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Abstract. In this paper, we give the dimension formula of the cyclic homology of
truncated quiver algebras over a field of positive characteristic and we show the m-
truncated cycles version of the no loops conjecture. This paper is based on joint work
with Katsunori Sanada.

1. Introduction

Let ∆ be a finite quiver and K a field. We fix a positive integer m ≥ 2. The truncated
quiver algebra is defined by K∆/Rm

∆ where Rm
∆ is the two-sided ideal of K∆ generated

by the all paths of length m.
In [11], Sköldberg computes the Hochschild homology of a truncated quiver algebra A

over a commutative ring using an explicit description of the minimal left Ae-projective
resolution P of A. He also computes the Hochschild homology of quadratic monomial
algebras. On the other hand, Cibils gives a useful projective resolution Q for more
general algebras in [4]. If A is a K-algebra with a decomposition A = E ⊕ r, where
E is a separable subalgebra of A and r a two-sided ideal of A, then Cibils ([5]) gives
the E-normalized mixed complex. Sköldberg [12] gives the chain maps between the left
Ae-projective resolution given in [11] and Q above for a quadratic monomial algebra A,
and he obtains the module structure of the cyclic homology by computing the E2-term of
a spectral sequence determined by the above mixed complex due to Cibils. In [1], Ames,
Cagliero and Tirao give chain maps between the left Ae-projective resolutions P and Q
of a truncated quiver algebra A over commutative ring.

In this paper, by means of these chain maps, we obtain the dimension formula of the
cyclic homology of truncated quiver algebras over a field. On the other hand, by means
of [10, Theorem 4.1.13], Taillefer [13] gives a dimension formula for the cyclic homology
of truncated quiver algebras over a field of characteristic zero. Our result generalizes the
formula into the case of the field of any characteristic.

Moreover, we have a result for the m-truncated cycles version of the no loops conjecture
as an application of the chain map in [1] used for the computation of cyclic homology of
truncated quiver algebras.

The no loops conjecture is that for a finite dimensional algebra its ordinary quiver
has no loops if it has finite global dimension. In [3], it is shown that the 2-truncated
cycles version of the no loops conjecture holds by means of truncated quiver algebras,
and the m-truncated cycles version of one is conjectured. We show that the m-truncated
cycles version of the no loops conjecture holds for a class of bound quiver algebras over
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an algebraically closed field as an application of the chain map from Cibils’ projective
resolution (cf. [4]) to Sköldberg’s projective resolution given in [1].

2. Preliminaries

Let ∆ be a finite quiver and m(≥ 2) a positive integer. For α ∈ ∆1, its source and
target are denoted by s(α) and t(α), respectively. A path in ∆ is a sequence of arrows
α1α2 · · ·αn such that t(αi) = s(αi+1) for i = 1, . . . , n − 1. The set of all paths of length
n is denoted by ∆n. By adjoining the element ⊥, we will consider the following set (cf.

[11], [12]): ∆̂ = {⊥}∪
∪∞

i=0∆i. This set is a semigroup with the multiplication defined by

δ · γ =

{
δγ if t(δ) = s(γ),
⊥ otherwise,

δ, γ ∈
∞∪
i=0

∆i; ⊥ · γ = γ · ⊥ = ⊥, γ ∈ ∆̂.

Let K be a commutative ring. Then K∆̂ is a semigroup algebra and the path algebra
K∆ is isomorphic to K∆̂/(⊥). So, K∆ is a ∆̂-graded algebra with a basis consisting of
the paths in ∆. Moreover, K∆ is N-graded, that is, K∆ =

⊕∞
i=0K∆i. In particular, Rm

∆

is ∆̂-graded and N-graded, thus the truncated quiver algebra A = K∆/Rm
∆ is a ∆̂-graded

and N-graded algebra.
For an N-graded vector space V , V+ is defined by V+ =

⊕
i≥1 Vi.

Let ∆ be a finite quiver. For a path γ, |γ| denotes the length of γ. A path γ is said
to be a cycle if |γ| ≥ 1 and its source and target coincide. The period of a cycle γ is
defined by the smallest integer i such that γ = δj (j ≥ 1) for a cycle δ of length i, which
is denoted by per γ. A cycle is said to be a basic cycle if the length of the cycle coincides
with its period. It is also called a proper cycle [6]. Denote by ∆c

n (respectively ∆b
n) the

set of cycles (respectively basic cycles) of length n. Let Gn = ⟨tn⟩ be the cyclic group of
order n and the path α1 · · ·αn−1αn a cycle where αi is an arrow in ∆. Then we define the
action of Gn on ∆c

n by tn · (α1 · · ·αn−1αn) := αnα1 · · ·αn−1, and ∆c
n/Gn denotes the set of

all Gn-orbits on ∆c
n. Similarly, Gn acts on ∆b

n, and ∆b
n/Gn denotes the set of all Gn-orbits

on ∆b
n. For γ̄ ∈ ∆c

n/Gn, we define the period per γ̄ of γ̄ by per γ. For convenience we use
the notation ∆c

0/G0 for the set of vertices ∆0. Throughout this paper, αi(i ≥ 0) denotes
an arrow in ∆.

3. The cyclic homology of truncated quiver algebras

In this section, we introduce the projective resolution and the Hochschild homology of
truncated quiver algebra in [11], and by means of chain maps which are given by Ames,
Cagliero, Tirao, we determine the dimension formula of the cyclic homology of truncated
quiver algebra.

Theorem 1 ([11, Theorem 1]). The following is a projective ∆̂-graded resolution of A as
a left Ae-module:

P : · · · di+1−→ Pi
di−→ · · · d2−→ P1

d1−→ P0
ϵ−→ A −→ 0.

Here the modules are defined by Pi = A⊗K∆0 KΓ(i) ⊗K∆0 A, where Γ(i) is given by

Γ(i) =

{
∆cm if i = 2c (c ≥ 0),
∆cm+1 if i = 2c+ 1 (c ≥ 0),
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and the differentials are defined by

d2c(α⊗ α1 · · ·αcm ⊗ β) =
m−1∑
j=0

αα1 · · ·αj ⊗ α1+j · · ·α(c−1)m+1+j ⊗ α(c−1)m+2+j · · ·αcmβ,

d2c+1(α⊗ α1 · · ·αcm+1 ⊗ β) = αα1 ⊗ α2 · · ·αcm+1 ⊗ β − α⊗ α1 · · ·αcm ⊗ αcm+1β.

The augmentation ε : A⊗K∆0K∆0⊗K∆0A
∼= A⊗K∆0A −→ A is defined by ε(α⊗β) = αβ.

Theorem 2 ([11, Theorem 2]). Let K be a commutative ring and A a truncated quiver
algebra K∆/Rm

∆ and q = cm + e for 0 ≤ e ≤ m − 1. Then the degree q part of the pth
Hochschild homology HHp(A) is given by

HHp,q(A) =



Kaq if 1 ≤ e ≤ m− 1 and 2c ≤ p ≤ 2c+ 1,⊕
r|q

(
Kgcd(m,r)−1 ⊕Ker

(
· m
gcd(m,r)

: K −→ K
))br

if e = 0 and 0 < 2c− 1 = p,⊕
r|q

(
Kgcd(m,r)−1 ⊕ Coker

(
· m
gcd(m,r)

: K −→ K
))br

if e = 0 and 0 < 2c = p,
K#∆0 if p = q = 0,
0 otherwise.

Here we set aq := #(∆c
q/Gq) and br := #(∆b

r/Gr).

Lemma 3 ([4, Lemma 1.1]). Let ∆ be a finite quiver, I an admissible ideal, K∆0 the
subalgebra of A = K∆/I generated by ∆0 and r the Jacobson radical of A. The following
is a projective resolution of A as a left Ae-module:

Q : · · · −→ A⊗K∆0 r
⊗i

K∆0 ⊗K∆0 A
di−→ A⊗K∆0 r

⊗i−1
K∆0 ⊗K∆0 A −→ · · ·

−→ A⊗K∆0 r ⊗K∆0 A
d1−→ A⊗K∆0 A

d0−→ A −→ 0,

where the differentials dn(n ≥ 0) are defined by d0(λ[ ]µ) = λµ and di(λ[x1| · · · |xi]µ) =

λx1[x2| · · · |xi]µ+
∑i−1

j=1(−1)jλ[x1| · · · |xjxj+1| · · · |xi]µ+ (−1)iλ[x1| · · · |xi−1]xiµ for i ≥ 1,

and we use the bar notation λ[x1| · · · |xi]µ for λ⊗ x1 ⊗ x2 ⊗ · · · ⊗ xi ⊗ µ.

Cibils constructs the following mixed complex.

Theorem 4 ([5], [12]). Let ∆ be a finite quiver, K a field, and A = K∆/I for I a
homogeneous ideal. Define the mixed complex (CK∆0(A), b, B) by CK∆0(A)n = A ⊗K∆e

0

A
⊗n

K∆0
+ and

b(x0[x1| · · · |xn]) = x0x1[x2| · · · |xn] +
n−1∑
i=1

(−1)ix0[x1| · · · |xixi+1| · · · |xn]

+ (−1)nxnx0[x1| · · · |xn−1],

B(x0[x1| · · · |xn]) =
n∑

i=0

(−1)in[xi| · · · |xn|x0| · · · |xi−1].

Then HHn(CK∆0(A)) = HHn(A) and HCn(CK∆0(A)) = HCn(A).
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In particular, if A is a truncated quiver algebra K∆/Rm
∆(m ≥ 2), then the map B in

(CK∆0(A), b, B) respects the ∆c
∗/G∗-grading (cf. [12]). Furthermore if we consider the

double complex BC associate to this mixed complex and filter the total complex TotBC
by the column filtration, then the resulting spectral sequence is ∆c

∗/G∗-graded. Thus
HCn(A) is ∆

c
∗/G∗-graded. Moreover, for γ̄ ∈ ∆c

∗/G∗ the degree γ̄ part of the E1-term of
this spectral sequence is E1

p,q,γ̄ = HHq−p,γ̄(A).
On the other hand, Ames, Cagliero and Tirao find the chain maps between the left

Ae-projective resolutions P and Q of a truncated quiver algebra A over an arbitrary field
as follows:

Proposition 5 ([1]). Define the map ι : P −→ Q as follows:

ι0(α⊗ β) = α[ ]β, ι1(α⊗ α1 ⊗ β) = α[α1]β,

ι2c(α⊗ α1 · · ·αcm ⊗ β)

=
∑

0≤j1,...,jc≤m−2

α[α1 · · ·α1+j1 |α2+j1 |α3+j1 · · ·α3+j1+j2 |α4+j1+j2 | · · ·

|α2c−1+j1+···+jc−1 · · ·α2c−1+j1+···+jc |α2c+j1+···+jc ]α2c+1+j1+···+jc · · ·αcmβ,

ι2c+1(α⊗ α1 · · ·αcm+1 ⊗ β)

=
∑

0≤j1,...,jc≤m−2

α[α1|α2 · · ·α2+j1 |α3+j1 |α4+j1 · · ·α4+j1+j2 |α5+j1+j2| · · ·

|α2c+j1+···+jc−1 · · ·α2c+j1+···+jc |α2c+1+j1+···+jc ]α2c+2+j1+···+jc · · ·αcm+1β.

Then, ι is a chain map.

Proposition 6 ([1]). Let mi be a positive integer for any i ≥ 1. Suppose that xi is the
path αm1+···+mi−1+1 · · ·αm1+···+mi

of length mi. Define the map π : Q −→ P as follows:

π0(α[ ]β) = α⊗ β,

π1(α[x1]β) =

m1∑
j=1

αα1 · · ·αj−1 ⊗ αj ⊗ αj+1 · · ·αm1β,

π2c(α[x1|x2| · · · |x2c]β) =

 α⊗ α1 · · ·αcm ⊗ αcm+1 · · ·αm1+···+m2cβ
if m2i−1 +m2i ≥ m (1 ≤ i ≤ c),

0 otherwise,

π2c+1(α[x1|x2| · · · |x2c+1]β) =


∑m1

j=1 αα1 · · ·αj−1 ⊗ αj · · ·αj+cm⊗
αj+cm+1 · · ·αm1+···+m2c+1β

if m2i +m2i+1 ≥ m (1 ≤ i ≤ c),
0 otherwise.

Then, π is a chain map and πι = idP .

By investigating the basis of the Hochschild homology and finding the chain maps
between the projective resolutions P and Q, we are able to compute B : HHp,γ̄(A) −→
HHp+1,γ̄(A) induced by the differential of the Cibils’ mixed complex. Moreover, for γ̄ ∈
∆c

t/Gt we are able to determine the degree γ̄ part of the E2-term of the spectral sequence
associated with the Cibils’ mixed complex. Therefore we have the following result.
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Theorem 7 ([8, Theorem 5.1]). Suppose that m ≥ 2 and A = K∆/Rm
∆. Then the

dimension formula of the cyclic homology of A is given by, for c ≥ 0,

dimKHC2c(A) = #∆0 +
m−1∑
e=1

acm+e +
c−1∑
c′=0

m−1∑
e=1

∑
r > 0

s.t. rζ|c′m+ e

br

+
c∑

c′=1

∑
r > 0

s.t. r|c′m,
gcd(m, r)ζ|m

br +
c∑

c′=1

∑
r > 0

s.t.rζ| gcd(m, r)c′

(gcd(m, r)− 1)br,

dimKHC2c+1(A) =
∑
r > 0

s.t. r|(c+ 1)m

(gcd(m, r)− 1)br +
c∑

c′=0

m−1∑
e=1

∑
r > 0

s.t. rζ|c′m+ e

br

+
c+1∑
c′=1

∑
r > 0

s.t. r|c′m,
gcd(m, r)ζ|m

br +
c∑

c′=1

∑
r > 0

s.t. rζ| gcd(m, r)c′

(gcd(m, r)− 1)br.

Remark 8. If ζ = 0, then the above result coincides with the result of Taillefer in [13].

Example 9 ([8, Example 5.3]). Let K be a field of characteristic ζ and ∆ the following
quiver:

1
s

s− 1

s− 2

3

2

as a1

as−1
a2

Suppose m ≥ 2 and A = K∆/Rm
∆ , which is called a truncated cycle algebra in [2]. Since

ar =

{
1 if s|r,
0 otherwise,

br =

{
1 if s = r,
0 otherwise,

we have, for c ≥ 0,

dimKHC2c(A) = s+

[
(c+ 1)m− 1

s

]
−
[cm
s

]
+

c−1∑
c′=0

([
(c′ + 1)m− 1

sζ

]
−

[
c′m

sζ

])

+

([
m

gcd(m, s)ζ

]
−

[
m− 1

gcd(m, s)ζ

]) c∑
c′=1

([
c′m

s

]
−
[
c′m− 1

s

])
+ (gcd(m, s)− 1)

[
gcd(m, s)c

sζ

]
,
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dimKHC2c+1(A) = (gcd(m, s)− 1)

([
(c+ 1)m

s

]
−

[
(c+ 1)m− 1

s

]
+

[
gcd(m, s)c

sζ

])
+

([
m

gcd(m, s)ζ

]
−
[

m− 1

gcd(m, s)ζ

]) c+1∑
c′=1

([
c′m

s

]
−

[
c′m− 1

s

])

+
c∑

c′=0

([
(c′ + 1)m− 1

sζ

]
−
[
c′m

sζ

])
.

4. The m-truncated cycles version of the “no loops conjecture”

In this section, we introduce the result that if an algebra K∆/I with I ⊂ Rm
∆ has an

m-truncated cycle (see Definition 10), then the algebra has infinite Hochschild homology
dimension. Moreover, we show that the algebra K∆/I satisfies the m-truncated cycles
version of the “no loops conjecture”.

If I ⊂ R2
∆ is an ideal in the path algebra K∆, then a finite sequence α1, . . . , αu of

arrows which satisfies the equations t(αi) = s(αi+1) (i = 1, . . . , u− 1) and t(αu) = s(α1)
is called a cycle in K∆/I in [3].

Definition 10 ([3]). A cycle α1, . . . , αu in K∆/I is m-truncated for an integer m ≥ 2 if

αi · · ·αi+m−1 = 0 and αi · · ·αi+m−2 ̸= 0 in K∆/I

for all i, where the indices are modulo u.

In order to describe the result which is used that the m-truncated cycles of the no loops
conjecture we recall that the Hochschild homology dimension of the algebra A is defined
by HHdimA := sup{n ∈ Z |HHn(A) ̸= 0}.

Theorem 11 ([9]). Let K be a field, ∆ a finite quiver and I ⊂ K∆ an ideal contained in
Rm

∆. Suppose that K∆/I contains an m-truncated cycle α1, . . . , αu. Then for every n ≥ 1
with un ≡ 0 (mod m), the element

α(c−1)m+2 · · ·αcm ⊗ α1 ⊗ α2 · · ·αm ⊗ αm+1

⊗ αm+2 · · ·α2m ⊗ α2m+1 ⊗ · · · ⊗ α(c−2)m+2 · · ·α(c−1)m ⊗ α(c−1)m+1,

where c = un/m, represents a nonzero element in HH2c−1(K∆/I). In particular, the
Hochschild homology dimension HHdim (K∆/I) = ∞.

For a basic and connected finite dimensional K-algebra A, in the case the ground
field K is an algebraically closed field, it is well known that the projective dimension
of A as a left Ae-module is equal to global dimension gl.dimA of A (cf. [7]). Hence,
HHdimA ≤ gl.dimA. Therefore, by the above theorem, we have the following result
which generalizes [3, Collorary 3.3] in the case the ground field is an algebraically closed
field.

Corollary 12 ([9]). Let K be an algebraically closed field, ∆ a finite quiver and I an
admissible ideal in K∆ with I ⊂ Rm

∆. If the algebra K∆/I has finite global dimension,
then it contains no m-truncated cycles.
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Example 13 ([9]). Let A be an algebra given by the quiver
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��	�
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γ
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α1

__?????
α2

����
��

�

α3 ��
??

??
?

α4

??�����

β1
99rrrrrrr
β2

��β3

eeLLLLLLL

with relations:
αiαi+1αi+2 = β1β2β3 = 0, β2β3α1 = β2β3γ,

where the indices of αi are modulo 4 (1 ≤ i ≤ 4). Then A has the 3-truncated cycle
α1, α2, α3, α4. By the Theorem 11, for every n ≥ 1 with n ≡ 0 (mod 3), the element
(α3α4⊗α1⊗α2α3⊗α4⊗α1α2⊗α3⊗α4α1⊗α2)

⊗(n/3) is a nonzero element in HH(8n/3)−1(A).
So we have HHdimA = ∞. Therefore, the global dimension of A is infinite.
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[11] E. Sköldberg, Hochschild homology of truncated and quadratic monomial algebras, J. Lond. Math.

Soc. (2) 59 (1999), 76–86.
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