ON HOCHSCHILD COHOMOLOGY OF A SELF-INJECTIVE SPECIAL BISERIAL ALGEBRA OBTAINED BY A CIRCULAR QUIVER WITH DOUBLE ARROWS

AYAKO ITABA

ABSTRACT. This reprot is a survey of our result in [I]. We calculate the dimensions of the Hochschild cohomology groups of a self-injective special biserial algebra Λ_s obtained by a circular quiver with double arrows. Moreover, we give a presentation of the Hochschild cohomology ring modulo nilpotence of Λ_s by generators and relations. This result shows that the Hochschild cohomology ring modulo nilpotence of Λ_s is finitely generated as an algebra.

1. INTRODUCTION

Let K be an algebraically closed field. Let Q be a finite connected quiver and KQ a path algebra and I an admissible ideal of KQ. Then A = KQ/I is a finite-dimensional K-algebra. Also, we denote the origin of a by o(a) and the terminus of a by t(a) for $a \in Q_1$.

For a finite-dimensional albegra A over K, the Hochschild cohomology groups $\operatorname{HH}^{n}(A)$ of A is defined by

$$\operatorname{HH}^{n}(A) := \operatorname{Ext}_{A^{e}}^{n}(A, A) \ (n \ge 0),$$

where $A^e := A^{\text{op}} \otimes_K A$ is the enveloping algebra of A. Moreover, the Hochschild cohomology rings $\text{HH}^*(A)$ of A is graded algebra defined by

$$\mathrm{HH}^*(A) := \mathrm{Ext}^*_{A^e}(A, A) = \bigoplus_{i>0} \mathrm{Ext}^i_{A^e}(A, A)$$

with the Yoneda product.

The low-dimensional Hochschild cohomology groups are described as follows:

- $\operatorname{HH}^{0}(A) = Z(A)$: the center of A.
- $\operatorname{HH}^1(A)$ is the space of derivations modulo the inner derivation. A derivations is a k-linear map $f: A \to A$ such that f(ab) = af(b) + f(a)b for all $a, b \in A$. A derivation $f: A \to A$ is an inner derivation if there is some $x \in A$ such that f(a) = ax xa for all $a \in A$.

One important property of Hochschild cohomology is its invariance under derived equivalence. In general, it is duffucult to calucurate the Hochschild cohomology of a finite-dimensional albegra A.

For a positive integer s, let Γ_s be the following circular quiver with double arrows:

 $e_i :=$ the trivial path at the vertex *i*, where the subscript *i* of e_i is regarded as modulo *s*. We set the elements $x = \sum_{i=0}^{s-1} a_i$ and $y = \sum_{i=0}^{s-1} b_i$ in the path algebra $K\Gamma_s$. $e_i x^n = x^n e_{i+n} = e_i x^n e_{i+n}$ and $e_i y^n = y^n e_{i+n} = e_i y^n e_{i+n}$ hold for $0 \le i \le s - 1$ and $n \ge 0$. We denote by *I* the ideal generated by x^2 , xy + yx

Date: June 30, 2014.

²⁰¹⁰ Mathematics Subject Classification. 16D20, 16E40, 16G20.

Key words and phrases. Koszul algebra, special biserial algebra, self-injective algebra, Hochschild cohomology.

A. ITABA

and y^2 , that is, $I = \langle e_i x^2, e_i (xy + yx), e_i y^2 \mid 0 \le i \le s - 1 \rangle$. The bound quiver algebra $\Lambda_s := K \Gamma_s / I$ over K. Our purpose is to study the Hochschild cohomology of Λ_s . This algebra Λ_s is a Koszul self-injective special biserial algebra (see Proposition 2.2), but is not a weakly symmetric algebra for $s \geq 3$.

Remark 1.1. For s = 1, 2, 4, the Hochschild cohomology of Λ_s is reserved in [XH], [ST] and [F], respectively.

Definition 1.2. We say that a graded projective resolution

 $\cdots \to P^2 \xrightarrow{d^2} P^1 \xrightarrow{d^1} P^0 \xrightarrow{d^0} M \to 0$

is linear and M is a linear module if for $n \geq 0$, the graded module P^n is generated in degree n. A graded algebra Λ is a Koszul algebra if Λ_0 is a linear module; that is, Λ_0 has a linear projective resolution

$$(\mathbb{L}, e): \dots \to L^2 \xrightarrow{e^2} L^1 \xrightarrow{e^1} L^0 \xrightarrow{e^0} \Lambda_0 \to 0.$$

as a right Λ -module.

Definition 1.3. A = KQ/I is said to be a special biserial algebra, if A satisfies the following (SP1) and (SP2):

- **(SP1):** For each vertex $v \in Q_0$,
 - $\#\{\text{the arrows starting at } v\} \le 2; \text{ and }$
 - #{the arrows ending with v} ≤ 2 .
- **(SP2):** For each arrow $\alpha \in Q_1$,
 - $\#\{\text{the arrows }\beta \text{ with }\beta\alpha \notin I\} \leq 1; \text{ and }$
 - $\#\{\text{the arrows } \gamma \text{ with } \alpha \gamma \notin I\} \leq 1.$

In [GHMS], Green, Hartmann, Marcos and Solberg constructed a minimal projective bimodule resolution for any Koszul algebra by using some sets \mathcal{G}^n $(n \geq 0)$ introduced in [GSZ]. These sets \mathcal{G}^n $(n \geq 0)$ are also used in the papers [FO], [ST], [ScSn] in constructing a minimal projective bimodule resolution of several weakly symmetric algebras. By this same method, we give the minimal projective bimodule resolution of Λ_s for $s \ge 1$ and compute the Hochschild cohomology group $\operatorname{HH}^n(\Lambda_s)$ of Λ_s $(n \ge 0)$ in the case where $s \ge 3$.

In [SnSo], Snashall and Solberg have defined the support varieties of finitely generated modules over a finite-dimensional algebra by using the Hochschild cohomology ring modulo nilpotence. In [EHTSS], for any finite-dimensional algebra, Erdmann, Holloway, Taillefer, Snashall and Solberg have introduced certain finiteness conditions, denoted by (Fg), and showed that if a finite-dimensuonal algebra satisfies (Fg), then the support varieties have a lot analogous properties of support varieties for finite group algebras. These works inspire us to study the Hochschild cohomology rings modulo nilpotence of finite-dimensional algebras. We determine generators and relations of the Hochschild cohomology ring modulo nilpotence $\mathrm{HH}^*(\Lambda_s)/\mathcal{N}_{\Lambda_s}$ for all $s \geq 3$.

2. A projective bimodule resolution $(Q^{\bullet}, \partial^{\bullet})$ of Λ_s

Let \mathcal{G}^0 be the set of all vertices of Q, \mathcal{G}^1 the set of all arrows of Q, and \mathcal{G}^2 a minimal set of uniform generators of I. In [GSZ], Green-Solberg-Zacharia showed that, for each n > 3, there are sets \mathcal{G}^n of uniform elements in KQ such that we have a minimal projective resolution $(P^{\bullet}, d^{\bullet})$ of the right A-module A/rad A satisfying the following conditions:

- (a) For $n \ge 0$, $P^n = \bigoplus_{x \in \mathcal{G}^n} t(x)A$.
- (b) For $x \in \mathcal{G}^n$, there are unique elements $r_y, s_z \in KQ$, where $y \in \mathcal{G}^{n-1}$ and $z \in \mathcal{G}^{n-2}$, such that $\begin{aligned} x &= \sum_{y \in \mathcal{G}^{n-1}} yr_y = \sum_{z \in \mathcal{G}^{n-2}} zs_z. \\ \text{(c) For } n &\geq 1, \text{ the differential } d^n : P^n \to P^{n-1} \text{ is defined by } d^n(t(x)\lambda) = \sum_{y \in \mathcal{G}^{n-1}} r_y t(x)\lambda \text{ for } x \in \mathcal{G}^n \text{ and} \end{aligned}$
- $\lambda \in A$, where r_y denotes the element in the expression (b).

A minimal projective bimodule resolution of any Koszul algebra is given in [GHMS] by using the sets \mathcal{G}^n $(n \ge 0)$ in [GSZ]. We construct sets \mathcal{G}^n $(n \ge 0)$ for the right Λ_s -modules $\Lambda_s/\operatorname{rad} \Lambda_s$ by following [GHMS]. We give a projective bimodule resolution $(Q^{\bullet}, \partial^{\bullet})$ of Λ_s .

In order to construct sets \mathcal{G}^n for $\Lambda_s/\mathrm{rad}\Lambda_s$, we define the following elements in $K\Gamma_s$:

Definition 2.1. For $0 \le i \le s - 1$, we put $g_{i,0}^0 := e_i$, and, for $n \ge 1$, we inductively define the elements $g_{i,j}^n \in K\Gamma_s$ as follows:

By using Definition 2.1, we put the set

$$\mathcal{G}^{n} = \{ g_{i,j}^{n} \mid 0 \le i \le s - 1; 1 \le j \le n - 1 \}$$

for all $n \ge 0$. It is easy to check that these sets satisfying the conditions (a), (b) and (c) in the beginning of this section.

Now, it can be seen that Λ_s is a self-injective Koszul algebra. We have the following proposition.

Proposition 2.2. The algebra Λ_s is a self-injective Koszul algebra.

In order to obtain a minimal Λ_s^e -projective resolution $(Q^{\bullet}, \partial^{\bullet})$ of Λ_s , we need the following lemma.

Lemma 2.3. For $n \ge 1$, we have the following equations hold:

- $\begin{array}{l} \bullet \ g_{i,0}^n = yg_{i+1,0}^{n-1} \quad for \ 0 \leq i \leq s-1, \\ \bullet \ g_{i,j}^n = yg_{i+1,j}^{n-1} + xg_{i+1,j-1}^{n-1} \quad for \ 0 \leq i \leq s-1 \ and \ 1 \leq j \leq n-1, \\ \bullet \ g_{i,n}^n = xg_{i+1,n-1}^{n-1} \quad for \ 0 \leq i \leq s-1. \end{array}$

By using the sets \mathcal{G}^n $(n \ge 0)$, we give a minimal projective resolution $(Q^{\bullet}, \partial^{\bullet})$ of Λ_s as a right Λ_s^e -module. First, we start with the definition of the projective module Q^n for $n \ge 0$. For $n \ge 0$, we denote the elements $o(g_{i,j}^n) \otimes t(g_{i,j}^n)$ by $b_{i,j}^n$ in $\Lambda_s o(g_{i,j}^n) \otimes t(g_{i,j}^n) \Lambda_s$ for $0 \le i \le s-1$ and $0 \le j \le n$, where the subscript i of $b_{i,j}^n$ is regarded as modulo s.

Definition 2.4. We define the projective Λ^e_s -module Q^n by the following :

$$Q^{n} := \bigoplus_{g \in \mathcal{G}^{n}} \Lambda_{s} o(g) \otimes t(g) \Lambda_{s} = \bigoplus_{i=0}^{s-1} \bigoplus_{j=0}^{n} \Lambda_{s} b_{i,j}^{n} \Lambda_{s}.$$

Next, by Definition 2.1 and Lemma 2.3, we also define the map ∂^n in the following definition.

Definition 2.5. We define $\partial^0: Q^0 \to \Lambda_s$ to be the multiplication map, and, for $n \ge 1$, $\partial^n: Q^n \to Q^{n-1}$ to be the Λ_s^e -homomorphism determined by

• $b_{i,0}^n \longmapsto b_{i,0}^{n-1}y + (-1)^n y b_{i+1,0}^{n-1}$ for $0 \le i \le s-1$,

•
$$b_{i,j}^n \longmapsto (b_{i,j-1}^{n-1}x + b_{i,j}^{n-1}y) + (-1)^n (yb_{i+1,j}^{n-1} + xb_{i+1,j-1}^{n-1})$$
 for $0 \le i \le s-1; 1 \le j \le n-1$

• $b_{i,n}^{n} \longmapsto b_{i,n-1}^{n-1} x + (-1)^{n} x b_{i+1,n-1}^{n-1}$ for $0 \le i \le s-1$.

By the direct computations, we see that the composite $\partial^n \partial^{n+1}$ is zero for all $n \ge 0$. Therefore, $(Q^{\bullet}, \partial^{\bullet})$ is a complex of $\Lambda^e_{\mathfrak{s}}$ -modules.

Now since Λ_s is Koszul by Proposition 2.2, the following theorem is immediatly from [GHMS].

Theorem 2.6. (Q^{\bullet}, ∂) is a minimal projective Λ_s^e -resolution of Λ_s .

3. Hochschild cohomology groups $\operatorname{HH}^{n}(\Lambda_{s})$

In this section, we calculate the Hochschild cohomology group $\operatorname{HH}^n(\Lambda_s)$ for $n \geq 0$. By applying the functor $\operatorname{Hom}_{\Lambda_{e}^{\bullet}}(-,\Lambda_{s})$ to the resolution $(Q^{\bullet},\partial^{\bullet})$, we have the complex

$$0 \longrightarrow \widehat{Q}^0 \xrightarrow{\widehat{\partial}^1} \widehat{Q}^1 \xrightarrow{\widehat{\partial}^2} \widehat{Q}^2 \xrightarrow{\widehat{\partial}^3} \cdots \xrightarrow{\widehat{\partial}^{n-1}} \widehat{Q}^{n-1} \xrightarrow{\widehat{\partial}^n} \widehat{Q}^n \xrightarrow{\widehat{\partial}^{n+1}} \widehat{Q}^{n+1} \xrightarrow{\widehat{\partial}^{n+2}} \cdots,$$

where $\widehat{Q}^n := \operatorname{Hom}_{\Lambda^e_s}(Q^n, \Lambda_s)$ and $\widehat{\partial}^n := \operatorname{Hom}_{\Lambda^e_s}(\partial^n, \Lambda_s)$. We recall that, for $n \ge 0$, the *n*-th Hochschild cohomology group $\operatorname{HH}^{n}(\Lambda_{s})$ is defined to be the K-space $\operatorname{HH}^{n}(\Lambda_{s}) := \operatorname{Ext}_{\Lambda_{s}^{e}}^{n}(\Lambda_{s}, \Lambda_{s}) = \operatorname{Ker} \widehat{\partial}^{n+1}/\operatorname{Im} \widehat{\partial}^{n}$.

A. ITABA

3.1. The dimension of $\operatorname{Im} \widehat{\partial}^{n+1}$. By direct computation, we get the dimension of $\operatorname{Im} \widehat{\partial}^{n+1}$ for $n \ge 0$: Corollary 3.1. Let n = ms + r for integers $m \ge and \ 0 \le r \le s - 1$. Then the dimension of $\operatorname{Im} \widehat{\partial}^{n+1}$ is as follows:

$$\begin{split} \dim_{K} \operatorname{Im} \widehat{\partial}^{ms+r+1} \\ &= \begin{cases} s(ms+1) & \text{if s odd, m odd, char $K \neq 2$ and $r=0$,} \\ (s-1)(ms+1) & \text{if s even and $r=0$, if m even and $r=0$, or} \\ & \text{if $char $K=2$ and $r=0$,} \\ s(ms+3) & \text{if s odd, m odd, char $K \neq 2$ and $r=1$,} \\ (s-1)(ms+3) & \text{if s even and $r=1$, if m even and $r=1$, or} \\ & \text{if $char $K=2$ and $r=1$,} \\ 0 & \text{otherwise.} \end{cases} \end{split}$$

3.2. The dimension of Ker $\hat{\partial}^{n+1}$. As an immediate consequence, we get the dimension of Ker $\hat{\partial}^{n+1}$ for $n \geq 1$:

Corollary 3.2. Let n = ms + r for integers $m \ge 0$ and $0 \le r \le s - 1$. Then the dimension of Ker $\widehat{\partial}^{n+1}$ is as follows:

$$\begin{split} \dim_K \operatorname{Ker} \widehat{\partial}^{ms+r+1} \\ = \left\{ \begin{array}{ll} 0 & \text{if s odd, m odd, $\operatorname{char} K \neq 2$ and $r=0$,} \\ ms+1 & \text{if s even and $r=0$, if m even and $r=0$, or} \\ s(ms+1) & \text{if s odd, m odd, $\operatorname{char} K \neq 2$ and $r=1$,} \\ (s+1)(ms+1)+2 & \text{if s even and $r=1$, if m even and $r=1$, or} \\ s(ms+3) & \text{if $r=2$,} \\ 0 & \text{otherwise.} \end{array} \right. \end{split}$$

3.3. The dimension formula for the Hochschild cohomology groups $HH^n(\Lambda_s)$. We have the following theorem.

Theorem 3.3. Let n = ms + r for integers $m \ge 0$ and $0 \le r \le s - 1$. Then, for $s \ge 3$, we have the dimension formula for $HH^n(\Lambda_s)$:

$$\dim_{K} \operatorname{HH}^{ms+r}(\Lambda_{s})$$

$$= \begin{cases}
ms+1 & \text{if } s \text{ even and } r = 0, \text{ if } m \text{ even and } r = 0, \text{ or } \\
 & \text{if } \operatorname{char} K = 2 \text{ and } r = 0, \\
2ms+4 & \text{if } s \text{ even and } r = 1, \text{ if } m \text{ even and } r = 1, \text{ or } \\
 & \text{if } \operatorname{char} K = 2 \text{ and } r = 1, \\
ms+3 & \text{if } s \text{ even and } r = 2, \text{ if } m \text{ even and } r = 2, \text{ or } \\
 & \text{if } \operatorname{char} K = 2 \text{ and } r = 2, \\
0 & \text{otherwise.}
\end{cases}$$

4. The Hochschild cohomology ring modulo nilpotence $\mathrm{HH}^*(\Lambda_s)/\mathcal{N}_s$

Recall that the Hochschild cohomology ring of the algebra Λ_s is defined to be the graded ring

$$\operatorname{HH}^*(\Lambda_s) := \operatorname{Ext}^*_{\Lambda_s^e}(\Lambda_s, \Lambda_s) = \bigoplus_{t \ge 0} \operatorname{Ext}^t_{\Lambda_s^e}(\Lambda_s, \Lambda_s)$$

with the Yoneda product. Denote \mathcal{N}_{Λ_s} by the ideal generated by all homogeneous nilpotent elements in HH^{*}(Λ_s). Then the quotient algebra HH^{*}(Λ_s)/ \mathcal{N}_{Λ_s} is called the Hochschild cohomology ring modulo nilpotence of Λ_s . Note that HH^{*}(Λ_s)/ \mathcal{N}_{Λ_s} is a commutative graded algebra (see [SnSo]). Our purpose of this section is to find generators and relations of HH^{*}(Λ_s)/ \mathcal{N}_{Λ_s} for $s \geq 3$. For simplicity, we denote the graded subalgebras $\bigoplus_{t\geq 0}$ HHst(Λ_s) of HH^{*}(Λ_s) by HH^{s*}(Λ_s) and $\bigoplus_{t\geq 0}$ HH^{2st}(Λ_s) by HH^{2s*}(Λ_s). Also, we denote the Yoneda product in HH^{*}(Λ_s) by ×.

Theorem 4.1. For $s \geq 3$, there are the following isomorphisms of commutative graded algebras:

(i) If s is odd and char $K \neq 2$, then

$$\begin{aligned} \mathrm{HH}^*(\Lambda_s)/\mathcal{N}_{\Lambda_s} &\cong \mathrm{HH}^{2s*}(\Lambda_s) \\ &\cong K[z_0,\ldots,z_{2s}]/\langle z_k z_l - z_q z_r \mid k+l = q+r, \ 0 \leq k, l, q, r \leq 2s \rangle, \end{aligned}$$

where z_0, \ldots, z_{2s} are in degree 2s.

(ii) If s is even or char K = 2, then

$$\begin{aligned} \mathrm{HH}^*(\Lambda_s)/\mathcal{N}_{\Lambda_s} &\cong \mathrm{HH}^{s*}(\Lambda_s) \\ &\cong K[z_0,\ldots,z_s]/\langle z_k z_l - z_q z_r \mid k+l = q+r, \ 0 \le k, l, q, r \le s \rangle. \end{aligned}$$

where z_0, \ldots, z_s are in degree s.

Therefore, $\mathrm{HH}^*(\Lambda_s)/\mathcal{N}_{\Lambda_s}$ is finitely generated as an algebra.

We conclude this report with the following remarks.

Remark 4.2. Let $E(\Lambda_s) = \bigoplus_{i\geq 0} \operatorname{Ext}^i(\Lambda_s/\operatorname{rad}\Lambda_s, \Lambda_s/\operatorname{rad}\Lambda_s)$ be the Ext algebra of Λ_s , and let $Z_{gr}(E(\Lambda_s))$ be the graded center of $E(\Lambda_s)$ (see [BGSS], for example). Denote by \mathcal{N}'_{Λ_s} the ideal of $Z_{gr}(E(\Lambda_s))$ generated by all homogeneous nilpotent elements. Since Λ_s is a Koszul algebra by Proposition 2.2, it follows by [BGSS] that $Z_{gr}(E(\Lambda_s))/\mathcal{N}'_{\Lambda_s} \cong \operatorname{HH}^*(\Lambda_s)/\mathcal{N}_{\Lambda_s}$ as graded rings. Therefore, we have the same presentation of $Z_{qr}(E(\Lambda_s))/\mathcal{N}'_{\Lambda_s}$ by generators and relations as that in Theorem 4.1.

Remark 4.3. In [F], Furuya has discussed the Hochschild cohomology of some self-injective special biserial algebra A_T for $T \ge 0$, and in particular he has given a presentation of $\text{HH}^*(A_T)/\mathcal{N}_{A_T}$ by generators and relations in the case T = 0. We easily see that the algebra Λ_4 is isomorphic to A_0 . By setting s = 4 in Theorem 4.1, our presentation actually coincides with that in [F, Theorem 4.1].

References

- [BGSS] R.-O. Buchweitz, E. L. Green, N. Snashall and Ø. Solberg, Multiplicative structures for Koszul algebras, Q. J. Math. 59 (2008), no. 4, 441-454.
- [EHTSS] K. Erdmann, M. Holloway, R. Taillefer, N. Snashall and Ø. Solberg, Support varieties for selfinjective algebras, K-Theory 33 (2004), no. 1, 67-87.
- [F] T. Furuya, Hochschild cohomology for a class of some self-injective special biserial algebras of rank four, arXiv: 1403.6375.
- [FO] T. Furuya and D. Obara, Hochschild cohomology of a class of weakly symmetric algebras with radical cube zero, SUT J. Math. 48 (2012), no. 2, 117-143.
- [GHMS] E.L. Green, G. Hartmann, E. N. Marcos and Ø. Solberg, Resolutions over Koszul algebras, Arch. Math. (Basel) 85 (2005), 118-127.

[GSZ] E.L. Green, Ø. Solberg and D. Zacharia, Minimal projective resolutions, Trans. Amer. Math. Soc. 353 (2001), 2915-2939.

- A. Itaba, On Hochschild cohomology of a self-injective special biserial algebra obtained by a circular quiver with double arrows, arXiv: 1404.2032.
- [S] N. Snashall, Support varieties and the Hochschild cohomology ring modulo nilpotence, Proceedings of the 41st Symposium on Ring Theory and Representation Theory, 68-82, Symp. Ring Theory Represent. Theory Organ. Comm., Tsukuba, 2009.
- [ScSn] S. Schroll and N. Snashall, Hochschild cohomology and support varieties for tame Hecke algebras, Q. J. Math. 62 (2011), no. 4, 1017-1029.
- [SnSo] N. Snashall and Ø. Solberg, Support varieties and Hochschild cohomology rings, Proc. London Math. 81 (2004), 705-732.
- [ST] N. Snashall and R. Taillefer, The Hochschild cohomology ring of a class of special biserial algebras, J. Algebra Appl. 9 (2010), no. 1, 73-122.

[XH] Y. Xu and Y. Han, Hochschild (co)homology of exterior algebras, Comm. Algebra 35 (2007), no. 1, 115-131.

AYAKO ITABA, DEPARTMENT OF MATHEMATICS, TOKYO UNIVERSITY OF SCIENCE, KAGURAZAKA 1-3, SHINJUKU, TOKYO 162-0827, JAPAN

E-mail address: j1110701@ed.tus.ac.jp