideal generated by all homogeneous nilpotent elements
in HH∗(Λs). Then the quotient algebra HH∗(Λs)/NΛs is called the Hochschild cohomology ring modulo
nilpotence of Λs. Note that HH∗(Λs)/NΛs is a commutative graded algebra (see [SnSo]). Our purpose of
this section is to find generators and relations of HH∗(Λs)/NΛs for s ≥ 3. For simplicity, we denote the
graded subalgebras

⊕
t≥0 HH

st(Λs) of HH
∗(Λs) by HHs∗(Λs) and

⊕
t≥0 HH2st(Λs) by HH2s∗(Λs). Also, we

denote the Yoneda product in HH∗(Λs) by ×.

Theorem 4.1. For s ≥ 3, there are the following isomorphisms of commutative graded algebras:
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(i) If s is odd and charK ̸= 2, then

HH∗(Λs)/NΛs
∼= HH2s∗(Λs)

∼= K[z0, . . . , z2s]/⟨zkzl − zqzr | k + l = q + r, 0 ≤ k, l, q, r ≤ 2s⟩,
where z0, . . . , z2s are in degree 2s.

(ii) If s is even or charK = 2, then

HH∗(Λs)/NΛs
∼= HHs∗(Λs)

∼= K[z0, . . . , zs]/⟨zkzl − zqzr | k + l = q + r, 0 ≤ k, l, q, r ≤ s⟩,
where z0, . . . , zs are in degree s.

Therefore, HH∗(Λs)/NΛs is finitely generated as an algebra.

We conclude this report with the following remarks.

Remark 4.2. Let E(Λs) =
⊕

i≥0 Ext
i(Λs/radΛs,Λs/radΛs) be the Ext algebra of Λs, and let Zgr(E(Λs))

be the graded center of E(Λs) (see [BGSS], for example). Denote by N ′
Λs

the ideal of Zgr(E(Λs)) generated
by all homogeneous nilpotent elements. Since Λs is a Koszul algebra by Proposition 2.2, it follows by
[BGSS] that Zgr(E(Λs))/N ′

Λs

∼= HH∗(Λs)/NΛs as graded rings. Therefore, we have the same presentation
of Zgr(E(Λs))/N ′

Λs
by generators and relations as that in Theorem 4.1.

Remark 4.3. In [F], Furuya has discussed the Hochschild cohomology of some self-injective special biserial
algebra AT for T ≥ 0, and in particular he has given a presentation of HH∗(AT )/NAT

by generators and
relations in the case T = 0. We easily see that the algebra Λ4 is isomorphic to A0. By setting s = 4 in
Theorem 4.1, our presentation actually coincides with that in [F, Theorem 4.1].
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