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inverse problems through partial differential equations and related topics), 数理解析研究
所講究録 2174 (2021), 59–72



[64] O. D. Kellogg, Foundations of Potential Theory, Dover, New York, 1953.

[65] D. Khavinson, M. Putinar, and H.S. Shapiro, Poincaré’s variational problem in potential
theory. Arch. Ration. Mech. Anal. 185(1) (2007), 143–184.

[66] S. L. Krushkal, Chapter 11 - Quasiconformal Extensions and Reflections, Editor(s): R.
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