参考文献 (2023年6月時点 抜粋 (PDF版はこちら) )

フォントや字体の乱れ、ご容赦下さい。

 

1.     M. Agranovich, Sobolev Spaces, Their Generalizations, and Elliptic Problems in Smooth and Lipschitz Domains, Springer Monographs in Mathematics, Springer, 2015.

2.     H. Ammari, G. Ciaolo, H. Kang, H. Lee and G. W. Milton. Spectral theory of a Neumann- Poincar´e-type operator and analysis of cloaking due to anomalous localized resonance, Arch. Ration. Mech. An. 208 (2013), 667–692.

3.     H. Ammari, Y. T. Chow and H. Liu, Quantum ergodicity and localization of plasmon resonances, Jour. Funct. Anal., 285(4) (2023), 109976.

4.     H. Ammari, H. Kang, and H. Lee, Layer potential techniques in spectral analysis, Math- ematical Surveys and Monographs, 153 American Math. Soc., Providence RI, (2009).

5.     K. Ando and H. Kang, Analysis of plasmon resonance on smooth domains using spectral properties of the Neumann–Poincar´e operator, J. Math. Anal. Appl. 435(1) (2016), 162– 178.

6.     K. Ando, H. Kang, S. Lee and Y. Miyanishi, Spectral structure of the Neumann-Poincare operator on thin ellipsoids and flat domains, SIAM Jour. Math. Anal., 54(6)(2022), 6164- 6185

7.     K. Ando, H. Kang, M. Putinar and Y. Miyanishi, Spectral analysis of Neumann-Poincar´e operator, Revue Roumaine Math. Pures Appl., 66(3-4) (2021), 545–575.

8.    K. Ando, H. Kang and Y. Miyanishi, Elastic Neumann-Poincar´e operators on three dimensional smooth domains: Polynomial compactness and spectral structure, Int. Math. Res. Notices, rnx258, (2017).

9.     K. Ando, H. Kang and Y. Miyanishi, Exponential decay estimates of the eigenvalues for the Neumann–Poincar´e operator on analytic boundaries in two dimensions, J. Integral Equations Applications, 30(4) (2018), 473–489.

10.  K. Ando, H. Kang and Y. Miyanishi, Spectral structure of the Neumann-Poincar´e oper- ator on thin domains in two dimensions, Jour Anal. Math., 146(2022), 791–800.

11.   K. Ando, H. Kang, Y. Miyanishi and T. Nakazawa, Surface Localization of Plasmons in Three Dimensions and Convexity, SIAM Jour. Appl. Math., 81(3) (2021), 1020-1033

12.   K. Ando, H. Kang, Y. Miyanishi and E. Ushikoshi, The first Hadamard variation of Neumann–Poincar´e eigenvalues, Proc. Amer. Math. Soc. 147 (2019), 1073–1080.

13.   K. Ando, Y. Ji, H. Kang, D. Kawagoe, and Y. Miyanishi, Spectral structure of the Neumann–Poincar´e operator on tori, Ann. I. H. Poincare-AN 36(7), 1817–1828.

14.     W. Blaschke, Voresungen U¨ber Differentialgeometrie III, Berlin: Springer (1929)

15.   J. Blumenfeld and W. Mayer, U¨ber poincar´e fundamental funktionen, Sitz. Wien. Akad. Wiss., Math.-Nat. Klasse 122, Abt. IIa (1914), 2011–2047.

16.   E. Bonnetier and F. Triki, On the spectrum of Poincar´e variational problem for two close-to-touching inclusions in 2D, Arch. Ration. Mech. An. 209 (2013), 541–567.

17.     Louis Boutet Monvel, Boundary problems for pseudo-differential operators, Acta Math., 126, (1971), 11–51.

18.  T. Carleman, Uber das Neumann-Poincar´esche problem fu¨r ein gebiet mit ecken, Almquist and Wiksells, Uppsala, 1916.

19.     R. R. Coifman and Y. Meyer, Au dul`a des op´erateurs pseudodiff´erentiels, Asterisque 57 (1978), 1–185.

20.  R. R. Coifman, A. McIntosh and Y. Meyer, L’integrale de Cauchy Definit un Operateur Borne sur L2 Pour Les Courbes Lipschitziennes, 116 (2) (1982), 361–387.

21.   B.E.J. Dahlberg: On the Poisson integral for Lipschitz and C1-domains, Studia Math. 66 (1979) 13–24.

22.  E. I. Fredholm, Sur une classe d’equations fonctionnelles, Acta Mathematica, 27 (1903), 365–390.

23.  S. Fukushima, Y. Ji and H. Kang, A decomposition theorem of surface vector fields and spectral structure of the Neumann-Poincar´e operator in elasticity, arXiv:2211.15879

24.    S. Fukushima, H. Kang and Y. Miyanishi, Decay rate of the eigenvalues of the Neumann-Poincar´e operator, arXiv:2304.04772

25.     D. Grieser, The plasmonic eigenvalue problem, Rev. Math. Phys. 26 (2014), 1450005.

26.  G. Grubb, Spectral asymptotics for nonsmooth singular green operators, Comm. P. D. E., 39: (2014), 530–573.

27.  J. Helsing, H. Kang and M. Lim, Classification of spectra of the Neumann–Poincar´e operator on planar domains with corners by resonance, Ann. I. H. Poincare-AN, to appear., arXiv:1603.03522, 2016.

28.  J. Helsing and K.-M. Perfekt, The spectra of harmonic layer potential operators on domains with rotationally symmetric conical points, Journal de Math´ematiques Pures et Appliqu´es 118 (2018), 235–287.

29.  S. Hofmann, M. Mitrea and M. Taylor, Singular Integrals and Elliptic Boundary Prob- lems on Regular Semmes–Kenig–Toro Domains, Int. Math. Res. Notices, 2010 (2010), 2567–2865

30.  Y. Ji and H. Kang, A concavity condition for existence of a negative Neumann-Poincar´e eigenvalue in three dimensions, Proc. Amer. Math. 147 (2019), 3431-3438

31.   Y. Jung and M. Lim, A decay estimate for the eigenvalues of the Neumann–Poincar´e operator in two dimensions using the Grunsky coefficients, arXiv:1811.05070

32.  H. Kang, K. Kim, H. Lee, J. Shin and S. Yu, Spectral properties of the Neumann– Poincar´e operator and uniformity of estimates for the conductivity equation with complex coefficients, J. London Math. Soc. (2) 93 (2016), 519–546.

33.  H. Kang, M. Lim and S. Yu, Spectral resolution of the Neumann-Poincar´e operator on intersecting disks and analysis of plasmon resonance, arXiv:1501.02952, 2015.

34.    O. D. Kellogg, Foundations of Potential Theory, Dover, New York, 1953.

35.  D. Khavinson, M. Putinar, and H.S. Shapiro, Poincar´e’s variational problem in potential theory. Arch. Ration. Mech. Anal. 185(1) (2007), 143–184.

36.    S. L. Krushkal, Chapter 11 - Quasiconformal Extensions and Reflections, Editor(s): R.

Ku¨hnau, Handbook of Complex Analysis, North-Holland, 2, (2005), 507-553

37.  E. Martensen, A spectral property of the electrostatic integral operator, J. Math. Anal. Appl., 238 (1999), 551–557.

38.  I. D. Mayergoyz, D. R. Fredkin and Z. Zhang, Electrostatic (plasmon) resonances in nanoparticles, Phys. Rev. B, 72 (2005), 155412.

39.  D. Mitrea, I. Mitrea and M. Mitrea Geometric Harmonic Analysis I–V, Developments in Mathematics, Springer Cham

40.    F. C. Marques and A. Neves, Min-Max theory and the Willmore conjecture, Anal. Math. 179 (2014), 683–782.

41.   L. Marta and K. Perfekt, The quasi-static plasmonic problem for polyhedra, Math. Ann., (2022), https://doi.org/10.1007/s00208-022-02481-x

42.  V. G. Maz’ya, Boundary Integral Equations, Itogi Nauki i Techniki, Fundamental Di- rections, vol. 27, Analysis-4, Viniti, 1988, 131–228.

43.  G.W. Milton and N.-A.P. Nicorovici, On the cloaking effects associated with anomalous localized resonance, Proc. R. Soc. A 462 (2006), 3027–3059.

44.  S. G. Mikhlin: Mathematical Physics, an Advanced Course. North Holland Pub. Comp., Amsterdam (1970).

45.  Y. Miyanishi, Weyl’s law for the eigenvalues of the Neumann–Poincar´e operators in three dimensions: Willmore energy and surface geometry, Advances in Math., 406 (2022), 108547.

46.  Y. Miyanishi, A short note on decay rates of odd partitions: An application of spectral asymptotics of the Neumann–Poincar´e operators, Arxiv:2305.01916, submitted.

47.  宮西 吉久, ノイマン・ポアンカレ作用素のスペクトル理論とその応用, 2019 年度 秋季総合分科会, 函数解析学分科会(金沢大学) 特別講演アブストラクト

48.  Y. Miyanishi and G. Rozenblum, Eigenvalues of the Neumann–Poincare operator in dimension 3: Weyl’s law and geometry, St. Peterusberg Jour. 31 (2) (2019), 248–268.

49.  Y. Miyanishi and G. Rozenblum, Spectral properties of the Neumann-Poincar´e operator in 3D elasticity, Int. Math. Res. Not., 2021 (11) (2020), 8715-8740.

50.  Y. Miyanishi and T. Suzuki, Eigenvalues and eigenfunctions of double layer potentials, Trans. Amer. Math. 369 (2017), 8037–8059.

51.     C. Neumann, U¨ber die Methode des arithmetischen Mittels, Erste and zweite Abhand-lung, Leipzig 1887/88, in Abh. d. Kgl. S¨achs Ges. d. Wiss., IX and XIII.

52.  J. Plemelj, Potentialtheoretische Untersuchungen, Preisschriften der Fiirstlich Jablonowskischen, Gesellschaft zu Leipzig, Teubner-Verlag, Leipzig, (1911).

53.  K. Perfekt and M. Putinar, Spectral bounds for the Neumann–Poincar´e operator on planar domains with corners, J. Anal. Math. 124 (2014), 39–57.

54.  K. Perfekt and M. Putinar, The essential spectrum of the Neumann–Poincar´e operator on a domain with corners, Arch. Ration. Mech. Anal. 223 (2017), no. 2, 1019–1033.

55.  H. Poincar´e, La m´ethode de Neumann et le probl`eme de Dirichlet, Acta Math. 20 (1897), 59–152.

56.    J. Radon, U¨ber die Randwertaufgaben beim logarithmischen Potential, Sitzber. Akad. Wiss. Wien 128 (1919) 1123–1167.

57.  G. Rozenblum and G. Tashchiyan, Eigenvalue asymptotics for potential type operators on Lipschitz surfaces, Russ. J. Math. Phys. 13 (3), (2006), 326–339.

58.  M. Schiffer, The Fredholm eigenvalues of plane domains, Pacific J. Math. 7 (1957), 1187–1225.

59.    M. Schiffer, Fredholm eigenvalues and conformal mapping, Autovalori e autosoluzioni,

C.I.M.E. Summer Schools 27, Springer (2011), 203–234.

60.    G. Schober, Neumann’s lemma, Proc. AMS 19, (1968), 306–311.

61.     V. Yu. Shelepov, On the index of an integral operator of the potential type in the space

Lp, Sov. Math., Dokl. 10/A, (1969), 754–757.

62.  O. Steinbach and W. L. Wendland, On C. Neumann’s method for second-order elliptic systems in domains with non-smooth boundaries, J. Math. Anal. Appl. 262 (2001), 733– 748.

63.  M. E. Taylor, Tools for PDE: Pseudodifferential Operators, Paradifferential Operators, and Layer Potentials, Mathematical Surveys and Monographs, 81 American Math. Soc., Providence RI, (2000).

64.  G.C. Verchota, Layer potentials and boundary value problems for Laplace’s equation in Lipschitz domains, J. Funct. Anal. 59 (1984), 572–611.

65.    W. L. Wendland, On the Double Layer Potential, In: Cialdea A., Ricci P.E., Lanzara

F. (eds) Analysis, Partial Differential Equations and Applications. Operator Theory:

Advances and Applications, 193 (2009) Birkh´auser Basel

66.  S. Werner, SPIEGELUNGSKOEFFIZIENT UND FREDHOLMSCHER EIGENWERT FU¨R GEWISSE POLYGONE, Annales Academiæ Scientiarum FennicæMathematica, 22 (1997), 165–186

67.  J. H. White, A global invariant of conformal mappings in space, Proc. Amer. Math. Soc. 38 (1973), 162–164.

68.  S. Zaremba, Les fonctions fondamentales de M. Poincar´e et la m´ethode de Neumann pour une fronti´ere compos´e de polygones curvilignes, Journal de Math´ematiques Pures et Appliqu´ees 10 (1904), 395–444.

69.  Seyed Zoalroshd, On Spectral Properties of Single Layer Potentials (2016), USF Tampa Graduate Theses and Dissertations.