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1. Almost Gonrestein associated graded rings

This paper purposes to expore the question of how the almost Gorenstein property
of base local rings is inherited from that of the associated graded rings. Let us begin
with our definition.

Definition 1.1. ([GTT]) Let R be a Noetherian local ring with maximal ideal m. Then
R is said to be an almost Gorenstein local ring, if the following conditions are satisfied.

(1) R is a Cohen-Macaulay local ring, which possesses the canonical module KR and
(2) there exists an exact sequence

0 → R → KR → C → 0

of R-modules such that µR(C) = e0m(C).

Here µR(C) (resp. e0m(C)) denotes the number of elements in a minimal system of
generators for C (resp. the multiplicity of C with respect to m).

Similarly a Noetherian graded ring R =
⊕

n≥0Rn with R0 a local ring is called an
almost Gorenstein graded ring, if R is a Cohen-Macaulay ring, possessing the graded
canonical module KR, such that there exists an exact sequence

0 → R → KR(−a) → C → 0

of graded R-modules with µR(C) = e0M(C), where a = a(R) is the a–invariant of R and
M is the graded maximal ideal of R.
The main result of this paper is the following.

Theorem 1.2. Let (R,m) be a Cohen-Macaulay local ring with infinite residue class
field, possessing the canonical module KR of R. Let I be an m-primary ideal of R
and grI(R) =

⊕
n≥0 I

n/In+1 the associated graded ring of I. If grI(R) is an almost
Gorenstein graded ring with r(grI(R))) = r(R), then R is an almost Gorenstein local
ring.

Theorem 1.2 is reduced to the case where dimR = 1 by induction on dimR. We
begin with the key result of dimension one. Let us fix our notation.
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Setting 1.3. Let R be a Cohen-Macaulay local ring of dimension one. We consider a
filtration F = {In}n∈Z of ideals of R. Therefore {In}n∈Z is a family of ideals of R which
satisfies the following three conditions: (1) I0 = R but I1 ̸= R, (2) In ⊇ In+1 for all
n ∈ Z, and (3) ImIn ⊆ Im+n for all m,n ∈ Z. We set

R = R(F) =
∑
n≥0

Int
n ⊆ R[t],

R′ = R′(F) =
∑
n∈Z

Int
n ⊆ R[t, t−1], and

G = G(F) = R′(F)/t−1R′(F),

which we call them, the Rees algebra, the extended Rees algebra, and the associated
graded ring of F , respectively (here t stands for an indeterminate). We assume the
following three conditions are satisfied:

(1) R is a homomorphic image of a Gorenstein ring,
(2) R is a Noetherian ring, and
(3) G is a Cohen-Macaulay ring.

Let a(G) = max{n ∈ Z | [H1
M(G)]n ̸= (0)} ([GW]), where {[H1

M(G)]n}n∈Z stands for
the homogeneous components of the first graded local cohomology module H1

M(G) of G
with respect to the graded maximal ideal M = mG + G+ of G. We set c = a(G) + 1
and K = KR. Then by [GI, Theorem 1.1] we have a unique family ω = {ωn}n∈Z of
R-submodules of K satisfying the following four conditions:

(i) ωn ⊇ ωn+1 for all n ∈ Z,
(ii) ωn = K for all n ≤ −c,
(iii) Imωn ⊆ ωm+n for all m,n ∈ Z, and
(iv) KR′ ∼= R′(ω) and KG

∼= G(ω)(−1) as graded R′-modules,

where R′(ω) =
∑

n∈Z ωnt
n ⊂ K[t, t−1] and G(ω) = R′(ω)/t−1R′(ω), and KR′ and KG

denote respectively the graded canonical modules of R′ and G. Notice that [G(ω)]n =
(0) if n < −c (see condition (ii)).
With this notation we have the following.

Lemma 1.4. There exist integers d > 0 and k ≥ 0 such that ωdn−c = In−kd ωdk−c for all
n ≥ k.

Proof. Let L = R(ω)(−c), where R(ω) =
∑

n≥0 ωnt
n ⊆ K[t]. Then L is a finitely

generated graded R-module such that Ln = (0) for n < 0. We choose an integer
d≫ 0 so that the Veronesean subring R(d) =

∑
n≥0Rdn of R with order d is standard,

whence R(d) = R[Rd]. Then, because L(d) =
∑

n≥0 Ldn is a finitely generated graded

R(d)-module, we may choose a homogeneous system {fi}1≤i≤ℓ of generators of L(d) so
that for each 1 ≤ i ≤ ℓ

fi ∈ [L(d)]ki = [R(ω)]dki−c
2



with ki ≥ c
d
. Setting k = max{ki | 1 ≤ i ≤ ℓ}, for all n ≥ k we get

ωdn−c ⊆
ℓ∑
i=1

Id(n−ki)ωdki−c ⊆ In−kd ωdk−c,

as asserted. □
Let us fix an element f ∈ K and let ξ = ft−c ∈ G(ω)(−c) denote the image of

ft−c ∈ R′(ω) in G(ω). Assume (0) :G ξ = (0) and consider the following short exact
sequence

(E) 0 → G
ψ→ G(ω)(−c) → C → 0,

of graded G-modules, where ψ(1) = ξ. Then Cp = (0) for all p ∈ AssG, because
[G(ω)]p ∼= [KG]p ∼= KGp as Gp-modules by condition (iv) above and ℓGp(Gp) = ℓGp(KGp)
([HK, Korollar 6.4]). Therefore ℓR(C) = ℓG(C) < ∞ since dimG = 1, so that C is
finitely graded. We now consider the exact sequence

R′ φ→ R′(ω)(−c) → D → 0

of graded R′-modules defined by φ(1) = ft−c. Then C ∼= D/uD as a G-module, where
u = t−1. Notice that dimR′/p = 2 for all p ∈ AssR′, because R′ is a Cohen-Macaulay
ring of dimension 2. We then have Dp = (0) for all p ∈ AssR′, since dimR′ D ≤
1. Hence the homomorphism φ is injective, because R′(ω) ∼= KR′ by condition (iv)
and ℓR′

p
([R′(ω)]p) = ℓR′p([KR′ ]p) = ℓR′p(KR′

p
) = ℓR′

p
(R′

p) for all p ∈ AssR′. The
snake lemma shows u acts on D as a non-zerodivisor, since u acts on R′(ω) as a non-
zerodivisor.
Let us suppose that C ̸= (0) and set S = {n ∈ Z | Cn ̸= (0)}. We write S = {n1 <

n2 < · · · < nℓ}, where ℓ = ♯S > 0. We then have the following.

Lemma 1.5. Dn = (0) if n > nℓ and Dn
∼= K/Rf if n ≤ 0. Consequently, ℓR(K/Rf) =

ℓR(C).

Proof. Let n > nℓ. Then Cn = (0). By exact sequence (E) above, we get In/In+1
∼=

ωn−c/ωn+1−c, whence ωn−c = Inf + ωn+1−c. Therefore ωn − c ⊆ Inf + ωq for all q ∈ Z.
By Lemma 1.4 we may choose integers d≫ 0 and k ≥ 0 so that

ωn−c ⊆ Inf + ωdm−c ⊆ Inf + Im−k
d f

for all m ≥ k. Consequently, ωn−c = Inf . Hence Dn = (0) for all n ≥ nℓ. If n ≤ 0, then
Dn

∼= [R′(ω)(−c)]n/R′
nf

∼= K/Rf (see condition (ii) above). To see the last assertion,
notice that because S = {n1 < n2 < · · · < nℓ}, Dn = un−n1Dn1

∼= Dn1 if n ≤ n1 and
Dn = uni+1−nDni+1

∼= Dni+1
if 1 ≤ i < ℓ and ni < n ≤ ni+1. Therefore since Dn = (0)

for n > nℓ, we get

ℓR(K/Rf) = ℓR(D0) = ℓR(Dn1) =
ℓ∑
i=1

ℓR(Cni
) = ℓR(C).

□
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Exact sequence (E) above now shows the following estimations. Remember that
r(R) ≤ r(G), because KG[t] = K[t, t−1] so that µR(K) ≤ µG(KG).

Proposition 1.6. r(R)− 1 ≤ r(G)− 1 ≤ µG(C) ≤ ℓG(C) = ℓR(C) = ℓR(K/Rf).

We are now back to a general situation of Setting 1.3.

Theorem 1.7. Let G be as in Setting 1.3 and assume that G is an almost Gorenstein
graded ring with r(G) = r(R). Then R is an almost Gorenstein local ring.

Proof. We may assume that G is not a Gorenstein ring. We choose an exact sequence

0 → G
ψ→ G(ω)(−c) → C → 0

of graded G-modules so that C ̸= (0) and MC = (0). Then µG(C) = ℓG(C). We
set ξ = ψ(1) and write ξ = ft−c with f ∈ K. Hence (0) :G ξ = (0). We now look
at the estimations stated in Proposition 1.6. If r(R) − 1 = ℓG(C), then ℓR(K/Rf) =
µR(K/Rf) because r(R)− 1 = µR(K)− 1 ≤ µR(K/Rf) ≤ ℓR(K/Rf) = ℓG(C), so that
m·(K/Rf) = (0). Consequently, we get the exact sequence

0 → R
φ→ K → K/Rf → 0

of R-modules with φ(1) = f , whence R is an almost Gorenstein local ring. If r(R)−1 <
ℓG(C), then ψ(1) ∈ M·[G(ω)(−c)] because r(G)− 1 < µG(C), so that GM is a discrete
valuation ring. This is impossible, since G is not a Gorenstein ring. □

The converse of Theorem 1.7 is also true when G satisfies some additional conditions.
To see this, we need the following. Recall that our graded ring G is said to be level, if
KG = G·[KG]−a, where a = a(G).

Lemma 1.8. Suppose that Q(R̂) is a Gorenstein ring and the field R/m is infinite. Let
us choose a canonical ideal K of R so that R ⊆ K ⊆ R. Let a ∈ m be a regular element
of R such that I = aK ⊊ R. We then have the following.

(1) Suppose that G is an integral domain. Then there is an element f ∈ K \ ω1−c
so that af ∈ I generates a minimal reduction of I. Hence (0) :G ξ = (0), where
ξ = ft−c ∈ G(ω)(−c).

(2) Suppose that Q(G) is a Gorenstein ring and G is a level ring. Then there is
an element f ∈ K such that af ∈ I generates a reduction of I and Gp· ξ1 =

[G(ω)(−c)]p ∼= Gp for all p ∈ AssG, where ξ = ft−c ∈ G(ω)(−c). Hence
(0) :G ξ = (0).

Proof. (1) Let L = ω1−c. Then aL ⊊ aK = I, since L ⊊ K. We write
I = (x1, x2, . . . , xn) such that each xi generates a minimal reduction of I. Choose
f = xi so that xi ̸∈ L, which is the required one.
(2) Let M = G(ω)(−c). Then since M = G·M0 and Mp ̸= (0), M0 ̸⊆ pMp ∩M for

any p ∈ AssG. Choose an element f ∈ K so that af generates a reduction of I and
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ξ = ft−c ̸∈ pMp ∩M for any p ∈ AssG. Then Gp· ξ1 = Mp for all p ∈ AssG, because
Mp

∼= Gp. □

Theorem 1.9. Suppose that R is an almost Gorenstein local ring and the field R/m is
infinite. Assume that one of the following conditions is satisfied:

(1) G is an integral domain;
(2) Q(G) is a Gorenstein ring and G is a level ring.

Then G is an almost Gorenstein graded ring with r(G) = r(R).

Proof. The ring Q(R̂) is Gorenstein, since R is an almost Gorenstein local ring. Let K
be a canonical ideal of R such that R ⊆ K ⊆ R. We choose an element f ∈ K and
a ∈ m as in Lemma 1.8. Then µR(K/Rf) = r(R) − 1, since f is a part of a minimal
system of generators of K (recall that af generates a minimal reduction of I = aK).
Therefore by Proposition 1.6, r(G) = r(R) and M·C = (0), whence G is an almost
Gorenstein graded ring. □

To prove Theorem 1.2, we need one more result.

Proposition 1.10. Let G = G0[G1] be a Noetherian standard graded ring. Assume
that G0 is an Artinian local ring with infinite residue class field. If G is an almost
Gorenstein graded ring with dimG ≥ 2, then G/(x) is an almost Gorenstein graded
ring for some non-zerodivisor x ∈ G1.

Proof. We may assume that G is not a Gorenstein ring. Let m be the maximal ideal of
G0 and set M = mG+G+. We consider the sequence

0 → G→ KG(−a) → C → 0

of graded G-modules such that µG(C) = e0M(C), where a = a(G) is the a-invariant of
G. Then because the field G0/m is infinite and the ideal G+ = (G1) of G is a reduction
of M, we may choose an element x ∈ G1 so that x is G-regular and superficial for
C with respect to M. We set G = G/(x) and remember that x is C-regular, as
dimGC = dimG− 1 > 0. We then have the exact sequence

0 → G/(x) → (KG/xKG)(−a) → C/xC → 0

of graded G-modules. We now notice that a(G) = a+ 1 and that

(KG/xKG)(−a) ∼= KG(−(a+ 1))

as a graded G-module, while we see

e0M/(x)(C/xC) = e0M(C) = µG(C) = µG(C/xC),

since x is superficial for C with respect to M. Thus G is an almost Gorenstein graded
ring. □
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Proof of Theorem 1.2. We set d = dimR and G = grI(R). We may assume that G is
not a Gorenstein ring. Hence d = dimG ≥ 1. By Theorem 1.7 we may also assume that
d > 1 and that our assertion holds true for d− 1. Let us consider an exact sequence

0 → G→ KG(−a) → C → 0

of graded G-modules with µG(C) = e0M(C), where M = mG + G+ and a = a(G). We
choose an element a ∈ I so that the initial form a∗ = a + I2 ∈ G1 = I/I2 of a is
G-regular and G/a∗G = grI/(a)(R/(a)) is an almost Gorenstein graded ring (this choice
is possible; see Proposition 1.10). Then the hypothesis on d shows R/(a) is an almost
Gorenstein local ring. Therefore R is an almost Gorenstein local ring, because a is
R-regular. □
We readily get the following, since r(R) ≤ r(grI(R)).

Corollary 1.11. Let (R,m) be a Noetherian local ring with infinite residue class field.
Suppose that R is a homomorphic image of a Gorenstein local ring. Let I be an m-
primary ideal of R and assume that grI(R) =

⊕
n≥0 I

n/In+1 is an almost Gorenstein
graded ring. Then R is an almost Gorenstein local ring, if r(grI(R))) = 2
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