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Siegel modular forms

n : a positive integer
I',;: the Siegel modular group of degree n.

T, := {g € GLy(Z) | 'gwng = wa),

where w,, = (1)” _01") Note that I'y = SL,(Z). Define Siegel

upper half space 9, by

9u:={Z = X +iY | X, Y € Sym,(R), Y is positive definite} .



Siegel modular forms

k: a non-negative integer
M (I',) : the set of holomorphic functions on $, satisfying
the following condition.

F((AZ + B)(CZ + D)™") = det(CZ + D)*F(Z)

Y ‘2, g eI',. If n =1, we add the cusp condition. By

definition, we have
M, T,) - M(T',) € My (T,).

Then M (I',) is a finite dimensional vector space over C. We
call an element of M, (I",)) a Siegel modular form of weight k
and degree n.



Fourier expansion

F: a Siegel modular form of degree 2.
Then Fourier coefficients of F are indexed by

{("72 ';{12) | n,r,m € Z, n,m,4nm—r2 = 0}.

We have the following Fourier expansion:

T Z _
F ((Z w)) - . ;ez a((n9 r, m), F)e(l’l‘l' +rz + mw),

n, m, 4nm-r*>0

for (: 5)) € 9. Here e(z) = exp(27iz) for z € C.



Siegel ® operator

We define a linear map @ : M;(I';) - M (I';) by

(o]

O(F) = ) a((n,0,0), Fle(nz).

n=0

We call ® the Siegel operator.
The space of cusp forms S (I';) is defined by

Sx(I'2) = ker(®).



Siegel Eisenstein series

k > 4: an even integer
We define the Siegel Eisenstein series of degree 2 and
weight k by
Ey= ) det(CZ+ D)™,
yeroo\FZ
‘2, g with A, B,C, D in M, and
I'n =y el; | C = 0;. Then this series converges

absolutely to an element of M (I';). Fourier coefficients of
E; were explicitly calculated by Kaufhold.

where y =



Hecke operators

Forn = 1,2 and m > 1, T™(m) denotes the Hecke operator
of degree n. Hecke operators acts on M (I',,) and S;(I',,). It
is known that M, (I",,) have a basis consisting eigenvector for
all T™(m). We call such a modular form an eigenform.

We can compute the Fourier coefficients of T (m)F if
Fourier coefficients of F are known. For example, we have

a((n,r,m), T 2)F) = a2n, 2r,2m) + 2**3a(n/2,r/2, m/2)
+ 252 4a(m/2, —-r,2n) + a(n/2, r,2m)
+a((n+r+m)/2,r +2m,2m)}.

Here we put a(n, r, m) = a((n,r, m), F) and we understand
a(n,rym) = 0 unless n,r,m € 7.



Euler factor of spinor L-function

Letn =1o0r2. Let F € Mi(I',) be an eigenform and p a
prime. We denote by A(m) the eigenvalue of 7™ (m). We
define a polynomial Q;")(F; X) as follows.

1. If n = 1, then we define
Q) (F; X) = 1- A(p)X + p*'X°,
2. If n = 2, then we define

QE,Z)(F s X)=1-Ap)X
+ (A7 = 20H) - p*) X2 - APt X + pHox,

REMARK 1
Q;”)(F; p~*) is the Euler factor of spinor L-function.



Algorithm for computing Fourier coefficients

Let
M(T,) = P Mi(T2)

kEZZ()

be the ring of Siegel modular forms of degree 2. Put

X1 := E4E¢ — Eq,
xp =3 72Ej +2. 53E§ — 691E,5.

Then they are Siegel cusp forms of weight 10 and 12
respectively. For k = 10, 12, we put

1

X, (= —mm ———x.
AL D, x



Algorithm for computing Fourier coefficients

By Igusa, it is known that

1. There exists a weight 35 cusp form X35 (we normalize
Xss5 so that a((2,-1,3), X35) = 1).

2. E4, Eg, X190, X12 and X35 generate M(I';) as a C-algebra.

3. E4, E¢, X19 and X, are algebraically independent over
C.

4. E,4, E¢, X10, X12 and X35 have integral Fourier
coefficients.



Algorithm for computing Fourier coefficients

The cusp form X35 can be constructed as follows.

THeorem 2 (Ibukiyama)

_[T z
ForZ € $,, we putZ = (z o and
1 0 1 0 1 0
T= T T w =TT az =T
2mi 0t 27i dw 2mi 0z
Then
4E4 6E6 10X10 12X12
_ 1 6,—E4 67-E6 a‘erO a‘1')(12
Xas = 29 .34 det 0,E4 0,E¢ 0,X10 0,X12

azE4 azE6 aszIO aszlZ



Simple implementation in Sage

We implement a class of Siegel modular forms and its
multiplication method briefly.

We create a class SiegelModularForm. This class has two
attributes, prec and fc_dct.

For a positive integer x, we put

S(x) = {(n, r,m) € Z* | n, m,4nm — r* > 0, max(n, m) < x} .

The attribute prec is a positive integer. We compute the
Fourier coefficients for (n, r, m) € S(prec). The attribute
fc_dct is a dictionary whose keys are elements of S(prec).
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Simple implementation in Sage

class SiegelModularForm(object):

def __init__(self, fc_dct, prec):
self.fc_dct = fc_dct
self.prec = prec
# self == other calls self.__eq__(other)
def __eq__(self, other):
return self.fc_dct == other.fc_dct

# self * other calls self.__mul__ (other)
def __mul__(self, other):
prec = self.prec
dct = mul_internal (self. fc_dct,
other. fc_dct,
prec)
return SiegelModularForm(dct, prec)




Simple implementation in Sage

We define the function mul_internal later. We also define
two functions, semipos_mats and semipos_mats_It.

The function semipos_mats takes one positive integer x and
returns the set S(x).

The function semipos_mats_It takes three integers n, r, m
and returns the set

{(a, b, c) € S(max(n, m)) | (n—a,r — b,m— c) € S(max(n, m))} .
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Simple implementation in Sage

@cached_function
def semipos_mats(x):

return [(n, r, m) for n in range(x + 1)\
for m in range(x + 1)\
for r in range(-2*x, 2*x + 1)\
if 4*n*m - r°2 >= 0]
@cached_function
def semipos_mats_lt(n, r, m):
s = semipos_mats(max(n, m))
return [(a, b, c¢) for a, b, c in s \
if (n-a, r-b, m-c) in s]
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Simple implementation in Sage

We define mul_internal as follows.

def mul_internal (dctl, dct2, prec):

s = semipos_mats(prec)
dct = {(n, r, m):® for n, r, m in s}
for n, r, m in s:
for a,b,c in semipos_mats_lt(n,r,m):
dct[(n, r, m)] += dctl[(Ca, b, c)]
* dct2[(n-a, r-b, m-c)]
return dct




Computation of eigenforms

In the following computation, we use a package “degree2” for
Siegel modular forms of degree 2. The source code can be
found at https://github.com/stakemori/degree?2.

The following code has been tested under Sage 5.11 and
“degree?2” (revision a701a39).


https://github.com/stakemori/degree2

Computation of eigenforms

We want to calculate the basis of M(I';) consisting of
eigenforms. Put

Ni(Ty) = {F € M(T) | a((0,0,0), F) = 0}.
Then we have
M (y) = CE; @ Ni(I').

Since Ey is an eigenform and N, (I',) is stable under the
action of Hecke operators, this is a decomposition as a
Hecke module.



Computation of eigenforms

In “degree2”, we can obtain the space N (I';) by the function
KlingenEisensteinAndCuspForms.

sage: N10® = KlingenEisensteinAndCuspForms(10)
sage: N10.dimension()

1

sage: F10 = N10.basis()[0]

Nyo(I';) is one dimensional and spanned by X1y. We can
also obtain X3y by the function x10_with_prec.

sage: X10 = x10_with_prec(2)
sage: X10 == F10
True
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Computation of eigenforms

To obtain an eigenform of weight 12, we compute the
characteristic polynomial of T®(2) on N»(I,).

sage: N12 = KlingenEisensteinAndCuspForms(12, 5)
sage: N12.hecke_matrix(2).charpoly().factor()

(x - 2784) * (x + 24600)

sage: Gl2 = N12.eigenform_with_eigenvalue_t2(-24600)
sage: F12 = Gl2.normalize()

Here G12 is an eigenform of Ny,(I';) whose eigenvalue of
T®(2) is equal to —24600 and F12 is a constant multiple of
G12 whose Fourier coefficient at (1,0, 0) is 1.
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Klingen Eisenstein series

The space Ny,(I';) is spanned by Fy; and X1,. Here Fy, is
an eigenform such that ®(F;,) = A, where A € S1,(I'y) is the
Ramanujan’s A. We can compute the polynomial Qf)(Fu; X)
for p = 2 as follows.

sage: Fl2.euler_factor_of_spinor_1(2).factor()
(1 + 24*%x + 2048*x72) *
(1 + 24576*x + 2147483648%*x"2)

The first factor is equal to Q;I)(A; x) and the second factor is
equal to Q"(A; 2"x).
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Klingen Eisenstein series

THEOREM 3

There exists a C-linear injective map E : S;(I'y) < Ny (I'z)
such that ® o E = id. For a prime p and an eigenform

f € Sx(I'y), E(f) is also an eigenform and we have

QY (E(f); X) = Q) (f; @, (f3 p*72X).

For f € S, (I'1), we call E(f) the Klingen Eisenstein series
associated to f. By the theorem above, we have

Ni(I2) = E(Si(T) & Si(X>).
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Euler factor of elliptic cusp forms

For f € Si(I'y) with dim S, (I'y) = 1 and p = 2, we compute
0 (f; X). The function euler_factor_of I takes an eigenform
and a prime p and returns Q'V(f; X). wts_of_one_dim is the
list of the positive integers k such that 12 < k < 30 and

dim S, (I';) = 1.

def euler_factor_of_1(f, p):
wt = f.weight ()
return 1 - f[p]/f[1]1*x + p " (wt-1)*x"2

wts_of_one_dim = \
[k for k in range(12, 30) \
if CuspForms(l, k).dimension() == 1]
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Euler factor of elliptic cusp forms

eulerfactors_at_2 is a dictionary such that
eulerfactors_at 2[k] = Q;l)( frs X) for k € wts_of_one_dim.
Here f; € Si(T'1).

eulerfactors_at_2 = {}
for k in wts_of_one_dim:
f = CuspForms(l, k).basis() [0]
eulerfactors_at_2[k] = \
euler_factor_of_1(£f, 2)
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Euler factor of elliptic cusp forms

sage:

{12:
16:
18:
20:
22:
26:

e

eulerfactors_at_2

+ 24*X + 2048*X°2,

- 216*X + 32768*X"2,

+ 528*%X + 131072*X"2,
- 456*X + 524288*X"2,
+ 288*X + 2097152*X"2,
+ 48*X + 33554432*%X"2}
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Saito Kurokawa lift

We calculate Q;Z)(Fk; X) for p = 2, F, € Si(I'y) and a small
weight k.

sage: X10 = x10_with_prec(4)
sage: X10.euler_factor_of_spinor_1(2).factor()
(-1 + 256*x) * (-1 + 512*x) *

(1 + 528*x + 131072*%x"2)

The last factor is equal to Q' (fis, x), where fi5 € Sis(T') is
an eigenform. We also have

07 (X123 X) = (1 = 2°X)(1 - 2" X)Q (f22, X).

But not every eigenform of S;(I';) is related to an eigenform
of Sk(Fl)
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Saito Kurokawa lift

For a cusp form F € S;(I';), we consider the following
condition.

a(n,rym) = Z d*'aQ,r/d, mn/d?),

d>0,d\gcd(n,r,m)
for all n, m,4nm — r* > 0. Here we put
a(n,r,m) = a((n,r,m), F).

We denote by S;(I’z) the set of Siegel cusp forms F € S;(I';)
satisfying the condition above. We call S;(Fz) the Maass
subspace.
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Saito Kurokawa lift

THeoreM 4 (Maass, Andrianov, Zagier)

Let k be an even number . The Maass subspace S*(I';) is
stable under the action of Hecke operators. There exists a
one-to-one correspondence between an eigenform

f € 82-2(I'1) and an eigenform F € SZ(Fz) given by

OF(F; X) = (1 - p2X)(1 - p~' X000 (f; X).
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